Comparison of Machine Learning and gPC-based proxy solutions for an efficient Bayesian identification of fracture parameters

Šodan, M and Urbanics, András and Friedman, Noémi and Stanic, A and Nikolić, M (2025) Comparison of Machine Learning and gPC-based proxy solutions for an efficient Bayesian identification of fracture parameters. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 436. ISSN 0045-7825 10.1016/j.cma.2024.117686

[img] Text
Sodan_1_35657683_z.pdf
Restricted to Registered users only

Download (12MB) | Request a copy
Item Type: Article
Subjects: Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Divisions: Informatics Laboratory
SWORD Depositor: MTMT Injector
Depositing User: MTMT Injector
Date Deposited: 08 Apr 2025 14:49
Last Modified: 08 Apr 2025 14:49
URI: https://eprints.sztaki.hu/id/eprint/10898

Update Item Update Item