Comparison of Machine Learning and gPC-based proxy solutions for an efficient Bayesian identification of fracture parameters
Šodan, M and Urbanics, András and Friedman, Noémi and Stanic, A and Nikolić, M (2025) Comparison of Machine Learning and gPC-based proxy solutions for an efficient Bayesian identification of fracture parameters. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 436. ISSN 0045-7825 10.1016/j.cma.2024.117686
![]() |
Text
Sodan_1_35657683_z.pdf Restricted to Registered users only Download (12MB) | Request a copy |
Official URL: https://doi.org/10.1016/j.cma.2024.117686
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |
Divisions: | Informatics Laboratory |
SWORD Depositor: | MTMT Injector |
Depositing User: | MTMT Injector |
Date Deposited: | 08 Apr 2025 14:49 |
Last Modified: | 08 Apr 2025 14:49 |
URI: | https://eprints.sztaki.hu/id/eprint/10898 |
![]() |
Update Item |