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Abstract. By the evolution of 3D scanning techniques, creating 3D
models of real world objects is getting much easier. Beyond the human-
sized objects one can easily scan complete buildings, roads, squares, or
even towns and countries as well. The raw data that scanning tech-
nologies, such that LIDARs or photogrammetry based applications can
provide are point clouds. The size of such a point cloud can be enormous,
with billions of points, and processing and converting it to another for-
mat is very costly. Due to this it is important to efficiently visualise
large point clouds and make it possible to modify them. In this paper we
give a brief overview of point cloud visualisation techniques and describe
our system that provides tools to manipulate point clouds by selecting,
annotating, deleting, cleaning necessary parts of them.

1 Introduction

The geometry of digital 3D models are traditionally represented by polygons,
majorly by triangles in the form of a mesh. This kind of representation helps
efficiently visualise the model. However, real-world objects are rarely built of
triangles in the nature, but they consist of little particles. Techniques that are
intended to scan the 3D world, either active laser scanners or passive multi-
camera based photogrammetry algorithms produce a huge set of such particles
in the form of 3D points. Scanning objects and generating 3D assets is important
from many aspects: entertainment (games and movies), cultural heritage, health
care, architecture, etc.

In order to be able to visualise such data, the standard way is to convert
them to triangular meshes, which is a rather complicated and time consuming
task. Additionally, this conversion is a kind of lossy compression, which involves
significant data loss. To avoid these drawbacks, during the last years it became
popular to visualise the raw point data, instead of converting them to other
format.

The difficulty of rendering resulting 3D point clouds of scanning technolo-
gies originates from the fact that such a point cloud usually consists of a huge
number of points, typically hundreds of millions or billions. Even for a simple
model a high number of points is necessary to present smoothly. If a 3D point
is considered to be represented by 3 floating point numbers, as its position, and
3 bytes for RGB colors, then we need at least 3 × 4 + 3 = 15 bytes per points.
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That is, for one billion points we need approximately 15 GB memory space to
load and use the complete data.

One of the biggest challenge of processing and visualising 3D point clouds
is to work with data that does not fit into memory. Methods that can handle
this situation are usually named as out-of-core algorithms. These algorithms
analyse the scene together with the viewers position and orientation and instead
of loading the complete data set only those parts are kept in memory that
are necessary for current visualisation. The set of necessary parts, frequently
named as chunks, changes dynamically, loading new and removing obsoleted
ones, as the viewpoint changes. To make visualisation quick and smooth, both
data processing (loading, removing) and rendering should be performed in real
time, that is also a challenging task.

1.1 Previous work

Starting from the pioneer work of Levoy and Whitted [1], many works have
been appeared in the field of point cloud rendering. The QSplat method of
Rusinkiewicz and Levoy [2] was the first multiresolution technique that could
interactively visualise hundreds of millions of points using hardware acceler-
ation. Their system transforms the input point cloud into a bounding-sphere
hierarchy. Carefully traversing this hierarchy until a leaf node with its stored 3D
point information is reached makes it possible to compute visibility and control
rendering. Overlapping points are blended by using two rendering passes.

In their paper Wimmer and Scheiblauer [3] introduced a new hierarchy called
nested octree that is efficient for rendering large point clouds using the GPU.
Their octree consists of an outer octree, that is used for view-frustum culling and
out-of-core rendering, while nested inner octrees are memory optimized sequen-
tial point trees, which allows rendering by the GPU using sequential processing
of stored data.

Kovac̆ and Z̆alik [4] presented another approach to render large LIDAR
datasets. Their typical input data was a LAS file containing 3D points aligned
sequentially along multiple scan pathes. Due to this, points that are close in
3D space can appear rather far in the LAS file. To speed up loading spatially
continuous parts, LAS data is organized into a quadtree structure and bounding
rectangles of point groups are assigned to the leaf nodes. Points are generally
not inserted into the quadtree, but their location, with following states:

– unloaded, i.e. points are in the file,
– requests loading, they need to be loaded from LAS file,
– loaded into RAM,
– loaded into GPU RAM.

In order to store only important points in the limited memory, they use an
asynchronous dynamic loading strategy that is based on the current viewpoint
and frustum. For visualising a GPU implemented algorithm is used that render
oriented splats calculated from the viewer’s distance and orientation.
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Beyond quadtree or octree one can use other hierarchical structures as well,
such that the multi-way kd-tree used in the work of Goswami et al. [5]. Contrary
to octree, kd-tree divides data equally among all nodes, which significantly speeds
up searching in the tree. This technique is capable of high quality and quick
rendering of massive point clouds.

In their papers [6,7] Richter and Döllner follow a similar strategy to visu-
alise massive (even of 5 billion points) point clouds. After a preprocessing step,
where raw data is converted into a multiresolution tree structure, rendering is
performed by the following iterative steps:

1. load tree structure into memory,
2. evaluate structure and select visible points,
3. render points,
4. user interaction, and go back to point 2.

The main advantage of their solution is that they can achieve high frame-rate
and render large point clouds in real time, due to the rendering front strategy
that adapt automatically to available memory and resources.

One of the main drawbacks of point cloud rendering compared to triangu-
lated meshes originates from its discrete nature. Points are small particles that
compose a continuous surface only if they are viewed from a proper distance. If
they are too close to the viewpoint, gaps will appear among them yielding a vi-
sually unpleasing result. To avoid it, Dobrev et al. [8] presented a solution based
on image-space operations. Points are first projected onto the image plane, and
filters are used to eliminate visual artefacts. Their operations are:

– Fill empty background pixels based on neighbours.
– Fill holes caused by occluded surface parts using colour, normal and depth

values of the surface.
– Apply a low-pass filter to smooth the result.
– Anti-aliasing to remove staircase effects around the silhouettes.
– Depth peeling to group the scene into sorted layers and apply it for rendering

transparent surfaces by blending front to back with given opacity values.
– Point cloud shadow texture generation to render shadow effects.

Using the steps above, their solution is capable of providing visually pleasing
results at interactive frame rates.

A similar technique is presented in the paper of Pintus et al. [9]. Unstructured
raw point clouds are first projected into the image space, where screen-space op-
erators are applied to enhance the quality. Even for very noisy datasets their
method can provide visually pleasant output. Their multi-pass GPU-based ren-
dering pipeline consists of a visibility pass, a multi-pass surface reconstruction
to fill gaps among points and a multi-pass deferred shading part that enhance
photorealism of the rendering.

Point sets can be visualised not only by point rendering, but also using a
volumetric, voxel based representation. In this case the 3D space is hierarchically
divided into small uniform cubes, the so named voxels. If there exists at least
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one point that falls into the cube of the given voxel, then that voxel should be
visualised, otherwise not. The colour of the voxel can be determined by the colour
of the corresponding points, e.g. taking their average value. The main advantage
of the voxel based rendering compared to the point based one is its speed and
efficiency. However, this kind of representation is usually a lossy compression,
not all the original 3D points are visualised, but only an approximation of them.
A nice solution of efficiently rendering large voxel models by using sparse voxel
octrees can be found in the work of Laine and Karras [10]. Similarly, the paper
of Museth [11] presents a detailed and thorough solution to efficiently store,
represent and visualise sparse, time-varying volumetric data.

When the size of a point cloud starts to grow enormously, memory consump-
tion becomes a critical problem. In their paper Elseberg et al. [12] present an
octree based format that is very efficient in compressing and storing point data
without significant loss of precision. Their solution is capable of storing one bil-
lion points in less than 8 GB of memory. Its importance is shown by the fact
that to represent a 3D point one needs to store at least the coordinates (3 floats,
i.e. 12 bytes), but usually other attributes are added, too, e.g. the RGB colors (3
bytes), or at least a reflectance value (1 byte). Storing only the raw data of one
billion (say one giga-) points then would cost at least 12-15 GB. Additionally,
the octree structure itself requires memory allocation as well.

The idea of Elseberg et al. was to drastically decrease the memory footprint of
a 3D point by storing the coordinates using only two bytes instead of four. It can
be done without significant loss of precision due to the fact that each points are
grouped into rectangular cuboids of size 5-10 cm, and coordinates are expressed
as relative values according to the box corners. With this representation 3D
points can be expressed with a precision of 1 micrometer, which is usually more
than enough. The correspondence between the points and their surrounding
cuboids is stored in the octree structure. This visualisation technique has been
implemented in a freely available software, named 3DTK – The 3D Toolkit at
http://slam6d.sourceforge.net.

One of the best open source solution for visualising massive point clouds that
is actively maintained and used is Potree. Potree is a WebGL based point cloud
renderer developed by Markus Schütz at the Institute of Computer Graphics and
Algorithms, TU Wien. The theory and algorithms are best described in Schütz’s
thesis [13]. Further development of his work can be found in [14].

The main contribution of Potree is that it is a web based solution. Presenting
a large 3D point cloud does not require any special software, but as WebGL
became natively supported by all major web browsers, even on mobile devices,
visualisation can be easily transported. Potree makes it possible to upload, view
and share 3D point clouds very easily, even if they contain billions of points. As
the software itself is open source, it is freely available to use and modify under
the FreeBSD license. Some examples of massive point clouds visualised in Potree
are visible in Figs. 1–6.

http://slam6d.sourceforge.net
http://potree.org
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Fig. 1: Example point cloud from potree.org.

Fig. 2: Example point cloud from potree.org.
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Fig. 3: Example point cloud from potree.org.

Fig. 4: Example point cloud from potree.org.
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Fig. 5: Example point cloud from potree.org.

Fig. 6: Example point cloud from potree.org.
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2 Point cloud manipulator

The industry standard format of storing point clouds obtained by laser scanners
and LIDARs is LAS, an open binary file format. LAS is efficient for archiving
and interchanging point cloud data, but not good enough for visualisation, as no
structural information is stored in it. Therefore, in order to be able to present
massive point clouds in real time, we need to convert LAS to a proper file format.

Similarly to others, we have chosen an octree based format in our system
to store structural point data. There are two kind of representations that our
system supports: point based and voxel based representations. Both of them
have advantages and disadvantages compared to the other; it depends on the
concrete application which one of them to choose.

The point based representation contains all the available points that are
originally stored in the raw LAS file. The root of the octree belongs to the
bounding box of the points, more specifically to the minimal axis aligned cube
that contains all points. This cube is then subdivided into eight smaller ones,
equally dividing along each axes. These smaller cubes are assigned to the eight
inner nodes of the next level of the octree. If a cube contains points of which
number is over a threshold, say 100, then it is also subdivided into eight smaller
cubes, and so on, until the point number falls below the threshold. In this case,
a leaf node is created which contains the list of the corresponding 3D points.
This kind of point cloud representation is lossless and is useful in cases where
precision and original point data is crucial.

At point based representation the length of a branch in the octree is deter-
mined by the number of points in the corresponding parts of the 3D space. When
storing the original points is not so important, one can eliminate the leaf nodes
from the octree and set a fixed maximal level for the octree that branches are
not allowed to exceed. In this case the nodes at the latest level do not contain
points, but only the information if the corresponding voxel is occupied or not,
and if so, the corresponding colour (the average colour of the points belonging
to), similarly to the inner nodes. This is called as the voxel based representation
(Fig. 7). Being a lossy compression, the main advantage of it is the reduced size
both on disk and in memory, and due to this the increased speed. This is use-
ful if visualisation is more important than storing the original raw point data.
Difference between point based and voxel based representation is illustrated in
Fig. 8.

With modern LIDARs it is possible to capture large outdoor scenes, even
cities or complete countries as well. Beyond visualisation, this kind of data is
frequently used for AI, to train deep learning systems to detect and classify real-
world objects. To this end it is necessary to select distinct small parts of the
enormous point set and identify them if they represent a car, a tree, a building,
a walker, etc. This kind of selection is usually referred to as annotation. See
Fig. 9.

Another important pre-processing task for point clouds obtained by LIDARs
or other laser scanners is data cleaning (Fig. 10). Due to their technology, these
scanners are sensitive for reflective surfaces, that means reflectance can cause
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Fig. 7: Voxel based octree. From [13].
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Fig. 8: Difference between point based (top) and voxel based (bottom) octrees.
In point based octrees leaf nodes contain lists of points, while in voxel based
octrees the leaf nodes are voxels.

Fig. 9: Example for annotated moving cars.
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invalid, mispositioned points in the cloud. Similarly, objects’ motion increases
the noise as well, as moving objects become blurred and ghosting artefacts appear
in the scene. These artefacts yield visually unpleasing results, thus selecting and
removing them from the point cloud is an important problem.

Our system has been built to help both annotation and cleaning. The follow-
ing functions are supported:

– Add to selection. Select a continuous part that is added to the list of selected
parts. By applying this tool multiple times one can select multiple distinct
areas as well. Coloured by red. See Fig. 11 a).

– Remove from selection. A selected area can be pruned by marking out and
removing some parts of it from the selection. See Fig. 11 b).

– Intersect selection. Keep those points as selected that fall within the inter-
section of the original selected part and the new selection. See Fig. 11 c).

– Select all.
– Select none.
– Finalise selection, extract object. This function is for annotation. When a

selection is finished, e.g. a complete tree is already selected, we can finalize
the selection and assign a label to it, e.g. “tree”. Coloured by green. See
Fig. 11 d).

– Convert all finalised objects to selected. Finalized objects cannot modified
any longer. However, we can convert them back to “selected” and continue
modification.

– Delete selection. This function is for cleaning. Unnecessary parts can be
removed from the point cloud. See Fig. 11 e).

– Delete finalised objects. The same as the previous function, but applied on
finalised objects instead of selected.

Marking in the 3D space using only 2D tools, namely the screen and the
mouse or touchbar, is not self-evident. The selection tool we use in the system
makes it available to the user to select an axis aligned rectangular region on
the screen, by selecting the starting corner and finishing by the opposite corner
along the diagonal. The marked rectangle is in the screen space that we need
to transform to the world space. For this we create a 3D cone starting from the
camera center and going through the image plane at the selected rectangle. All
3D points that fall into this cone are marked as selected. See algorithms 1 and 2.

Selection, deselection and intersection are expressed by the combination of
multiple 3D cones, as seen in Fig. 12. The full selection consists of parts. Each
part is built from a single selection cone, multiple deselection cones and multiple
intersection cones. We say that a point is selected based on the part, if it falls
within the corresponding selection cone and all intersection cones, but does not
fall into any of the deselection cones. See formula (1), where P is the part, S the
selection cone, Ii the intersection cones, Dj the deselection cones, respectively.

P = S ∩

(
n⋂

i=1

Ii

)
r

 m⋃
j=1

Dj

 . (1)
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Fig. 10: Example for cleaning. Top: before; bottom: after; center: selected points.
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(a) Function: add to selection.

(b) Function: remove from selection.
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(c) Function: intersect with selection.

(d) Function: finalize.
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(e) Function: delete selected.

(f) Function: mark selected for deletion.

Fig. 11: Examples for functions.
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Algorithm 1 Algorithm to compute cone transformation that projects and
transforms the 3D cone into the [0, 1]x[0, 1] 2D box

Float4x4 computeConeTransform(Int2 selectStartMousePos, Int2

selectEndMousePos)

{

int box_x1 = min(selectStartMousePos.x, selectEndMousePos.x);

int box_x2 = max(selectStartMousePos.x, selectEndMousePos.x);

int box_y1 = min(selectStartMousePos.y, selectEndMousePos.y);

int box_y2 = max(selectStartMousePos.y, selectEndMousePos.y);

// 4x4 world to camera matrix:

Float4x4 W2C = getWorldToCamera();

// OpenGL type projection matrix (camera space to clip space):

projects into the [-1,1]^3 cube

Float4x4 P = getProjectionMatrix();

// Matrix to transform [-1,1] to [0,1]

Float4x4 T = getTranslationMatrix(Float3(1, 1, 0)) *

getScaleMatrix(Float3(0.5, 0.5, 1));

// Matrix to scale [0,1] to viewport size

Float4x4 S1 = getScaleMatrix(Float3(viewWidth, viewHeight, 1));

// Matrix to get coordinate relative to the top-left of the box

Float4x4 TB = getTranslationMatrix(Float3(-box_x1, -box_y1, 0));

// Matrix to scale box size to [0,1]

Float4x4 S2 = getScaleMatrix(Float3(1 / (box_x2 - box_x1), 1 / (box_y2

- box_y1), 1));

// compose final matrix

return S2 * TB * S1 * T * P * W2C;

}
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Algorithm 2 Algorithm to check if a 3D point falls within the cone

bool isPointWithinCone(const Float3& point3DInWorld, const Float4x4&

coneTransform)

{

Float4 p = coneTransform * Float4(point3DInWorld, 1);

if (p[3] == 0.0) return false;

p *= 1 / p[3];

return (0 <= p[0] && p[0] <= 1 && 0 <= p[1] && p[1] <= 1 && -1 <= p[2]

&& p[2] <= 1);

}

The connection among the parts is given by an OR type relation, that is a point
is marked as selected if it is selected by any of the parts. See formula (2).

All = P1 ∪ · · · ∪ Pk. (2)

With this formalism we can easily express all selection functions discussed above.

In
selection box

In
selection box

In
selection box

AND AND AND

Out of any
deselection boxes

OR Out of any
deselection boxes ... OR ... Out of any

deselection boxes
AND AND AND
In all

intersection boxes
In all

intersection boxes
In all

intersection boxes

Fig. 12: A point or voxel is selected if it matches to the given rules.

3 Discussion

We have noted that selected or finalized 3D points are recoloured to red and
green, respectively, which is implemented in the shaders. However, deleting 3D
points and visualise the point cloud as the deleted points do not exist is a
more complicated problem. Note that at this stage the points are not physically
removed from the octree, as modifying the octree on-the-fly is extremely costly.
Instead we mark these points as deleted and simulate as they do not exists.
The difficulty arise from the occlusion, that is if a point is deleted, we should see
what is behind that. To this end we apply ray tracing to solve occlusion problems.
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However ray tracing is costly again, after deleting 10-20 regions from the point
cloud makes the visualisation very slow. Due to this we have decided to simulate
deletion only until a new selection is not started, and recolour deleted part to
dark gray after that. With this solution one is enabled to check if the deletion
is successful, each necessary parts are deleted, and if so, continue the work on
other parts and leaving the deleted part as marked for deletion, see Fig. 11 f).
Due to this the visualisation remains real time, without any significant loss in
speed.

After cleaning the point cloud by deleting unnecessary sets of points, one
would need the possibility to save the result. In our system it is not supported
to save the result directly as an octree. Instead, we can export all remaining (i.e.
not deleted) points or voxels into a binary or text file. After that a converter
program is available that takes as input the original LAS file (from which the
octree was generated) together with the exported data file and from them creates
another LAS file as output that contains only the remaining points.

At this point there is a significant difference between the two cases, namely
when a point based or voxel based octree is used for cleaning. When voxels are
stored in the octree, only voxels, that is small 3D boxes can be exported. The
converter program reads all original points and verify if they are within any of
the voxels or not, which can take a long time. Contrary, when the octree contains
the 3D points as well, they can be exported, and hence their conversion to LAS
is much faster, computing point-box intersections is not required. Due to this, if
our system is used only for cleaning, it is suggested to use point-based octree for
that. For annotation both point-based and voxel-based octrees are convenient.

Further examples can be seen in Figs. 13–16.

4 Conclusion

In this paper we gave an overview of methods and techniques to represent and
visualise huge point clouds, as well as a detailed description of our system that
is capable of manipulating (annotating, selecting, cleaning, etc.) such data. The
difficulty of such techniques arises from the size of the data, that can easily exceed
the size of the RAM and GPU memory available in the processing computer. The
significance of these visualisation and manipulation methods is getting bigger as
scanning technologies evolve and become smarter, faster and cheaper.
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Fig. 13: Example for annotated windows.
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Fig. 14: Example for annotated pedestrians.
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Fig. 15: Example for removing ghosting artefacts. Top: before; bottom: after;
center: selected points.
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Fig. 16: Example for removing large occluding object. Top: before; bottom: after;
center: selected points.
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6. Richter, Rico, Döllner, Jürgen: Out-of-core real-time visualization of massive 3D
point clouds. In: Proc. 7th International Conference on Computer Graphics, Vir-
tual Reality, Visualisation and Interaction in Africa, Afrigraph 2010, Franschhoek,
South Africa, 2010. pp. 121–128.
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14. Schütz, Markus, Mandlburger, Gottfried, Otepka, Johannes, Wimmer, Michael:
Progressive Real-Time Rendering of One Billion Points Without Hierarchical Ac-
celeration Structures. 10.13140/RG.2.2.23386.29120. 2019.


	A tool for manipulating huge point clouds
	Zsolt Jankó

