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ABSTRACT Electro-pneumatic actuators play an essential role in various areas of the industry, including
heavy-duty vehicles. This article deals with the control problem of an Automatic Manual Transmission,
where the actuator of the system is a double-acting floating-piston cylinder, with dedicated inner-position.
During the control design of electro-pneumatic cylinders, one must implement a set-valued control on
a nonlinear system, when, as in the present case, non-proportional valves provide the airflow. As both
the system model itself and the qualitative control goals can be formulated as a Partially Observable
Markov Decision Process, Machine learning frameworks are a conspicuous choice for handling such control
problems. To this end, six different solutions are compared in the article, of which a new agent named
PG-MCTS, using a modified version of the ‘‘Upper Confidence bound for Trees’’ algorithm, is also
presented. The performance and strategic choice comparison of the sixmethods are carried out in a simulation
environment. Validation tests performed on an actual transmission system and implemented on an automotive
control unit to prove the applicability of the concept. In this case, a Policy Gradient agent, selected by
implementation and computation capacity restrictions. The results show that the presented methods are
suitable for the control of floating-piston cylinders and can be extended to other fluid mechanical actuators,
or even different set-valued nonlinear control problems.

INDEX TERMS Intelligent agents, machine learning, pneumatic actuators, reinforcement learning, super-
vised learning, system testing.

I. INTRODUCTION
The popularity of autonomous functions is continuously
increasing in the heavy-duty vehicle industry. Along with
advanced driver assistance systems (ADAS), they are
expected to increase fuel efficiency and decrease emissions
while also enhancing safety [1]. Typical examples of these
systems are platooning [2], automated highway driving [3],
and autonomous yard maneuvering [4], having large influ-
ence on the future of transportation systems [5]. Most of
these functions require object, or lane detection algorithms,
where beside classical algorithms, Machine Learning (ML)
is also widely used, such as the methods presented in [6]–[8],
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and [9]. Machine learning also spreads rapidly in the field
of vehicle control, such as lane-keeping [10] and steering
control [11], [12]. On the other hand, machine learning algo-
rithms also perform well in mechatronic systems, where the
controlling aim is different and easier in some sense. Mod-
eling the environment is more straightforward in these cases,
though it remains nonlinear. In the case of electro-pneumatic
actuators, the primary sources of nonlinearities come from
the air’s friction and compressibility. Despite these, they are
widely used in robotics and heavy-duty vehicles, as they
have high power density, simple maintainability, and high
operational safety. There is an unlimited supply of air to be
used and exhausted in the environment afterward, causing
the fluid return lines to become unnecessary. While one of
the most significant advantages of pneumatic systems is the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 147295

https://orcid.org/0000-0002-1487-9672
https://orcid.org/0000-0003-1633-5588
https://orcid.org/0000-0003-2178-2921
https://orcid.org/0000-0001-6811-2584
https://orcid.org/0000-0003-3388-1724
https://orcid.org/0000-0002-7429-2144


T. Bécsi et al.: Reinforcement Learning Based Control Design for a Floating Piston Pneumatic Gearbox Actuator

compressibility of air, from control aspects, it is also one of
its main drawbacks because it results in nonlinear behavior
and adds delay to the system.

A transmission system’s primary function is to extend
the highly limited angular velocity and torque range of the
internal combustion engine (ICE) to a much wider interval,
which is needed during the operation of a vehicle. It forwards
the power of the ICE to the wheels of the vehicle, hence it
has a significant effect on the vehicle’s emission and fuel
efficiency, whose improvement is a vital goal of the vehi-
cle industry. As a consequence, much research focuses on
the optimization of shifting strategies. In [13] a Dynamic
Programming based optimal gear shifting control strategy is
proposed for a vehicle equipped with a Power-Shift Auto-
mated Manual Transmission (AMT), while [14] deals with
the high-precision synchronization of clutchless AMT sys-
tems. Meanwhile, other researches focus on the control of the
clutch and gearbox actuators.

In heavy-duty vehicles, mostly single- and double-acting
pneumatic actuators are used as clutch and gearbox actuators
or brake cylinders. While in robotics, many researchers focus
on the modeling and control of Pneumatic Artificial Mus-
cles (PAM), which show promising results in applications,
where the interaction between humans and robots is crucial.
Since they are used in more and more complex and often
safety-critical applications, the importance of the accurate
modeling and control of these systems is increasing.

Regarding the improvement of pneumatic models, a key
challenge is the mathematical description of the hysteretic
aspects of pneumatic actuators caused by friction. In [15]
a Preisach model is proposed, which is only accurate in
for a narrow displacement range. A generalized Bouc–Wen
model [16] is also proposed, which shows a lower root mean
square tracking error than the widely used Maxwell-slip
model [17]. In [18] an empirical approach is proposed, where
a fourth-degree polynomial is used in which the coefficients
linear functions of the pressure, which proved to be more
accurate, than most of the analytical methods.

There are many different position control methods pro-
posed for pneumatic systems in the literature. In [19], a Linear
Quadratic servo control is presented to control a single-piston
pneumatic gearbox actuator, and PID type controllers are also
commonly used due to their simplicity and low calculation
cost. Still, they are often combined with other methods to
enhance their performance. In [20], the controller is divided
into a fuzzy-model-based controller, which cancels the effects
of the nonlinearities. Hence the servo-based portion can be
controlled by a linear PID controller. In [21], an adaptive
fuzzy PD controller is combined with an integral branch, and
a fuzzy inverse model is used to adjust the PD part dynam-
ically. To reduce the modeling errors caused by the simpli-
fied modeling of the system dynamics and to increase the
controller’s performance, an active model-based, advanced
nonlinear PID controller is proposed in [22].

Nonlinear and post-modern control techniques show
promising results and possibly better performance, but they

have higher calculation cost, which can be an issue in
certain applications. In [23] a discrete-valued Model Pre-
dictive Controller (MPC) is developed to control a hybrid
pneumatic-electric actuator. [24] presents and compares a
discrete-valued MPC controller and a Sliding Mode Con-
troller (SMC). Both MPCs [25] and SMCs [26] are usually
combined with Pulse-Width Modulation (PWM) to achieve
binary control of the solenoid valves. These solutions use a
high number of solenoid valve activations, which has neg-
ative effects on the actuators’ lifetime. In [27], a switched
backstepping controller is presented, which shows better per-
formance compared to PWM-based methods and uses less
solenoid valve switches. In [28], the control of a hybrid
actuator is presented, which consists of a pneumatic actua-
tor controlled by 3/2 valves and a DC motor. High-quality
position control of the pneumatic actuator is presented using
discrete-values MPC method. At the same time, the authors
also significantly reduced the valve switches compared to
PWM-based methods. In [23], the proposed controller for
the pneumatic cylinder is augmented with a payload estima-
tion algorithm, and it presents experimental results. In [29],
an SMC controller is developed for an electro-pneumatic
clutch actuator, then controller reduction possibility is pre-
sented. A general solution is shown in [30], where an
observer-based adaptive finite-time tracking control strategy
is developed by combining dynamic surface control (DSC)
technique and backstepping approach for a class of nonlinear
systems. Control solutions for PAMs often use proportional
valves, where it is possible to control for a constant mass
flow rate. However, in the case of 2-way 2-position valves
used in clutch actuators, the continuous control signal has
to be discretized to provide binary control signals for the
valves. In certain gearbox actuators, the problem becomes
more complicated, using 3-way 2-position valves instead
of 2-way 2-position valves since they can be used both for
load and exhaust purposes, which is beneficial regarding the
cost of these systems. Although they are not able to hold con-
stant pressure within the chambers, thus the system becomes
unstable.

As shown in literature, position control of a pneumatic
actuator is achieved both by classical and post-modern con-
trol algorithms. However, each has different drawbacks and
limitations which must be taken into account along with
the system’s properties and the control requirements, when
the control method is selected, and the control structure is
designed. One possible choice would be a linear controller,
but as the system is highly nonlinear, either gain scheduling
approach or linearization techniques must be applied. Still,
they are expected to have limited performance compared
to post-modern control techniques. Methods such as linear
parameter varying (LPV) control, SMC, and MPC are able
to overcome the fast and unstable system dynamics and the
delayed effect of the control signals. As gearbox actuators
are mostly operated by 3-way 2-position valves, the con-
troller must provide binary control signals for the solenoid
valves, hence these methods are often combined with PWM,
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FIGURE 1. Schematic layout of the electro-pneumatic gearbox actuator.

although it cannot be used due to the strict limitation of the
valve switches. Other discretization techniques and expensive
control weighting can also be used, but they reduce the control
accuracy.

While it is possible to find a trade-off between the quality
of the gear change and the low number of valve switches,
Artificial Intelligence (AI) based methods should also be
considered, as they can handle complex environments and
different goals, and often find strategies and correlations that
are not possible with conventional methods.

Gear-change is an event-driven task, and the shift has
a given time limit, and a well-defined goal, which makes
this problem ideal for Reinforcement Learning (RL) based
algorithms. Previous research showed promising results in the
field [31], [32], leading to more extensive research presented
in this article.

This paper aims to compare different ML algorithms
through the control of an electro-pneumatic gearbox actuator.
The designed algorithms include a Q-learning agent, a Pol-
icy Gradient (PG) agent, a Supervised Learning (SL) agent,
and combined algorithms utilizing the synergy between the
Monte-Carlo Tree Search (MCTS) and different reinforce-
ment learning techniques by integrating planning into learn-
ing (Planning agent) and integrating planning into prediction
(PG-MCTS) which formulation is the main contribution of
this research paper. A standalone MCTS algorithm is also
provided, even though it is not suitable for real-time use.
Though, it serves as the training data source of the super-
vised learning agent and as a benchmark for the other algo-
rithms. Concerning the results of the comparison and the

limitations of a commercial actuator control unit, the neural
network agent is trained by the Policy Gradient algorithm
on the model, which is implemented and tested on the real
system.

The paper is organized as follows: Section II introduces
the nonlinear model of the actuator and the control goals.
Section II-A presents the training environment designed to
conformwith theMarkovDecision Process (MDP) paradigm,
including the observable state space, the action space, and the
reward function. Section III presents the designed algorithms,
along with the parameters used for training. Section IV
provides the comparison of the agents’ performances and
strategy choice using simulation results. Section V describes
the real test rig, where an automotive electronic control
unit (ECU) and a heavy-duty gearbox are used for testing,
and also presents and evaluates the measurement results and
Section VI provides some concluding remarks.

II. SYSTEM DESCRIPTION
Fig. 1 shows the schematic overview of the system. The
system consists of a heavy-duty gearbox, operated by the
shift actuator. A clutch is installed on the gearbox, and the
two axles are connected to electric motors, which ensure the
rotations for testing. The control of the actuator is performed
by an automotive ECU, which collects the measurements and
controls the two valves through binary commands. A laser
position sensor measures the endpoint of the piston rod, while
the pressure sensors are collecting data from the air tank, and
the two working chambers of the piston. The data logging is
performed via CAN network.

VOLUME 8, 2020 147297



T. Bécsi et al.: Reinforcement Learning Based Control Design for a Floating Piston Pneumatic Gearbox Actuator

The examined shift actuator is realizedwith a double-acting
floating-piston cylinder shown as the model part of Fig. 3.
It needs to switch between three dedicated positions, namely
High (H), Low (L), and Neutral (N), which are the two
end positions of the cylinder, and an intermediate position,
which limits the movement of the floating piston to one side
of the cylinder, respectively. The system model consists of
two solenoid valves, two pistons, three chambers, a detent
mechanism, and a Shift Finger. The detent mechanism is used
to fixate the main piston in the dedicated positions and to
prevent its unintentional movement.

Position control is realized by 3-way 2-position valves,
connecting Chamber 1 and Chamber 2 either to the pres-
sure supply or to the environment for exhausting. The third
chamber is the control chamber, which only has an exhaust
port, and serves as an air spring. The floating piston tunes the
volume and through it the pressure of the control chamber,
which then reacts to the movement of the floating piston,
also affecting the movement of the main piston indirectly.
The main piston also has a cross-section area adjacent to the
control chamber. Therefore it also has a direct effect on its
movement.

The main piston actuates the gear change. As it moves due
to the force generated by the chamber pressures, it rotates
the shift finger, which shifts the requested gear through the
gearbox linkage. In this case, high collision speed must be
avoided. Accordingly, a larger cross-section area adjacent to
the counter-side chamber is beneficial to maximize the force,
which helps to slow down the piston. To reach Neutral, simul-
taneous loading of the working chambers is the commonly
used strategy, in which case, asymmetric piston areas are the
keys of the gear shifts. The floating piston, with its movement
limited to one side of the actuator, assures the required area
ratio for all three position-switches.

The system presented needs to be able to switch between
the three dedicated positions (L, H, N), leading to six different
switch tasks. The requirements and constraints of these are
slightly different. For the comparison of the machine learning
approaches, this article presents the case of Low-to-Neutral
gear change. During this task, the controller has to meet the
following qualitative requirements:
• The shift time must be less than 80 ms. As part of an
AMT, the full change process consists of the clutch’s dis-
engagement, synchronization, actual gear change, and
engagement of the clutch, from which the current task
must not exceed the given limit to ensure minimal break
in the power-flow of the drivetrain and ensure passenger
comfort.

• The used solenoid valve switches must be less than six,
per gear-change, to meet the product’s lifetime require-
ments. Naturally, this restriction much more concerned
with the average number of switches. Though in this
way, it makes it impossible to use PWM like control
strategies.

• The overshoot must be less than 1mm, to prevent
unwanted gear shifts, which is critical regarding safety.

A. MODELING
The development of a nonlinear model of the actuator is
presented in [33], which proved to be a useful environment
for testing linear time invariant (LTI) controllers. The model
is lumped since there are no spatial variations taken into con-
sideration. Hence, the conservation equations are written as
ordinary differential equations. Since the training of the rein-
forcement learning agents presented in this article requires
an exceptionally high number of simulations, the nonlinear
model needs to be further simplified.

The system model has two main parts: the solenoid valves
and the actuator. The solenoid valve models are separated
into electrical, dynamic, and airflow models. As the electric
layout and most of the magnetic properties of the valves are
unknown, lookup tables help determine the magnetic force,
based on the time-series of the solenoid valve commands.
To open the valve, the magnetic force has to overcome the
viscous friction and the return spring. Armature position
determines the cross-section area of the valve, fromwhich the
mass flow rate is calculated based on Bernoulli’s equation for
compressible fluids:

dmch
dt
= αflAflp1

√
2κa
κa − 1

1
RaT1

(
π

2
κa − π

κa+1
κa

)
, (1)

where mch is the mass of air in the chamber, αfl is the
contraction coefficient, Afl is the minimum cross section area,
κa is the heat capacity ratio of air, Ra is the gas constant for
air, T1 is the source side temperature, p1 is the source side
pressure and π is the pressure ratio, calculated as:

π =


p2
p1

, if
p2
p1
≥ πcrit

πcrit , if
p2
p1
< πcrit ,

(2)

where p2 is the counter side pressure and πcrit is the critical
pressure ratio.

The cylinder model contains thermodynamic models of the
chambers and dynamic models of the pistons. The thermody-
namic models determine the pressure, temperature, volume,
and mass of air for each chamber. Their inputs are the mass
flow rates of the valves, piston position, and the temperatures
of the flowing air, while their outputs are the chamber pres-
sures and temperatures.

Chamber volumes are calculated as a sum of the corre-
sponding cylindrical areas with their height given by the
position of the piston. The mass of air in the chambers is
also known by integrating its mass flow rate and assuming
ambient conditions at the start of the simulation. Air mass in
the control chamber is also determined by (1), though as it
exhausts to the environment, its minimum cross-section area
is constant.

The pressure gradient is derived from the conservation
equation of energy. For a given balance volume with p input
and q output flows, the balance equation for the total energy
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is written as:

dE
dt
=

p∑
j=0

dminj
dt

(h+ ek + ep)

−

q∑
k=0

dmoutk

dt
(h+ ek + ep)+W + Q (3)

where ṁinj is the jth input flow, ṁoutk is the kth output flow, h,
ek and ep are the mass specific enthalpy, kinetic energy and
potential energy terms, W is the work term and Q is the heat
transfer. The potential and kinetic energy terms are neglected,
hence only the internal energy of the gas is taken into account.
Therefore, the conservation equation is simplified:

dUch
dt
=
dmch
dt

h−Wch − Qch (4)

where Uch is the internal energy of the gas, and ṁch is the
mass flow rate of the chamber. If the terms in the right side
of (4) are extended, the equation takes the following form:

dUch
dt
=
dmch
dt

cpTinw − pch
dVch
dt
− khtAht (Tch − Tamb) (5)

where cp is the specific heat for constant pressure, Tinw is
the temperature of the flowing air, Vch, pch and Tch are the
volume, pressure and temperature of the chamber, kht and
Aht are the heat transfer coefficient and heat transfer area and
Tamb is the ambient temperature.

By definition, the internal energy of an ideal gas is the
following:

Uch = cvmchTch (6)

where cv is the specific heat for a constant volume. Corre-
spondingly, the change of internal energy is also written as:

dUch
dt
=

d(cvmchTch)
dt

(7)

dUch
dt
=

cv
Ra
pch

dVch
dt
+

cv
Ra
Vch

dpch
dt

(8)

By combining (4) and (8) the pressure gradient is expressed
as:

dpch
dt
=
κaRaTinw

dmch
dt +

Vch
−khtAht (Tch − Tamb)− κapch

dVch
dt

Vch
(9)

The chamber pressure is known, assuming ambient pres-
sure as an initial condition. Once pressure, mass, and volume
are determined, the temperature comes from the combined
gas law. The mechanical models of the pistons calculate their
state of motions, based on Newton’s second law:

dvpiston
dt

=

∑
Fpressure − Ffriction + Fdetent

mpiston
, (10)

where vpiston is the piston’s velocity,
∑
Fpressure is the sum of

the pressure forces, Ffriction is the friction between the piston
and the housing, which contains the Coulomb-friction and a

viscous term, Fdetent is the force of the detent mechanism and
mpiston is the mass of the piston.

A sigmoid-function approximates the switching character-
istic of the Coulomb friction, written as:

Ffriction = Fµ

(
2

1+ e−vpistonf
− 1

)
+ dviscousvpiston (11)

where Fµ is the Coulomb friction, dviscous is the viscous fric-
tion coefficient, and f is the gradient of the sigmoid function.

In (10), the contact forces between the piston and the
housing and between the pistons are neglected, though their
effects must taken into account. The pistons’ positions are sat-
urated at their extremes, while between the two, the following
assumption is used: if the main piston is between Neutral and
Low, the floating piston stays at Neutral, otherwise they move
together as one, rigid body. Therefore, the main piston’s mass
is calculated as:

mMP =

{
mMP, if xMP < 0
mMP + mFP, otherwise

(12)

where xMP is the main piston’s position,mMP andmFP are the
main piston’s mass and the floating piston’s mass.

The floating piston’s position is written as:

xFP =

{
0, if xMP < 0
xMP, otherwise

(13)

The nonlinear model - with the contact forces modeled -
has been verified, then it has been validated against measure-
ments. Its accuracy is over 95% for the validated outputs,
which are the chamber pressures and the Main Piston posi-
tion. During validation, the model’s uncertain parameters,
such as contraction coefficients and friction coefficients, have
been tuned to minimize the root mean square (RMS) error of
the validated outputs. Fig. 2 presents the High to Neutral gear
change as an example, while [34] presents the individual steps
of the process and its results in details.

The first part of the research compares different machine
learning algorithms, in which case a position-dependent sam-
ple time is used tominimize the time requirement of the learn-
ing, but also guarantee the model’s stability around Neutral.
After the conceptualization phase, the chosen agent’s training
has been repeated, but with a constant 0.01ms time step to
model the real system’s behavior with high accuracy.

B. TRAINING ENVIRONMENT
Discrete Partially Observable Markov Decision Pro-
cess (POMDP) is chosen as a modeling paradigm. To interact
with the agent, the set of observable states, the set of discrete
actions, the state transition function, and the reward function
need to be detailed. The action space, e.g., the control inputs
of the system consist of the binary control commands of the
two solenoids, leading to a four element discrete choice:

A = (0, 1, 2, 3) = ([0; 0], [1; 0], [0, 1], [1, 1]), (14)

where the [s1; s2] notation refers to the commands of the
solenoids 1 and 2, respectively.
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FIGURE 2. Model validation - high to neutral gear change.

The observable state space consists of the pressures and
temperatures of the two chambers, and also the position and
speed of the main piston, and finally, the supply pressure:

S =
(
pch,1, pch,2,Tch,1,Tch,2, xMP, vMP, psup

)
(15)

Themodel in Section II-A describes the state transitions, with
all the necessary hidden states, that are not reachable by the
agent. An episode, e.g., a simulated control sequence can
end in two ways. The first is the preferred ending when the
main piston reaches its requested position, and its absolute
speed falls under a certain margin. The second terminating
condition is when the agent fails to fulfill its task, which
occurs when the simulation exceeds the time limit, or the
overshoot is above the predefined threshold, in this latter case,
zero reward is given to the agent.

The rewarding system uses episodic rewards based on
the encountered terminal states because there is no existing
heuristic that assesses precisely every intermediate state of
the episode. The terminal state is assessed based on the
quality indicators of the performed actuation, which are the
required time and the measure of overshoot. The part of the
reward function that assesses the actuation time is formulated
as follows:

RT = 1−
ts
Ts

(16)

where RT is the sub reward for the duration of the actuation, ts
is the current actuation time, and Ts is the maximum provided
time for the gear shift.

The overshoot sub reward is more complex, and it is for-
malized as follows:

RO =

1, if xmaxmp < 0.5xlim

2
(
1−

xmaxmp

xlim

)
, otherwise

(17)

The final reward is the linear combination of the introduced
sub rewards, with the weights (α2, α3) and a constant base
reward (α1) that is provided if the actuation is successful:

R = α1 + α2RT + α3RO, having (18)

α1 + α2 + α3 = 1 (19)

The requirements also limit the number of solenoid valve
switches, hence it would be evident to count it as a terminal
state and include it in the reward function. However, increas-
ing the number of valve switches will eventually slow down
the gear change, while short valve duties have no significant
effect on the system’s behavior. Thus, maximizing the actu-
ation time and overshoot sub rewards will guarantee a low
number of valve switches.

III. METHODOLOGY
As mentioned before, several techniques are used for con-
troller design. Monte-Carlo Tree Search as a tree search
algorithm (section III-A), supervised learning based agent
on generated control data (section III-B), and various rein-
forcement learning agents, such as Deep Double Q Network
(DDQN) (section III-D) and Policy Gradient (section III-E)
are developed. To further enhance the performance, mixed
solutions, such as the Planning agent (section III-F), and a
new, PG-MCTS algorithm (section III-G) is also designed.
The utilization of these six methods gives a good comparison
of machine learning possibilities for such tasks.

Fig.3 shows the basic control loop used for this
research. Translating to classic control terms, the environ-
ment serves as the system or plant to be controlled, and the
agent plays the role of the controller. In the training phase,
a simulated model of the actuator is used, since it is faster,
does not wear the plant, and the implementation of the learn-
ing algorithms on the actual ECU is not feasible. The model
takes the two solenoid commands as control input described
in (14) and generates the state vector represented in (15).
The controller architecture differs for the methods presented.
The simplest controller uses only the neural network, which
translates the state vector to the action at each step. This is
utilized in the DDQN, PG, and SL algorithms and the Plan-
ning agent’s prediction phase (actual control). The MTCS
uses a model-based search for the controller. The tree search
is combined with the neural network for the Planning agent’s
training and the prediction of the PG-MCTS. Because of the
nature of the applied methods, there are no human-designed
or handcrafted strategies, but the learning processes
develop the control logic through search, or trial and
error.
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FIGURE 3. Interaction between the agent and the environment in reinforcement learning.

A. MONTE-CARLO TREE SEARCH
Monte-Carlo Tree Search is a best-first search algo-
rithm that constructs a tree-based representation of a
problem incrementally by repeating the following four
steps:
• Selection: Recursively selects the nodes with the highest
‘‘Upper Confidence bound applied for Trees’’ (UCT)
value, until the leaf node is encountered.

• Expansion: Populates the child nodes with the genera-
tive model of the environment, if there is any.

• Simulation: Carries out an MC rollout until the end of
the game.

• Backpropagation: Updates all the parameters in the
selection path based on the result of the simulation.

MCTS earned the researchers’ attention thanks to its
results in the challenging domain of Computer Go [35], [36].
The main contribution in MCTS is the so-called Upper
Confidence bound applied for Trees algorithm that consid-
ers every node selection routine as a multi-armed bandit
problem. Hence a bandit-algorithm determines the pathway
from the root of the tree to its leaf. The UCT is formed
as:

Xi + 2Cp

√
2 lnNi
ni

(20)

where Xi is the average value of the given node, Cp is a
constant that provides an additional way of controlling the
exploitation-exploration trade-off, Ni is the number of visits
of the ancestor node while ni is the number of visits of
the given node. For more details see [37]. MCTS converges
towards the globally-optimal solution, though it also has
some shortcomings in such domains, as it can not operate in a
real-time manner, because of the high number of the required

planning iterations for a single decision. However, it still can
be utilized as a benchmark in simulation for other methods;
as a training sample generator for supervised learning; or as a
meta-heuristic for hybrid methods where the resulting system
can function in real-time. Fig. 4 presents the tree built by
MCTS for a single decision. To better represent the populated,
visited, and optimal solution, a larger sample time (3ms) was
chosen.

FIGURE 4. Example of the MCTS algorithm at a sample time of 3ms.
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B. SUPERVISED LEARNING
The goal in supervised learning is to map input vector x to
output label y = f (θ, x), where θ contains the weights of a
neural network. Hence, SL can be a conspicuous choice for
control problems with such a low sample time because only
the training phase is time-consuming, while the forward pass
function of the neural network is easily applicable in real-
time. Despite the impressive results in several areas [38], this
method has some practical drawbacks. The most concerning
is the enormous need for labeled training data, whose genera-
tion or collection is very resource-intensive or, in some cases,
impossible.Moreover, the reachable solution set is sometimes
bounded by human knowledge, because it is only capable
of resolving a previously fixed problem, i.e., reestablishing
an existing connection between the input and the output.
In the current case, these difficulties are resolved by using
the MCTS algorithm for generating the training samples.
Table 1 summarizes the final setup used for the training of
the supervised learning agent.

TABLE 1. Training setup for supervised learning.

C. REINFORCEMENT LEARNING
In several domains, there is no such opportunity to gener-
ate sufficient training samples that represent a considerably
better solution in terms of performance and quality. In these
cases, reinforcement learning can be utilized since an agent’s
capabilities are not bounded by the concepts and schemes
or solutions of human experts. This objective is reached
through the trial and error based approach that determines the
interactions between the agent and the environment, where
the only compass that an agent has is a scalar value from the
environment called reward. Consequently, the experiences
used for training are obtained in an online manner over time.
The agent endeavor is to develop a behavior that helps reach
its goals, hence maximizing the cumulative reward called
return:

G =
T∑
t=1

γ trt , (21)

where γ is the so-called discount factor specifying how
the decisions of the present affect the reward of the future,
and rt is the reward obtained at time step t . Fig. 3 shows

the basic training loop of reinforcement learning. Neverthe-
less, RL also has some weaknesses in terms of robustness,
reliability, and reproducibility [39]. Along with the most
important value-based and policy-based learning methods,
a simplified version of Deepmind’s AlphaGo Zero archi-
tecture is also implemented, which seriously mitigates the
performance concerns of RL by using MCTS in the policy
iteration procedure as a policy improvement and a policy
evaluation operator. Moreover, a novel version of the UCT
algorithm is introduced, which enables us to enhance the per-
formance of the trained neural network in prediction, while
real-time applicability is maintained.

D. VALUE-BASED METHODS
Deep Q-learning is a popular form of value-based RL,
since the breakthroughs of Deepmind’s researches in several
areas [40], [41]. In this concept, the function approximators
θ parameters are tuned to predict the action-value function in
every state over the executable moves, for that the Bellman
equation is used as an update rule:

Q(st , at ; θt ) = rt+1 + γ max
a
Q(st+1, at ; θ−t ). (22)

where Q(s, a) is the action-value of the action a in state
s, and s′ is the resulted state of the state transition of the
environment triggered by the execution of the chosen action a
in state s. θt is the weights of the online neural network, and
θ−t is the weights of the target network in time step t . The
predicted values in a given state characterize what to expect
from each choice in the long run. Hence these values need
further interpretation to formulate a policy, which is done by
the agent. For this matter, Deep Double Q-learning is chosen
from the realm of methods associated with Deep Q-learning.
The DDQN is preferred over the original DQN because it
is more stable and learns more robust policies thanks to the
decoupled selection process in the formulation of the targets
for training. The update rule looks slightly different:

Q(st , at ; θt )

= rt+1 + γQ(st+1, argmax
a

Q(st+1, at ; θt ); θ−t ). (23)

The decoupling concept is shown by (23), where the role
of the online neural networks is to evaluate the action over
the argmax function, while the target network estimates the
value of the chosen action.This approach helps to eliminate
the positive bias from the predicted values caused by themax-
imum overestimated values used as an estimate of maximum
value [42]. More details about the algorithm is given in [43].
The training setup for the DDQN algorithm is described
in Table 2.

E. POLICY-BASED METHODS
Policy-based RL has become an interesting realm of
model-free algorithms, thanks to the results in several chal-
lenging domains [44], [45]. In this concept, the policy is
approximated directly, hence the function approximators θ
parameters are tuned to predict a probability distribution in
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TABLE 2. Training setup for deep double q-learning.

every state over the executable moves. Therefore it operates
as a dynamic heuristic because the meaning of the predicted
values is only comparable for the particular branch. The
advantages of this method over the value-based ones are guar-
anteed convergence toward a local optimum and improved
stability, which can be further enhanced by using different
parameter update frequencies. The parameter update rule is
formalized as follows based on [46], [47]:

θ ← θ + α∇ logπθ (st , at )
T∑
t=1

γ trt (24)

where πθ (st , at ) is the choice probability of action a
in state s at time step t predicted with the neural
network’s θ parameters, and α is the learning rate.
The training setup for the Policy Gradient algorithm is
described in Table 3. Accordingly, the PG agent operates as
follows:

TABLE 3. Training setup for policy gradient.

1) Initialize the neural network’s θ parameters according
to the Xavier-normal kernel initializer scheme, along
with the initial state s0.

2) Carry out interactions with the environment until a
terminal state is encountered, then store the history of
the episode.

3) If the update frequency ξ is reached, then the rewards
gathered into the history have to be discounted.

4) Finally, the gradients are calculated based on the col-
lected experiences, and the neural network’s θ param-
eters are updated accordingly.

F. THE PLANNING AGENT ARCHITECTURE
This architecture implements a simplified version ofGoogle’s
AlphaGo Zero [48] for this control task, to enhance all the
performance indicators of RL algorithms that are inferior.
Simple model-free RL algorithms often seem to sample inef-
ficient and get stuck in an unsatisfactory performance level in
many domains. Consequently, different enhancement meth-
ods are integrated into RL algorithms for boosting perfor-
mance. This robust architecture is associated with a unique
two-headed neural network construction, where one of the
heads approximates the state-value function, while the other
the choice probabilities, hence the policy directly. These two
heads are utilized inside the MCTS. The main idea of the
concept is the synergy between the RL and MCTS, which
results in a neural-network controlled tree search algorithm,
where the prediction of the value-head is used as a fast rollout
strategy instead of MC rollout, in consequence, it manages
the exploitation. At the same time, the policy head regulates
the exploration with the choice probability of the given node.
A variant of the polynomial upper confidence trees (PUCT)
algorithm is used for node selection:

Q(s, a)+ P(s, a)C

√∑
b N (s, b)

1+ N (s, a)
(25)

where P(s, a) is the choice probability of the action a in
state s, C is a constant that provides an additional way for
controlling the exploration-exploitation trade-off,

∑
b N (s, b)

is the sum of visit counts of the given branch, and N (s, a)
is the visit count of the given node. MCTS evaluates the
given state over a horizon, which limited by the number
of iterations. Moreover, it outputs a probability distribution
based on the visit counts of the edges branching from the
given state. In the training loop, the action is chosen based
on the mentioned probability distribution according to the
‘‘robust child’’ method [49], hence the one with the highest
probability and the neural network is tuned with a particular
loss function:

l = (z− v)2 + πT log p (26)

where z is the final reward, v is the value of a state pre-
dicted with the value-head, πT is the probability distribution
created with the MCTS, and p is the probability distribu-
tion predicted with policy-head of the neural network. This
expression incorporates the loss of the two-heads, by using
the mentioned probability distribution for training the policy-
head, while the value-head is trained with the final reward of
the given episode. For more details [48]. The training setup
for the Planning agent is shown in Table 4.

G. PG-MCTS
AlphaGo architecture enhances the performance of an agent
through the integration of planning into learning, but it
can also be utilized in the prediction phase. Unfortunately,
it requires a serious amount of planning to reach consider-
ably better results. Thus real-time applicability can not be
maintained on an enhanced performance level. The reason
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TABLE 4. Training setup for the planning agent.

is, it does not exploit any domain-specific knowledge, which
could decrease the required planning time and meaningfully
improve performance.

Domain-specific knowledge can be interpreted as insights
built into the search tree in the form of cut-offs. Still, this
approach would turn the results to be ‘‘handcrafted’’. The
UCT algorithm is modified in this research to avoid such
outcomes and exploit specific features of the control task,
resulting in more efficient exploitation of the trained neural
network’s hidden expertise.

In this environment, the very first step determines the
appropriate control strategy for the particular episode, thus
the reachable final reward, but still actuation time also has
a significant role in the calculation of the reward. Conse-
quently, a single inappropriate decision can not stop the piston
from reaching the Neutral, it just extends the required time,
while the last few actions are for fine-tuning, because the
top of the line results are very close to each other most of
them are on the same branch or neighboring branches of the
tree. In consequence, a narrow and deep tree has to be built,
which spreads in the last few layers. Since the algorithm is
used in the prediction phase, firstly, the type of the trained
agent has to be chosen, which performance can be enhanced.
An agent which approximates the action-value function is not
the best choice, because in practice the predicted values are
very close to each other, which is not a problem if the decision
is made with an argmax function, but in the UCT algorithm,
it results in a tree search which spreads as a breadth-first
search algorithm.

In contrast, an agent that directly approximates the policy
naturally distinguishes better between actions thanks to its
dynamic heuristic like operation, but it also has its drawbacks.
Dynamic heuristic like operation means that the predicted
values do not carry information about the efficiency of the
long run; it only reflects the challenges of the given scenario.
Accordingly, a high choice probability not necessarily means
a great outcome. This behavior easily blindsides the algo-
rithm through the backpropagation procedure, which results
in wasted planning time. The proposed formulation of the
UCT algorithm overrules this behavior by using the prede-
cessor choice probability to calculate the given edge choice
probability:

Ppi Pi + C

√
lnNi
ni

, (27)

where Ppi is the policy output (choice probability) of the
parent node and Pi is the policy output of the child node.

Thanks to this modification in the first few layers of the
tree, the exploration can not waste iterations by overruling the
exploitation, but in the last few layers, it starts to spread with
the guidance of the backpropagated real values of terminal
states attached to leaf nodes, because the horizon of the plan-
ning reaches terminal states. This approach also exploits the
phenomenon that in the first few layers, only one choice has
a high choice probability, and as the iterations reach deeper
layers in the tree, the predicted probability distribution that
provides the choice probabilities starts to flatten.

The search tree built by the MCTS algorithm presented
in Fig. 4 needs extensive planning to find the right track and
perform the first step, which makes real-time applicability
impossible. In contrast, Fig. 5 shows an example of the
PG-MCTS algorithm, which only plans a few steps forward
in each move by using a policy network. It results in a
performance increase, as shown in Section IV, while it needs
considerably less resource than the MCTS since the tree for
the entire solution has fewer nodes than in the case of pure
MCTS algorithm which is built for one step only.

FIGURE 5. Example of the PG-MCTS algorithm at a sample time of 3ms.

IV. SIMULATION RESULTS
This section presents further training details and the perfor-
mance and strategy choice comparison of the different meth-
ods. This requires that all data for the performance figures are
generated by applying all methods for the same seed of
environmental parameters, for 10000 simulations, to ensure
representativity and to enable in-depth comparison.

Data preparation and hyperparameter optimization are cru-
cial parts of supervised learning; hence, the training samples
generated by the MCTS algorithm are normalized, filtered,
and shuffled. Normalization of every input vector is essen-
tial since it makes the optimization problem better condi-
tioned. Filtering is also necessary because the raw training
set may contain some degenerated samples, which ultimately
deteriorates the neural network’s accuracy. In this particular
case, the MCTS algorithm produces such samples, because,
in some episodes, there are actions that have delayed effect on
the observable state in the first few steps, while MCTS plays
a mixed strategy thanks to the MC rollouts and the bandit
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based operation of the UCT. Thus the chosen action could
vary even if the initial state does not change. Consequently,
all the samples that show this behavior have to be removed
to reach the highest possible accuracy. The data generation
phase is advised to collect an equal number of samples from
every class to prevent over and underrepresentation. Shuffling
is also critical because the same outcome has to be reached in
every batch fed into the neural network. Thus the batch size
also has to be chosen accordingly. The other hyperparame-
ters are chosen via trial and error. The performance of the
supervised learning agent and the original MCTS are shown
in Fig. 6. The figure shows the distribution of the earned
rewards during the evaluation.

FIGURE 6. Comparison of the MCTS and SL algorithms, based on the
distribution of the earned rewards.

It is clear that the two algorithms have the same behavior,
and they produce the same characteristics, which is expected,
since the MCTS generated the training data for the SL agent.
Unfortunately, the trained neural network has a 1.89% failure
rate, while the MCTS algorithm solves every episode and has
a higher average score. Though, the operation speed of the
neural network is way faster than the MCTS algorithm as it
is expected.

Fig. 7 shows the convergence of each algorithm.
As expected, the PG algorithm converges faster than the
DDQN and seems more stable too. Still, the best one is the
Planning agent which has an absolute superiority by any
measure. RL is addressed as the field of ML that is not biased
by human knowledge, though it is inevitable in the formu-
lation of the reward function and credit assignment. Since
the reward function does not alter in any solution, the differ-
ence in credit assignment schemes triggers the discrepancy
between the algorithms. Credit assignment is one of the most
complex challenges of RL. The ideal solution would be a
reward strategy that assesses every step in the episode based
on its role in the entire process. Still, rewards strategies are
more like heuristics, and they come with no guarantees. The
opposite is a final reward, which is discounted to assess all the
moves in the episode. Unfortunately, the discounting concept
assumes particular causation between slices of the episode,
which results in an inappropriate assessment of individual

FIGURE 7. Convergence of the planning agent, DDQN, policy gradient
algorithms, based on the distribution of the earned rewards.

steps. Although these issues are supposed to straighten out
over the training, they always reached deficiently.

In contrast, the Planning agent architecture can assign
a reward for every move, that is validated over a specific
horizon with MCTS. Consequently, this approach assesses
the individual steps more reliably than the discounting con-
cept, and it results in improved convergence properties and
performance. However, a neural network drives the MCTS.
Thus, it can end up in failed episodes, but there are no
erroneously promoted moves even in these cases. Thanks to
the incorporated loss function, the value-based part operates
as a regulator for such scenarios by using the final reward of
the given episode, which can be considered a valid measure.
This approach can be interpreted as an endeavor toward an
area of RL that entirely lacks handcrafted knowledge and
schemes.

Fig. 8 shows the comparison between the DDQN and PG
algorithms. The PG algorithm has a better average score and a
lower share in failed episodes, which is only 0.22%, but it still
can not settle every try. DDQN fails only 1.1% of its tasks,
which is lower than the previously introduced SL’s, despite
that SL has a higher average score. This comparison shows

FIGURE 8. Comparison of the DDQN and PG algorithms, based on the
distribution of the earned rewards.
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that simple ML-based methods are not able to outperform the
pure MCTS algorithm expect in their real-time capabilities.

The PG-MCTS and the Planning agent represent the best
performance, although the PG-MCTS reaches a higher aver-
age score by further increasing the frequency of the best pos-
sible solutions. Moreover, these algorithms are also capable
of eliminating all the failed episodes as pure MCTS, and in
the meantime, these methods maintain real-time applicabil-
ity. The comparison of Fig. 6 and Fig. 9 show that these
algorithms produce the same characteristics, but with higher
spikes in the section of the best reachable solutions, the PG-
MCTS algorithm solves more than 70% of the episodes with
the two best achievable solutions. It is interesting, though, that
not the MCTS has the best average score, the reason is that
the planning time has to be scaled back because of limited
resources.

FIGURE 9. Comparison of the PG-MCTS and the Planning agent
algorithms, based on the distribution of the earned rewards.

A. STRATEGY CHOICE COMPARISON
After the precise assessment and comparison of each algo-
rithm, it is interesting to understand the strategic wise differ-
ences beyond the performances. Fig. 10 shows the applied
strategies on an abstract level by the frequency of each action
used, to be representative, every algorithm used the same
seeds as in the performance comparison case. Apparent sim-
ilarities can be observed between the SL and MCTS algo-
rithms, which confirms the suggestion that they have the same
behavior, and the training of the neural network is successful.
The same phenomenon occurs between the PG-MCTS and
the Planning agent, but, interestingly, there is no significant
similarity between them and the MCTS, although they have
nearly the same characteristics in the performance figures.
The strategy of the DDQN and the PG does not show similar-
ities with each other or any other method, but it is compelling
that the PG entirely ignores one of the actions. It is fair to say
that every method operates as a filter that enables specific
behaviors to conglomerates into a unique strategy.

To gain further insight into the differences in strategy
choice and performance between individual agents, it is
advisable to compare their decisions across the state of
space. This comparison is aided by Fig. 11, which shows

FIGURE 10. Comparison of strategies on an abstract level.

the chosen actions of the agents in latent space. Since the
state vector has seven elements, the Principal Component
Analysis (PCA) dimension reduction algorithm is used for
visualization, which maps the R7 observation space to two
dimension R2 latent space, which is simply a representation
of compressed data in which similar data points are closer
together in space. PCA aims to reduce the dimension of a
data set of a large number of related variables while pre-
serving the largest possible variance in the data. The PCA
finds new variables as the linear combinations of the original
ones [50]. Thus, by projecting the original parameter space
into two dimensions, the distribution of different actions for
different agents can be displayed. Since the new state-space
parameters have no physical meaning, the labels are omitted
in the representation in Fig. 11. This representation serves two
purposes: The first is the comparison of the action choice of
different agents, while the second is to determine whether the
agents use mixed or clear strategies. Furthermore, for clarity
of representation, only two class distributions are displayed:
Class 1 (valve 1 opens, as red) and Class 3 (Both valves open,
as blue).

The first question is why the MCTS agent reward values
are not the best, as it converges to the optimal solution in prin-
ciple. However, both the Planning agent and the PG-MCTS
algorithm are superior. Naturally, the previous statement is
only true if the MCTS planning number also converges to
infinity [37]; or, in practice, is large enough to build a tree that
covers the prediction horizon with high confidence. Intuition
says that this would result in a clear strategy choice, which
does not happen, as shown in Fig. 11a. MCTS does not
segment the state space and relies heavily on random rollouts.
However, as the end of the episode comes closer and the
horizon converges, the algorithm finds an optimal solution
for the rest of the task that explains the high rewards.

Though the SL agent is trained by the data generated by
the MCTS and both their performance and action choice
(Figs. 6 and 10) are similar, the SL needs to ‘‘regularize’’
the hybrid action choice during the training. The ‘‘regulariza-
tion’’ is done by the neural network’s generalization feature,
which leads to a clearer segmentation of the state space,
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FIGURE 11. Distribution of chosen actions (Class 1 - red; Class 3 - blue)
on the latent space reduced by PCA.

as shown by Fig. 11b. It is an interesting fact, which is shown
in Fig. 11d, the DDQN agent’s diagram differs the most from
the others, which can be explained by the fact that it has no
connections to any other examined methods. Also, the PG
agent shows a quite simple classification diagram (Fig. 11c),
which comes from the simplicity of the agent itself and gives
a slight insight into why these simple agents fail in more
complex problems.

Having some similarities in the actor network’s paradigm,
PG, PG-MCTS, and the Planning agent show similar classi-
fication diagrams, though in Fig. 11e, the ‘‘noisy’’ effect of
the PG-MCTS’s state space can be examined. The PG-MCTS
uses an incredibly small amount of planning to maintain
real-time applicability, which emphasizes the effect of the
improper planning time on the strategy choice. The com-
parison of Fig. 11e and Fig. 11f provides an intuition about
the effect of planning utilized in prediction and learning.
The integration of planning into learning shows much more
confidence in strategy choice, which is also accomplished
by the generalization feature of the neural network, but still,
PG-MCTS has superiority.

B. METHOD SELECTION FOR EXPERIMENTAL VALIDATION
In the previous sections, several methods have been pre-
sented for solving the same control problem. Based on the

performance, the PG-MCTS algorithm would be the obvious
choice, unfortunately, the controller’s CPU does not have
enough computational power to run the algorithm in real-
time. The second best option is the Planning agent. For the
real-word test, the agent can not be trained in the simplified
environment, which means longer episodes and computation-
ally more exhaustive planning in every single step, which
could result in weeks for one training not to mention hyper-
parameter optimization. The same goes for the pure MCTS
algorithm, however, it can not operate in real-time, not even
with the simplified environment. The DDQN algorithm has
the lowest average score of all, so it can not be a reasonable
choice. From the remaining algorithms, the PG is chosen
because its average performance is higher than the SL’s, while
its share in failed episodes is only 0.22%, moreover the neural
network trained with SL has more neurons because it can not
be scaled back further without meaningful performance loss,
hence it would require more memory which is also limited on
the controller.

V. MEASUREMENT SYSTEM
Training the agent on the real target exceeds the system’s
capacity; hence, the agent is trained in a python simulation
environment and is only validated in the embedded envi-
ronment. Once the agent is trained, it is implemented in
Matlab/Simulink to merge it with the given function soft-
ware, and then the C-code is generated from the algorithm
with Simulink Coder. At last, the C-code is compiled and
downloaded to the ECU. Fig. 12 shows the testbench. It con-
tains a 3-stage, 16-gear heavy-duty gearbox with two electric
motors simulating the vehicle’s engine and the road resis-
tance, a commercial actuator control unit, a pressure sensor,
and a high precision laser position sensor.

The inputs of the Neural Network are the chamber and
supply pressures, the Main Piston’s position and its velocity.
In the industry, one important goal is to minimize the number
of sensors required to control a system. In this way, the cost
of the product also can be reduced. Therefore, the chamber
pressures are estimated by a model-based observer, which
uses the equations of the nonlinear model. A commercial
pressure sensor measures the supply pressure with 0.02bar
resolution, and a high precision laser sensor measures the
position of the Main Piston. The piston’s velocity is derived
by the measured position, and then it is filtered.

The signals are measured via CAN with a Vector
VN1630A measurement device [51], and are processed with
Vector CANape 14 measurement software [52]. All signs are
measured with 1ms sample time, which is also the frequency
of the control algorithm.

The major challenge during implementation and testing is
to develop an agent concerning the hardware limitations of a
commercial ECU. In this case, the maximal CPU frequency
is 160MHz, and the program memory is 2048kB. Still, a part
of the resources is already reserved for other functions, most
importantly to the automotive ECU framework that holds the
safety-related algorithms.
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FIGURE 12. Measurement system.

By iterative testing and optimization, the size of the Neural
Network has been reduced. The smallest Neural Network,
which is suitable to control the system, contains four inputs
and one hidden layer with 32 nodes. The inputs are divided
into two parts: measured and calculated ones, as mentioned
before. Prediction of a feedforward Neural Network with
ReLU activation layers consists of linear algebraic operations
and saturation. In this case, the network has a node number
of (7, 32, 4) for the input, hidden, and output layers, respec-
tively. This leads to (7∗32)+ (32∗4) = 352 multiplications,
32 sums and RELU-s, and the 4 element softmax calculation.
The CPU can manage these calculations in real-time. Hence,
the bottleneck is the element size of the weight matrices. Nat-
urally, training on the actual hardware would require much
more resources, which is why it was omitted.

A. MEASUREMENT RESULTS
The gear change is performed between 4 bar and 10 bar
supply pressure with 0.5 bar resolution. Fig. 13 shows three
selected test cases, through which the applied strategy of
the agent is presented. The first and second diagrams show
solenoid valve 1 and solenoid valve 2 commands for 5 bar
supply pressure, the third and fourth diagrams show the
solenoid valve commands for 8 bar supply pressure and the
fifth and sixth diagrams show the solenoid commands for
10 bar supply pressure. The seventh and eighth diagrams
show the chamber pressures, and the ninth diagram shows the
main piston’s position for the three cases.

The piston is moved to Low position by direct solenoid
valve commands, and then at 0s, the supervisory logic passes
the control to the agent, which achieves gear change. In the
case of 10 bar supply pressure, the agent applies a typical

open-loop control strategy: it loads both working chambers
at the same time until Neutral is reached. While it is not
the fastest possible method, it is a very robust and reliable
control strategy. As the supply pressure is reduced to 8 bar,
the piston’s speed lowers, hence it takes more time to reach
Neutral. This induces more extended solenoid valve com-
mands, but with the reduced supply pressure, the risk of over-
shoot also decreases. If the supply pressure further decreases,
the agent becomes ‘‘braver’’, thus it enables a higher pressure
difference between the chambers, which results in faster gear
changes despite the lower supply pressure.

On the contrary, the PG agent tested in the simulation first
activates only solenoid valve 1 to move the piston towards
Neutral, then it uses solenoid valve 2 to slow down the
piston and prevent overshoot. This is a high-risk, high-reward
strategy, as it has exceptional performance, but it requires
perfect timing. Presumably, the key difference between the
two agent lies in their inputs. The piston’s velocity is removed
from the input of the agent presented in this paper as it could
only be calculated from the measured position and it would
suffer from noise. However, without the piston’s velocity, it is
more difficult to predict overshoot as it a becomes partially
observable Markov decision process, therefore to reduce the
risk of failure, the agent learned different control strategies
with respect to the supply pressure.

The measurements are summarized in Fig. 14. The first
and second diagrams show the solenoid valve commands,
the third and fourth diagrams show the chamber pressures,
and the fifth diagram shows the main piston’s position.

As expected, the extremes (4 bar and 10 bar supply pres-
sure) envelop both of the chamber pressures: if the supply
pressure is higher, the pressure gradient must be steeper.
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FIGURE 13. Measurement results on 5, 8 and 10 bar supply pressure.

However, this is not the case with the solenoid valve com-
mands and the piston’s position. One would expect that the
gear shift with the highest supply pressure would have the
fastest gear change, hence the shortest solenoid valve com-
mands and as the pressure decreases, the gear change should
slow down, and the solenoid valve commands should become
longer. However, the agent’s goal is to maximize its reward
while achieving successful gear change. A gear change fails
due to two possible reasons: either the gear shift time exceeds
80ms, or its overshoot is higher than the allowed 1mm. In the
case of higher supply pressure, the risk of exceeding the over-
shoot limit is greater than exceeding the maximum shift time,
while in case of lower supply pressures, the risk of overshoot
is lower. Hence, to minimize the chance of failure, the agent
developed different strategies depending on the supply pres-
sure. Between 10 bar and 8 bar supply pressure, the agent uses
a conservative strategy, which is mostly used for open-loop
control of these systems. Then, the control strategy starts to
change under 8 bar supply pressure. This change becomes
very prominent between 6 bar and 5.5 bar supply pressure as
there is a huge difference in the position signals. This change
can also be seen in the chamber pressures, but its effect is not
as significant as on the piston position.

Table 5 summarizes the performance of the PG agent,
which also confirms the conclusions made based on
Fig. 13 and Fig. 14. On high supply pressure, the agent aims to

FIGURE 14. Summary of the measurement results.

TABLE 5. Performance of the PG agent on testbench.

prevent overshoot, hence it uses a conservative control strat-
egy, which is very similar to open-loop strategies. It uses only
two solenoid valve switches, which eliminates overshoot by
loading the chambers while under 8 bar pressure, this strategy
would exceed the available time. Therefore, on lower supply
pressures, the strategy of the agent changes. It permits higher
overshoot, hence achieves faster gear change, while using
shorter, but more frequent valve switches in the counter-side
chamber to control the piston’s movement.

While in simulations, the PG agent failed in 0.22% of the
episodes, it performed exceptionally well on the real target,
as it successfully executed all test cases. In simulations,
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the environmental and supply pressures and also the ambient
temperature are changed randomly in a wide range of scale,
which can result in extremely difficult scenarios. Although,
during the experimental tests, both ambient states remained
around their standard values as only the supply pressure could
be modified, resulting in simpler operating conditions.

B. COMPARISON WITH LTI METHODS
In [53] the development and testing of a gain-scheduled
PID controller and an LQR controller are presented. As the
developed controllers were tested on the same system, their
results can be used as a benchmark to justify or contradict
the PG algorithm choice. However, for exact comparison,
the measurement results have been re-evaluated. In [53] four
different test cases have been analyzed and the exact posi-
tions of the High and Low gears scatter around a nominal
value, hence the shift time was calculated between the new
request’s emergence and reaching 90% of the reference posi-
tion. This way, the performance of the different gear changes
was unified. Although, when the agent was trained, the gear
change was accepted as successful if the position error was
below 0.1mm. Therefore, during comparison, the shift time
has been defined as the time interval between the emergence
of a new request and reaching -0.1mm.

The LQR controller is not able to achieve Neutral to
Low gear changes according to the given qualitative require-
ments. As the system is highly nonlinear, the LQR controller
switches between different linear State-Space models of the
system, but due to the extremely high speed of the system, this
switching may cause transients around Neutral, which cannot
be handled with the given control frequency.

Table 6 shows the performance of both the PID controller
and the PG agent for the analyzed gear change. In case of
the PID controller, the shift time is inversely proportional to
the supply pressure, and the controller fails the requirements
at 7bar supply pressure, while the LTI controllers have not
been tested over 9bar , hence the comparison is limited to
7bar - 9bar supply pressure. On higher supply pressures,
the PID algorithm is clearly better as it achieves faster gear
changes with no overshoot. However, as the supply pressure
decreases, its performance suddenly drops, and the advantage
of the PG algorithm becomes clear. The PID controller was
tuned to maximize its performance on a dedicated supply
pressure, namely 9 bar , while the PG algorithm learned
to maximize its reward on a much wider supply pressure
range. Hence, around 9 bar , the PID controller can perform
better, but the higher the deviation from this nominal value,
the worse its performance gets. On the other hand, the PG
algorithm changes its strategy depending on the supply pres-
sure, thus it has a much more balanced performance. It is also
worth mentioning, that under 6bar supply pressure, the PID
controller cannot reach the request as the piston will be
stuck between Neutral and Low, while the PG agent meets
the requirements even at 4bar supply pressure. Within the
analyzed interval the performance of the PG algorithm is

TABLE 6. Comparison of the PID and PG control performances.

almost constant, while in case of the PID controller, the shift
time increased by approximately 150%.

The comparison of the two controllers shows that an
LTI controller can be designed to have better performance
under nominal operational conditions, but learning-based
controllers can learn to operate under a much wider range.

VI. CONCLUSION
This paper presents the machine learning control of an
electro-pneumatic actuator in an automated manual transmis-
sion. Technically, this task is a set-valued position control of
a nonlinear delayed system. The presented research has three
main contributions:

First, a new approach for neural network aided guiding
of MCTS search, what is called PG-MCTS, is presented.
The known methods, such as the Planning agent used in this
paper, apply values and policy networks to supplement the
UCT function, and replace the rollout phase of the MCTS.
In contrast, in the presented PG-MCTS, only a policy network
serves this purpose. As shown, this method enhances the
efficiency of the agent with short horizon prediction and
remains scalable for resources.

The second contribution is the comparison of variousmeth-
ods. Two pure RL agents (DDQN and PG), an MCTS for
benchmark and training data generation for supervised learn-
ing, the SL agent itself, the classic Planning agent, and the
presented PG-MCTS are compared based on their perfor-
mance.

Last, the network of a selected agent is implemented on
a real gearbox, and shown, that its performance is better
than the classic LTI controllers designed with LQR or PID
approaches. Naturally, the cause of this difference is that clas-
sical control has limited possibilities for dealing with nonlin-
earities of the system and the set-valued actuator inputs.

The research has shown that a purely heuristic MCTS
algorithm can effectively solve the control task, though it
requires a large number of rollouts, making real-time applica-
bility impossible. The supervised learning based neural net-
work agent trained on the data provided by MCTS produces
approximately the same performance, however, in a real-time
manner, contrary to RL based methods, its training is more
complicated because of the generation and preparation of
the training data. Moreover, it results in inferior performance
compared to RL techniques.

The Planning agent and the PG-MCTS are superior to
the others presented, and they show reinforcement learning
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can push the reachable performance-level above and beyond.
However, the restrictions represented by the evaluation of
the algorithms on an automotive control unit highlighted that
not the performance and real-time capabilities are the only
factors that matter. Consequently, during the deployment of
such methods, the memory and computational resource needs
have to be considered, because the cost of such controllers is
crucial in the scale of mass production. The Planning agent’s
problematic and computationally exhaustive training seems
overwhelming, thanks to the drawling planning before every
move and the trial-and-error-based operation of the whole
RL field.

The scalability of the PG-MCTS algorithm enables to han-
dle the trade-off between agent performance and resource
needs during the prediction phase by adjusting the planning
length to the time-frame provided, even though on the actual
plant, the PG-MCTS could not fit in the provided ECU.
In contrast, the shortcomings in performance are entirely
balanced by efficiency in the case of the PG agent, making
it the most feasible trade-off for the actual application.

The presented PG-MCTS method with the modified UCT
algorithm exploits the unique features of the Policy-based
agents. Consequently, the design patterns and mostly the
comparison of their behavior are suitable for similar control
problems.
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