
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020 289

Minimum Cost Survivable Routing Algorithms
for Generalized Diversity Coding

Alija Pašić , Péter Babarczi , Member, IEEE, János Tapolcai , Erika R. Bérczi-Kovács,

Zoltán Király , and Lajos Rónyai

Abstract— Generalized diversity coding is a promising proac-
tive recovery scheme against single edge failures for unicast
connections in transport networks. At the source node, the user
data is split into two parts, and their bitwise XOR is computed as
a third redundancy sub-flow. In order to guarantee instantaneous
failure recovery without costly node upgrades, the network must
ensure that any two of the three sub-flows reach the destination
node in case of a single edge failure only by allowing flow
duplication or merging identical flows, and avoiding any coding
operation in the core network. In this paper, we investigate
the corresponding routing problem to calculate capacity-efficient
routes for these sub-flows. We propose a polynomial-time algo-
rithm for topologies without capacity constraints on the links and
without capability limitations of the nodes. We show that with
node limitations the presented algorithm (as well as a minimum
cost disjoint path-pair) provides a 4/3-approximation for the
routing problem. Furthermore, we formulate an integer linear
program to provide a minimum cost solution with arbitrary
constraints in general graphs and we propose a polynomial-time
algorithm in directed acyclic graphs. Our simulation results
suggest that with upgrading only a small set of core network

Manuscript received July 23, 2019; revised November 18, 2019;
accepted December 7, 2019; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor P. P. C. Lee. Date of publication January 23, 2020; date
of current version February 14, 2020. This work was supported in part by the
High Speed Networks Laboratory (HSNLab), through the National Research,
Development, and Innovation Fund of Hungary, under Project
K124171, Project K128062, Project K115288, Project KH129589, and
TUDFO/51757/2019-ITM Thematic Excellence Program, in part by the
BME-Artificial Intelligence FIKP of EMMI under Grant BME FIKP-MI/SC,
in part by the Industry and Digitization Subprogramme, NRDI Office, in
2019, in part by the National Development Agency of Hungary based on a
source from the Research and Technology Innovation Fund under Grant FK
132524, and in part Project no. ED_18-1-2019-0030 (Application-specific
highly reliable IT solutions) that has been implemented with the support
provided from the National Research, Development and Innovation Fund
of Hungary, financed under the Thematic Excellence Programme funding
scheme. This article was presented at the IFIP Networking Conference,
Toulouse, France, May 2015. (Corresponding author: Alija Pašić.)

Alija Pašić, Péter Babarczi, and János Tapolcai are with the MTA-BME
Future Internet Research Group, Budapest University of Technology and Eco-
nomics, 1111 Budapest, Hungary, and also with the MTA-BME Information
Systems Research Group, Department of Telecommunications and Media
Informatics, Budapest University of Technology and Economics (BME),
1111 Budapest, Hungary (e-mail: pasic@tmit.bme.hu; babarczi@tmit.bme.hu;
tapolcai@tmit.bme.hu).

Erika R. Bérczi-Kovács is with the Department of Operations Research,
Eötvös Loránd University, 1053 Budapest, Hungary, and also with the
MTA-ELTE Egerváry Research Group on Combinatorial Optimization
(EGRES), Eötvös Loránd University, 1053 Budapest, Hungary (e-mail:
koverika@cs.elte.hu).

Zoltán Király is with the Department of Computer Science, Eötvös Loránd
University, 1053 Budapest, Hungary (e-mail: kiraly@cs.elte.hu).

Lajos Rónyai is with the Institute for Computer Science and Control,
1111 Budapest, Hungary, and also with the Department of Algebra, Budapest
University of Technology and Economics (BME), 1111 Budapest, Hungary
(e-mail: ronyai@sztaki.hu).

Digital Object Identifier 10.1109/TNET.2019.2963574

nodes with flow duplication and merging capabilities most of the
benefits of generalized diversity coding can be achieved.

Index Terms— Survivable routing, incremental deployment,
diversity coding, instantaneous recovery, transport networks.

I. INTRODUCTION

DESPITE extensive research effort focused on developing
capacity-efficient survivable routing schemes in the last

decades dedicated 1 + 1 path protection is still the most
commonly used scheme of the current communication net-
works [1]. Dedicated path protection is appealing because
of its ultrafast recovery time combined with the robust and
straightforward operation: it sends the user data along two
disjoint paths to instantaneously recover from single edge
failures [2]. Although it consumes at least twice as much
capacity as a single path, there are efficient algorithms to
calculate a 1 + 1 routing solution [3] and its operation does
not require to modify the operation of core network nodes.

Several survivable routing schemes were introduced in
the past decades which could significantly reduce its band-
width utilization [4]–[11]. Network coding-based approaches
perform algebraic operations on the data at core network
nodes [4]–[6], partial path protection methods guarantee a
minimum grade of service after failure using multi-path
routing strategies [7], [8], and shared protection approaches
pre-compute backup paths but signal them only after a failure
occurs [9]–[11]. Although they are capacity efficient, these
methods did not reach the phase of widespread deployment.
We argue that this is because they sacrifice either the ultrafast
recovery time, the low computational complexity, or the simple
operation of 1 + 1, each of which is a desired property for
network operators.

Although optimal capacity efficiency can be achieved with
network coding [4], [12]–[14] while the 50 ms recovery time
constraint of carrier-grade networks is maintained, with the
current technology it requires extensive data processing at core
network nodes. Diversity coding (DC) [15], [16] provides a
solution for this problem, where the user data is split at the
source node into two parts A and B, and a third sub-flow
with the redundancy data A ⊕ B is created, too (⊕ denotes
the exclusive OR (XOR) operation). These three sub-flows are
forwarded along three edge-disjoint paths to the destination,
which can decode the sent data from arbitrary two of the
three with a simple XOR operation. Therefore, DC maintains
all the desired properties of 1 + 1 (i.e., instantaneous failure
recovery, simple operation, and low complexity). However,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6346-496X
https://orcid.org/0000-0003-1644-2172
https://orcid.org/0000-0002-3512-9504
https://orcid.org/0000-0002-9815-5793

290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

DC requires the existence of three edge-disjoint paths between
the communication endpoints, which is rarely present in trans-
port networks.

In order to tackle the connectivity issue recent
works [17], [18] generalized diversity coding and provided
polynomial-time network coding algorithms to route the
three sub-flows on minimum cost survivable subgraphs
instead of disjoint simple paths. While [17] focused on
algebraic properties such as the necessary field size for
coding, in [18] we revisited the problem with a pure graph
theoretical mindset, and demonstrated that no in-network
coding is necessary at all. Although these works assumed
that a minimum cost subgraph is given for coding, finding
such subgraphs (survivable routing) was first discussed
in [19].1 In this paper we extend [19] in order to make
the generalized diversity coding concept a viable alternative
for 1 + 1 in transport networks. To be more specific, from
a practical perspective we introduce an approximation
algorithm for networks with limited node capabilities, and
discuss incremental network node upgrade strategies to
deploy our method into real networks. Furthermore, from
a theoretical perspective, we propose a polynomial-time
survivable routing algorithm in directed acyclic graphs.

The rest of the paper is organized as follows. In Section II
we formulate our problem, and reveal important struc-
tural properties of the minimum cost survivable routings.
In Section III a polynomial-time algorithm is presented in fully
upgraded networks without capacity constraints. In Section IV
we prove that 1 + 1 approximates our routing problem in
partially upgraded networks, and provide a 4/3-approximation
algorithm for this scenario. As the routing problem is
NP-complete with scarce bandwidth resources in partially
upgraded networks [19], in Section V we present an integer
linear program for general topologies and a polynomial-time
algorithm in directed acyclic graphs. In Section VI we show
our simulation results, which reveals the network scenarios
where the generalized diversity coding approach can be a real
alternative of 1+1 with a minimal (or even without) network
upgrade. Finally, Section VII concludes the paper.

II. BACKGROUND

A. Problem Formulation

A transport network is a collection of routers, switches
(referred to as nodes) and high bandwidth communication
channels (referred to as edges) between them. It may be
represented by a directed graph G = (V, E, k, c) with node
set V and edge set E. Each e ∈ E edge has two attributes,
namely its capacity k(e) ∈ N, i.e., number of bandwidth
units available for data transmission, and its cost c(e) ∈ R

+,
which is defined as the cost of using one unit of bandwidth
along edge e. Given a connection request D = (s, t, d), with
information source s ∈ V , with information sink t ∈ V , and
the number of data units d requested for transmission.2 Our

1The survivable routing problem was later extended to include different
delay requirements of the applications [20]. However, in the current paper we
deal with the original problem [19] without any delay constraint.

2The notation is summarized in Table I.

TABLE I

NOTATION LIST FOR THE SURVIVABLE ROUTING PROBLEM

Fig. 1. Different options to route d = 2 data parts on three sub-flows.

goal is to allocate non-negative bandwidth f(e) for each edge
e which is resilient against single edge failures. This goal
can be achieved either with applying three link-disjoint paths
(Fig. 1a), or using three directed acyclic graphs which might
share common edges (Fig. 1b), but even upon the failure of
these edges all data units are received at the sink without any
network reconfiguration, formally:

Definition 1: The allocated bandwidth f(e) for each edge
e implements a survivable routing of connection request D =
(s, t, d) in G, if ∀e ∈ E : f(e) ≤ k(e), and there is an s − t
flow of value at least d in G with edge capacities f , even if
we delete any single edge of G.
Our goal is to find a survivable routing f for connection D
with minimum bandwidth cost, formally:

min
∑
e∈E

c(e) · f(e). (1)

We say that routing is vulnerable if it is not survivable.
Furthermore, a survivable routing is critical, if we cannot
further decrease the bandwidth value f(e) along any edge
in e ∈ E without making the routing vulnerable. Intuitively
speaking, critical means the routing is a local minimum. The
rest of the paper is devoted to finding the global minimum.

This optimization problem has been investigated for decades
in the literature, and it was shown that finding the optimal
survivable routing for a connection with d > 2 data parts,

PAŠIĆ et al.: MINIMUM COST SURVIVABLE ROUTING ALGORITHMS FOR GENERALIZED DIVERSITY CODING 291

or finding the optimal survivable routing for multiple edge
failures are NP-complete problems [21]–[23]. However, in cur-
rent transport networks, single edge failures are the most
relevant failure scenarios [2], while dividing user data into
more than two parts is impractical from an operational point
of view. Furthermore, the minimum cost routing solution in
most real-world networks can be reached by dividing the input
flow into 2 sub-flows [9]. The first results on the complexity
of this practically relevant special case of single edge failure
minimum cost survivable routing when d = 2 was presented
in [19], and it was shown that the problem is NP-complete
with topological constraints, while polynomial-time solvable
in the unconstrained case.

In this paper we will focus on the algorithmic techniques
solving the survivable routing problem for this practical sce-
nario, i.e., the connection can be routed as two parts of
equal (unit) size,3 denoted by A and B; considering multiple
constrained scenarios. We are searching a survivable routing
for a single demand D = (s, t, 2) at a time. Our algorithms
exploit the special structural property of critical survivable
routing solutions, which is detailed in Section II-B.

B. Structure of Critical Survivable Routing Solutions

First we define a couple of auxiliary graphs for simple
arguments. Let R = (V R, ER, f) denote the survivable
routing graph, which is a subgraph of G (i.e., V R ⊆ V ,
ER ⊆ E) with positive bandwidth f , (i.e., ∀e ∈ ER : 0 <
f(e) ≤ k(e)). In [17], [18] R was called “coding graph”, and
several properties have been proved which we will overview
in this subsection. For the sake of easier presentation of our
results, we introduce auxiliary graph G∗ = (V, E∗, c). The
node set of G∗ is the same as the node set of G, and each
e ∈ E is replaced by k(e) parallel edges (i.e., edges which
have the same tail and head node as e), each with cost c(e).
Note that k(e) is a non-negative integer, and a single edge
failure e in G corresponds to the failure of all k(e) edges
in G∗. A critical survivable routing4 R∗ = (V R∗

, ER∗
)

forms in G∗ a Directed Acyclic Graph (DAG) according to
Lemma 4 of [18]. It represents the routing of the connection,
where V R∗ ⊆ V , ER∗ ⊆ E∗, while the objective function in
Eq. (1) can be rewritten as:

min
∑

e∈ER∗
c(e). (2)

Definition 2: A routing DAG H ⊂ G∗ is a subgraph of G∗,
which is a DAG connecting s to t in such a way that there exist
a positive integer l and different nodes s = v0, v1, . . . , vl =
t of H , such that in H for every i with 0 ≤ i < l node
vi−1 is connected to vi by a directed path or two fully-edge-
disjoint directed paths,5 and H is the edge-disjoint union of
these segments. If the segment from vi−1 to vi consits of two

3Input parameters (e.g., edge capacity) can be scaled accordingly. Note that,
k(e) can be arbitrary real value in practice, however for this granularity we
only need to know whether the edge can carry 0, 1 or 2 data parts.

4Note that in [18] the term minimum coding graph is used instead of critical
survivable routing.

5We call edge-disjoint paths in G∗ “fully-edge-disjoint”, if we explicitly
require that their corresponding edges form edge-disjoint paths in G as well.

Fig. 2. A survivable routing R∗ = (V R∗
, ER∗

) for connection D =
(s, t, 2) with the corresponding routing DAGs EA, EB and EA⊕B denoted
with dashed, dotted and solid edges, respectively.

directed paths, then vi−1 is called a splitter node and vi a
merger node (for obvious reasons). The edge set between a
splitter node and the corresponding merger node is called an
island.

A critical survivable routing R∗ of G∗ is the edge-disjoint
union of three routing DAGs H1, H2, H3. Moreover, for any
edge e ∈ E at most two corresponding parallel edges are in
R∗, and if two such edges appear, then one of them is part of
an island (e.g., in Fig. 1b the routing DAG corresponding to
sub-flow A has an island between splitter node p and merger
node t, and this island contains parallel edges with the other
two routing DAGs). Therefore, if we delete from all the Hi

DAGs the edges corresponding to an edge e ∈ E, then at
least two of the resulting DAGs Hi \ {e}6 will still include
directed paths from s to t and implement a survivable routing.
Please note that, in the routing problem under investigation
(i.e., d = 2) the routing DAGs of the sum are denoted as
EA, EB, EA⊕B , indicating that on the first DAG we send data
part A, on the second one data part B, and on the third one
A ⊕ B. We have the following facts about diversity coding:

Theorem 1: If G contains a survivable routing then it
contains a critical routing R as well.

If R is critical, then it is a DAG. Also, then R∗ can
be obtained as the union of edge-disjoint routing DAGs
EA, EB, EA⊕B of G∗.

Any node of a critical R can be splitter (or merger) in at
most one of the three routing DAGs.

The proof of the claims of Theorem 1 are included in [17],
[18]. To be more specific, in [17] the authors proved that
a critical survivable routing is a DAG, while in [18] it was
shown that its corresponding R∗ can be decomposed into three
edge-disjoint routing DAGs with disjoint set of splitter and
merger nodes. As a corollary, R∗ can be obtained as the union
of three appropriately selected routing DAGs, which gives the
basic concept of our routing algorithms proposed in this paper.

We will refer to the routings satisfying Theorem 1 as
Survivable Routing with Diversity Coding (SRDC). Note
that, in an arbitrary SRDC solution (one is shown in Figure 2)
the three routing DAGs carry, the same data part respectively
(either A, B or A⊕B), regardless of the failure (i.e., no data
retransmission or flow rerouting is necessary). Hence, if two
routing DAGs remain s − t connected, the source data parts
A and B can be reconstructed at the destination node with
an XOR operation (if necessary at all). In diversity coding all
of EA, EB, EA⊕B are s → t paths. However, the deployment
of an SRDC solution might require splitting and merging of

6We will use notation G\{e} to denote if a given edge or edge set is failed
or removed from graph G.

292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

the routing DAGs at the core nodes (e.g., nodes p and m
in Figure 2). In Figure 2 EA consists of an s → v path and a
v → t island, EB is an s → t path, while EA⊕B consists of
a path s → p, an island p → m, and a path m → t.

C. Incremental Upgrade of Node Capabilities

In [24]–[26] the possible extension of node capabilities
in Software Defined Networking (SDN) is discussed. Sev-
eral implementations of network coding are presented, where
besides merging and splitting also the much more complex NC
capability is implemented. In [24], [25] Multiprotocol Label
Switching (MPLS) labels are utilized to distribute sequence
numbers [27]. With the sequence numbers, we are able to
identify, duplicate (split) or merge given flows. Therefore,
a splitter can be deployed by applying regular flow rules,
while a merger functionality can be implemented as a network
function [22], [28]. Thus, we believe that implementing split-
ting and merging operations are reasonably simple in SDN;
however, a software update is still necessary, which might be
performed incrementally in the network.

Hence, in our model the set of the currently available splitter
and merger nodes are given as the input of the problem and
are denoted as P ⊆ V and M ⊆ V , respectively. If all nodes
are capable of performing the splitting and merging operation,
i.e., P = V and M = V , then we say that the network
is fully upgraded. If only a given set of nodes is capable to
perform the actions, then we deal with the partially upgraded
network scenario. Note that, for a given connection request
D = (s, t, 2) we always assume that s ∈ P and t ∈ M,
as these operations can be done by the application instead of
network node upgrades.

III. POLYNOMIAL-TIME SURVIVABLE ROUTING

ALGORITHM IN FULLY UPGRADED NETWORKS

In this section we show that the minimum cost survivable
routing problem for d = 2 with diversity coding is solvable
in polynomial time if P = V, M = V and there are no
capacity constraints on the edges, meaning that f(e) can be
an arbitrary large positive integer. We shall see later, that large
capacities are not really necessary in this setting, and in fact,
∀e ∈ E : k(e) = 2 is equivalent to the no capacity constraint
scenario.

Suppose that we have a critical survivable routing R such
that R∗ is the sum of three routing DAGs EA, EB , and EA⊕B .
We show here an important property of the islands of these
DAGs:

Lemma 1: Let R∗ be a critical survivable routing, which
is a subgraph of G∗ corresponding to network G that has
no capacity constraints. Let R∗ be the union of 3 routing
DAGs EA, EB , and EA⊕B . Assume ER∗

p,m is an island for a
given splitter (p) and merger (m) node in EA. Let EG

p,m denote
an arbitrary edge-disjoint dipath-pair7 connecting p to m in
G, with the corresponding fully-edge-disjoint dipath-pair EG∗

p,m

in G∗.
Then the routing R′ = (R∗\ER∗

p,m)∪EG∗
p,m is also survivable.

7For brevity, we use “dipath” instead of directed path in the proofs.

Proof: Since we have no capacity constraints, we can
select the edges for the new island in G∗ to be different from
the edges used in EB and EA⊕B . The survival property of
routing R∗ implies that no edge e of G appears in two routing
DAGs, unless e appears in an island of one of the DAGs. This
holds also in R′ as the non-island edges of R∗ and R′ are
the same, hence the deletion of all edges corresponding to e
can disconnect at most one of the 3 routing graphs.8 As a
consequence, after the deletion of e we still have two s − t
dipaths in R′ \ {e}.

Corollary 1: Let R∗ be a minimum cost survivable routing
and ER∗

p,m an island for a given splitter (p) and merger (m)
node. If the network has no capacity constraints, then ER∗

p,m is
a minimum cost fully-edge-disjoint dipath-pair from node p to
node m in G∗.

Proof: R∗ is a minimum cost survivable routing, hence
it is also critical. This implies that it is the union of three
routing DAGs, and these may have islands. Now if ER∗

p,m is
not a minimum cost dipath-pair for a splitter-merger pair p, m,
then with an optimal dipath-pair the construction of Lemma 1
would give a survivable routing R′ with cost lower than R∗,
which is a contradiction.

An optimal dipath-pair for p, m can be calculated with
Suurballe’s algorithm in O(|E|+ |V | log2 |V |) steps [3]. Note
that EG∗

p,m survives a single edge failure, as it corresponds to
a disjoint path-pair in G. Thus, we can substitute it with a
fail-safe edge between p and m in EA. This gives the basic
idea for the algorithm, searching for a survivable routing in a
tractable form.

Claim 1: Let R∗ be a critical survivable routing, decom-
posed into 3 routing DAGs EA, EB , and EA⊕B . Replac-
ing every island EG∗

p,m with an edge (p, m) results in three
edge-disjoint s → t paths.

Now we are ready to present our constructive proof, which
gives a polynomial-time algorithm to find an optimal surviv-
able routing. Let T denote the set of node-pairs that have
an edge-disjoint dipath-pair between them in G. For each
node-pair (u, v) ∈ T we compute the minimum cost disjoint
dipath-pair and save the total cost as cost(u, v). We construct
the following auxiliary (multi-)graph Ĝ = (V, Ê, ĉ). The node
set of Ĝ is the same as the node set of G, and we will have
|E|+ |T | edges. The edges of Ĝ are the edges of E with cost
ĉ(e) = c(e) for every e ∈ E, and we add an edge en = (u, v)
for every (u, v) ∈ T with cost ĉ(en) = cost(u, v). We refer
to the newly added edges as virtual edges.

Theorem 2: If the network has no capacity constraints on
the edges, the minimum cost survivable routing R∗ can be
computed in O(|V ||E| log1+|E|/|V | |V |) steps.

Proof: We start with a lemma about edge-disjoint dipaths
in Ĝ.

Lemma 2: Let πA, πB, πA⊕B be three edge-disjoint s → t
dipaths in Ĝ. By replacing every virtual edge (p, m) with an
island EG∗

p,m of minimum cost we get edge-sets EA, EB , and
EA⊕B in G∗ that form a survivable routing. Moreover, the cost
of these edge-sets in G∗ equals the cost of the paths in Ĝ, and
vice versa.

8Please note that the modified EA may no longer be a DAG.

PAŠIĆ et al.: MINIMUM COST SURVIVABLE ROUTING ALGORITHMS FOR GENERALIZED DIVERSITY CODING 293

Proof: Equality of costs is straightforward. Since
πA, πB , πA⊕B are edge-disjoint in Ĝ, every edge e in E is
contained in at most one path as a non-virtual edge, and may
be contained in other island(s) used for substituting virtual
edges. In case of a failure of an e ∈ E, the latter remain
connected, hence at most one of the edge-sets corresponding
to πA, πB, πA⊕B can be disconnected, which proves the
claim.

The Lemma above implies that any three edge-disjoint s →
t dipaths in Ĝ can be transformed into a feasible survivable
routing in G with the same total cost as the three dipaths.
To complete the proof of correctness, we need to show that
a minimum cost survivable routing R is mapped to a union
of three edge-disjoint s → t dipaths in Ĝ with minimal cost.
Theorem 1 implies that R must be critical. Now according to
Claim 1, R corresponds to three edge-disjoint s → t dipaths in
Ĝ. Moreover, the cost of the three edge-disjoint s → t dipaths
equals to the bandwidth cost of the survivable routing. This
cost must be minimal for the three s−t dipaths in Ĝ according
to Lemma 2.

Finally, finding the minimum cost of three edge-disjoint
paths could be done in O(|E| log1+|E|/|V | |V |) time [3].

In the construction of Ĝ, finding the pair of shortest
edge-disjoint path from a single source to every destination is
O(|E| log1+|E|/|V | |V |) time [29], which should be launched
for every source node, resulting O(|V ||E| log1+|E|/|V | |V |)
steps, which proves the theorem.

It was shown in [18], as a consequence of Theorem 1, that
in a critical survivable routing for a connection with d = 2
the bandwidth values are f(e) ≤ 2 for every e ∈ E. Thus,
without loss of generality, we may build the auxiliary graph
G∗ with k(e) = 2 (i.e., at most 2|E| edges) when searching
for a solution in the no capacity constraint scenario.

IV. APPROXIMATION SURVIVABLE ROUTING

ALGORITHM IN PARTIALLY UPGRADED NETWORKS

In this section we present an approximation algorithm to
solve the SRDC problem in partially upgraded networks with
no capacity constraints on the edges. First, we show that the
algorithm provided by Theorem 2 cannot solve the survivable
routing problem when not all nodes are capable to perform
the splitting and merging action. In Figure 3 only node m
is upgraded, i.e., only node m can be a splitter or merger
in addition to the source (s) and the destination (t) node.
If diversity coding is used, the total cost of the solution is
22, since the user data is sent along three edge-disjoint paths
(i.e., π1 = s → v1 → v2 → v3 → v12 → t (cost 5),
π2 = s → v7 → v8 → v9 → v13 → t (cost 5) and
π3 = s → v10 → v11 → t (cost 12)). If 1 + 1 is used
the cost of the solution is 20 (twice the cost of the π1 and
π2 paths). The optimal survivable routing is 19 (given by the
dotted, dashed and densely dotted edges in Figure 3). Note
that, between nodes v4 and m two copies of the same data is
transferred in order to get to merger node m in the network.
However, using the polynomial time algorithm provided by
Theorem 2 to find the three routing DAGs between s and t
would use v4 as a merger node to remove the duplicate copies

Fig. 3. The optimal survivable routing solution in partially upgraded networks
(P = {s, m} and M = {t, m}) with cost 19 is not critical. Edge capacities
are ∀e ∈ E : k(e) = 2 and edge costs are unit (otherwise written next to the
edge).

from edge (v4, m), which would result in an invalid solution
with cost 18.

In order to solve this issue, Algorithm 1 is based on
finding 3-edge-disjoint paths in an auxiliary graph G̃, which
is constructed in the same way as Ĝ in Section III, with the
exception that virtual edges are added only between upgraded
nodes where a disjoint path-pair exist (∀u ∈ P , v ∈ M : u
=
v) instead of every pair of distinct node-pairs where a disjoint
path-pair exist. Obviously, if P = V, M = V we get back Ĝ
and the constructive algorithm of Theorem 2. The computa-
tional complexity of Algorithm 1 is dominated by the creation
of the auxiliary graph resulting O(|V ||E| log1+|E|/|V | |V |)
steps.

A. Algorithm 1 Approximates SRDC

1 + 1 was proved to be a 2-approximation [23] for the
general survivable routing problem. However, our evaluations
and simulations on hundreds of graphs showed that the ratio
between the cost of the optimal SRDC solution and 1 + 1 is
below 4/3 in all investigated topologies. Thus, it led us to the
conjecture that 1 + 1 is a 4/3-approximation for the special
case of d = 2 data units.

Claim 2: 1+1 is a 4/3-approximation algorithm for SRDC
when ∀e ∈ E : k(e) = 2.

Proof: Let the two edge-disjoint paths of the 1+1 solution
be denoted by π1, π2 and denote their cost9 as |π1| and |π2|,
respectively. Furthermore, the paths of the SRDC solution are
denoted with πEa , πEb

, πEc in Ĝ. We know that the cost of
the paths for the 1 + 1 solution i.e., |π1| + |π2| is lower than
the cost of each path-pair form the SRDC solution, since we
would utilize the lower cost paths for the 1+1. Hence we know
that: |π1|+ |π2| ≤ |πEa |+ |πEb

|, |π1|+ |π2| ≤ |πEa |+ |πEc |,
and |π1| + |π2| ≤ |πEc | + |πEb

|.
We have to show that the following inequality always holds:

2(|π1| + |π2|) ≤ 4
3
(|πEa | + |πEb

| + |πEc |), (3)

We emphasize that the 1 + 1 sends both data parts (A and B)
on both paths resulting in cost of 2(|π1|+ |π2|), while SRDC
transfers A, B, and A⊕B on three disjoint paths resulting in
the overall cost of |πEa | + |πEb

| + |πEc |.
9If ∀e ∈ E : c(e) = 1 then the cost denotes the length of each path.

294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Algorithm 1 Survivable Routing With Diversity Coding
in Partially Upgraded Networks

Input: G∗ = (V, E∗, c), D = (s, t, 2)
Result: R∗ = (V R∗

, ER∗
), in specific, routing DAGs

EA, EB , and EA⊕B

begin
Define cost ĉ : E → R

+ and edge set Ẽ = ∅, Es = ∅ ;
// Create graph G̃ = (V, Ẽ, c̃).
Add ∀e ∈ E to Ẽ with c̃(e) = c(e);
for u ∈ P: do

Find the pair of shortest edge-disjoint paths from
source u to all other nodes v ∈ M, u
= v in G with
Suurballe’s algorithm (denote their cost with
cost(u, v));
Add virtual edge between the splitter merger
node-pairs where a disjoint path-pair exist en = (u, v)
to Ẽ with c̃(en) = cost(u, v);

// Find 3 edge-disjoint paths in G̃.
Find minimum cost 3 edge-disjoint paths between s and
t in G̃ with Suurballe’s algorithm;
Add the traversed edges (i.e., their corresponding edges
in G∗) to Es;
for e = (u, v) ∈ Es do

if e is a virtual edge then
Replace virtual edge e with minimum cost island
EG∗

u,v in Es;

// Save optimal survivable routing R∗.
for e = (u, v) ∈ Es do

Add nodes u, v to V R∗
(if u, v /∈ V R∗

);
Add edge e to ER∗

;

If we add the three inequalities and multiply by 2 we get
that:

6(|π1| + |π2|) ≤ 4(|πEa | + |πEb
| + |πEc |), (4)

From here it follows trivially that the inequality in Eq. (3) is
always satisfied.

Built on this fact, the following theorem can be stated.
Theorem 3: Algorithm 1 is a 4/3-approximation algorithm

for SRDC when ∀e ∈ E : k(e) = 2.
Proof: Since the source s and target node t are always

allowed to be splitter and merger, Algorithm 1 can return 1+1
as a worst case solution,10 for every possible input. As 1+1 is a
4/3-approximation algorithm for SRDC according to Claim 2,
Algorithm 1 provides a 4/3-approximation as well.

V. SURVIVABLE ROUTING WITH LIMITED

FREE CAPACITIES

In practice some edges might have limited capacities (i.e.,
k(e) = 1, referred to as “bottleneck edges” in the rest of

10Note that the 1 + 1 can be considered as sending A ⊕ B along two
edge-disjoint paths i.e. on the island between the source s and target node t.

the paper), depending on the previously allocated demands.
It was previously shown that with capacity constraints in
partially upgraded networks the SRDC problem becomes NP-
complete [19]. Hence, in Section V-A we present an Integer
Linear Program (ILP) in general network topologies. On the
other hand, in Section V-B we give a polynomial-time algo-
rithm in directed acyclic graphs.

First, we show that the algorithm presented in Theorem 2
cannot cope with networks with some edge capacities k(e) =
1. The problem is that in such a capacity constrained case
EG

p,m depends on the route of the other two routing DAGs, i.e.,
another routing DAG may use the single available capacity
unit along an edge e ∈ EG

p,m of the minimum cost disjoint
path-pair. For example, Figure 4(a) shows a network with an
optimal survivable routing of cost 20. Note that, the virtual
edge en = (v1, t) has cost ĉ(en) = 5 because cost(v1, t) is
the cost of the shortest path-pair v1 → v2 → v3 → t and
v1 → v5 → t is 3 + 2 = 5. The minimum cost 3 edge-disjoint
paths in Ĝ are shown in Figure 4(b). Clearly, this is not a valid
solution in the capacity constrained case, as edge e = (v2, v3)
has only k(e) = 1 available capacity in G, while two routing
DAGs should use it in the optimal solution.

A next attempt for solution would be to modify the algo-
rithm to find the minimum cost 3 edge-disjoint paths with
Suurballe’s algorithm using the augmenting path technique.
Applying this technique to SRDC, the virtual edges are only
traversed by the 3rd augmenting path, only after 2 edge-
disjoint paths were already found. A natural extension of the
polynomial time algorithm provided in Section III may be
to run the disjoint path search for each virtual edge (e.g.,
to (v1, t)) as a disjoint path-pair between nodes v1 and t.
During this search the reverse edges of the already found
2 edge-disjoint paths can be used (shown in Figure 4(c))
similarly as in Suurballe’s algorithm, and additionally it can
use the reverse edges of the third edge-disjoint path’s segment
between s and v1 (which is s → v7 → v2 → v3 → v6 → v5 →
v1). This could result in an augmenting path between splitter
v1 and merger t of v1 → v5 → v6 → v3 → t. In this case
the second augmenting path between splitter v1 and merger
t would be v1 → v4 → v5 → t. This in fact results in a
vulnerable routing shown in Figure 4(d) with cost 16.

A. Optimal Solution in General Graphs

In this section we present an ILP to obtain an optimal
survivable routing R in terms of bandwidth cost. The ILP for-
mulation provides the three routing DAGs for SRDC even with
capacity constraints and node limitations. To do so, we need
to introduce the so called reduced capacity function [17] (see
Theorem 4):

k′(e) =

⎧⎪⎨⎪⎩
1.5 if k(e) ≥ 2
1 if k(e) = 1.

0 otherwise

Theorem 4: [17, Theorem 2] A survivable routing exists in
a given graph G = (V, E, k, c) if and only if there is a flow
of value three in G = (V, E, k′, c).

PAŠIĆ et al.: MINIMUM COST SURVIVABLE ROUTING ALGORITHMS FOR GENERALIZED DIVERSITY CODING 295

Fig. 4. An example network G∗ = (V, E∗, c) with capacity constraint on the edges (remember from the construction of G∗ that k(e) = 2 edges in G are
parallel edges in G∗), where c(e) = 1, or written next to the edge otherwise. The edges of the routing DAGs EA, EB and EA⊕B are denoted as dashed,
dotted and densely dotted lines, respectively. Here Algorithm 1. presented in [19] fails for connection D = (s, t, 2).

Theorem 4 will be used in our ILP formulation. Note that,
given a routing DAG EA in a critical survivable routing,
a variable xA which is half on the edges of an island and
1 on all other (path) edges in EA, forms an s − t flow
of value 1, according to Theorem 1. Armed with this fact,
we investigate the benefits which diversity coding can provide
for survivable routing. Our goal is to obtain the (critical)
bandwidth values f(e) in the arbitrary directed input graph
G = (V, E, k, c) which minimize the bandwidth cost in terms
of Equation 1 for the connection D = (s, t, 2). The three
flows are denoted as w ∈ {A, B, A ⊕ B} = W , respectively,
with corresponding (real) flow variables xw(e) and indicator
variables fw(e). We have fw(e) = 1 if and only if there is
in w a positive flow through e, otherwise fw(e) = 0. Based
on Theorem 4 the reduced capacity values k′(e) ensure that
the failure of an arbitrary edge e disconnects at most one
routing DAG, thus, at least two routing DAGs remain which
connect s and t, i.e., the data can be decoded at the destination.
Our objective is to minimize the bandwidth cost of the SRDC
problem in terms of Equation 1:

min
∑
e∈E

c(e) · f(e).

The following constraints are required:

∀w ∈ W , ∀i ∈ V :

∑
(i,j)∈E

xw(i, j)−
∑

(j,i)∈E

xw(j, i) =

⎧⎪⎨⎪⎩
1 , if i = s

−1, if i = t

0, otherwise

,

(5)

∀w ∈ W , ∀i ∈ P \M:∑
(i,j)∈E

fw(i, j) ≥
∑

(j,i)∈E

fw(j, i), (6)

∀w ∈ W , ∀i ∈ M \ P :∑
(i,j)∈E

fw(i, j) ≤
∑

(j,i)∈E

fw(j, i), (7)

∀w ∈ W , ∀i ∈ V \ {P ∪M}:∑
(i,j)∈E

fw(i, j) =
∑

(j,i)∈E

fw(j, i), (8)

∀e ∈ E:
∑

w∈W
xw(e) ≤ k′(e), (9)

∀w ∈ W , ∀e ∈ E: xw(e) ≤ fw(e), (10)

∀w ∈ W , ∀e ∈ E: 2xw(e) ≥ fw(e), (11)

∀e ∈ E:
∑

w∈W
fw(e) = f(e), (12)

∀e ∈ E: f(e) ≤ k(e), (13)

∀w ∈ W , ∀e ∈ E: 0 ≤ xw(e) ≤ 1, (14)

∀w ∈ W , ∀e ∈ E: 0 ≤ fw(e) ≤ 1 are integers. (15)

The constraint in Eq. (5) formulates the flow conservation
for each routing DAG w. Additionally, Eq. (6)-(8) formulate
the constraints needed for representing the different node
capabilities. Namely, Eq. (6) represents the set of nodes that
can only perform the splitting operation (P \M). Eq. (7) is
needed for the nodes that are only capable of merging the
data stream (M\ P) and Eq. (8) is for non-upgraded nodes.
Note that we do not need extra constraints for the nodes
(P ∪ M) that can both split and merge the data. Eq. (9)
sets the maximal flow value based on the reduced capac-
ity function, while Constraints (10)-(11) sets the indicator
variables fw(e) of edge usage for the routing DAGs in G.
Eq. (12) sets the bandwidth value in G = (V, E, k, c), i.e.,
if edge e was used in an arbitrary routing DAG w, we have to
include it in the final solution with value f(e) =

∑
W fw(e).

Constraints (14)-(15) set the bounds for the flow variables, and
set the integer constraint for the indicator variables fw(e).
Note that the fw(e) variables correspond to the edge set
w ∈ W in the solution, i.e., provide the three DAGs. Since
Constraint (5) ensures that xA + xB + xA⊕B gives an s − t
flow of value 3 in G, from Theorem 4 we get that f(e) is
indeed survivable.

In order to analyze the complexity of the ILP we have
to assess the number of constraints and variables necessary
to formulate the problem. For the formulation of the flow
and node capability constraints, i.e., for Eq. (5)-(8) O(|V |)
constraints are necessary. The rest of the equations, i.e,
Eq. (9)-(15) are formulated for the links; thus, O(|E|) con-
straints are needed. Regarding the variables, we have flow
and indicator variables (i.e, fw(e) and xA) defined to each

296 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 5. Edges in Li, Pi, Yi and Li+1, Pi+1, Yi+1 denoted with dashed,
dotted and solid edges, respectively.

edge, which results in O(|E|) altogether. Therefore, the ILP
has O(|E|) variables and O(|V | + |E|) constraints.

B. Polynomial-Time Algorithm in Directed Acyclic Graphs

Although finding the optimal SRDC solution is
NP-complete in general graphs, here we give a
polynomial-time algorithm for the special case when the input
topology is a DAG. Given a DAG G, let v1, v2, . . . , vn be a
fixed topological order of the nodes in G, that is, for every
edge e = (vi, vj), i < j holds. For capacities k(e) and cost
c(e) we are going to give an algorithm to find a minimum
cost survivable routing solution for demand D = (s, t, 2).
We can assume that s = v1 and t = vn.

Definition 3: For any 1 ≤ i < n, let Si := {v1, . . . , vi} and
Ti := {vi+1, . . . , vn}, finally let Ci denote the set of edges in
G in the Si −Ti-cut, that is those with tail in Si and head in
Ti. We call these cuts topological cuts.

Let Ci be a topological cut of G and Li, Pi, Yi three, not
necessarily disjoint 1 or 2-element subsets of Ci. We call such
an ordered triplet τ a coloring of Ci, where Li∪Pi∪Yi are the
colored edges, and edges in Li, Pi, Yi are called lime, purple,
yellow, respectively. We say that this coloring is survivable,
if after the removal of any edge e in Ci, at least two of the
sets Li, Pi and Yi remain non-empty. A coloring of cut Ci

and a coloring of cut Ci+1 are compatible, if they are the
same on Ci ∩ Ci+1 and for every colored edge in Ci+1 with
tail vi+1 there is an edge entering vi+1 with the same color
(see Figure 5). A coloring τi of Ci is feasible for a capacity
function k, if for every edge e in Ci, the number of colors
containing e is at most k(e). For a subset of edges F ⊆ E let
F i denote F ∩ Ci. We say that F is s-reachable if for every
edge f in F there is a path from s to f through edges in F .

Intuitively, a coloring of Ci intends to capture the parts
of the survivable routing DAGs EA, EB , EA⊕B which are
subsets of Ci. As we seek a minimum cost solution, these parts
cannot have more than two edges (according to Theorem 1).

Lemma 3: For minimum cost survivable routing R that
decomposes into DAGs EA, EB and EA⊕B , for every topolog-
ical cut Ci, the coloring τi = (Ei

A, Ei
B , Ei

A⊕B) is survivable
and feasible and consecutive colorings are compatible.

Proof: In a survivable routing every edge intersects at
most two of the three routing DAGs, hence the removal of any
edge from a cut Ci leaves at least one of the corresponding
color classes untouched, which proves the survivability of the

cuts. Since an edge of capacity 2 appears in at most two out
of the three routing DAGs, the corresponding edge sets in a
cut are also feasible. Finally compatibility of the cuts follows
from the fact that the routing DAGs are s-reachable.

Lemma 4: If for three s-reachable subsets of edges L, P, Y
for every topological cut Ci coloring τi = (Li, P i, Y i) is
survivable, then L, P and Y form survivable routing DAGs
of G.

Proof: Assume indirectly that there is an edge e = (vi, vj)
the removal of which disconnects at least two DAGs. Then it
is easy to check that cut Ci is not survivable.

Now we are ready to describe our algorithm, based on
dynamic programming. For every 1 ≤ i < n, let Gi denote the
graph obtained from G by the contraction of nodes in Ti. We
are going to calculate the minimum cost of three survivable
routing DAGs in Gi with a fixed survivable, feasible coloring
τi on Ci. This value will be denoted by opt(τi).

For i = 1, the cost of a survivable, feasible coloring of C1 is
just the sum of the costs of the colored edges with multiplicity
(an edge may have multiple colors). For 1 < i < n, let a
survivable coloring τi = (Li, Pi, Yi) be given. Then

opt(τi)

=
∑

e∈Li∩δ+(vi)

c(e) +
∑

e∈Pi∩δ+(vi)

c(e) +
∑

e∈Yi∩δ+(vi)

c(e)

+ min{opt(τi−1)

∣∣∣∣∣ τi−1 survivable, feasible coloring

of Ci−1 and compatible with τi

}
.

From Lemma 3 and Lemma 4 the cost of a minimum cost
survivable routing is min{opt(τn−1)|τn−1 survivable, feasible
coloring of Cn−1}. Since edge capacities in a minimum cost
survivable routing can be assumed to be 1 or 2, for every
edge there are at most 6 possible colorings. Hence the number
of survivable, feasible colorings of a topological cut Ci is
O(|Ci|6), and the above recursion yields a polynomial-time
algorithm. Note that the case of splitter and merger node sets
(when P and M are given) can be easily integrated in the
algorithm by the modification of compatibility, e.g., only a
merger node vi+1 can have two entering and one outgoing
edges of the same color (see Figure 5).

VI. EXPERIMENTAL RESULTS

In our simulations we assume that a set of connection
requests D is given between all possible source-target pairs
and plot the average capacity reserved per connection for
every survivable routing approach. We compare our methods
to the theoretical lower bound [22] (data can be divided
into an arbitrary number of parts) and to 1 + 1 protection,
which is a 2-approximation of the survivable routing problem
against single edge failures in general [17], [23] and a 4/3-
approximation of the SRDC problem with d = 2 data units.
As a baseline, we also plot the optimal solution of the ILP(100)
presented in Section V-A and the 4/3-approximation line of
the optimal solution. The number in the parenthesis beside
the algorithms refers to the percentage of upgraded nodes, e.g.,
(10) means 10% of the nodes are upgraded with splitter/merger
functionality. We investigate random generated real-like planar

PAŠIĆ et al.: MINIMUM COST SURVIVABLE ROUTING ALGORITHMS FOR GENERALIZED DIVERSITY CODING 297

Fig. 6. Bandwidth cost in sparse (average nodal degree between 2.4 and
3.2) and maximal planar (maxplan) graphs (average nodal degree between
4.2 and 5.7) with no capacity constraints in fully upgraded networks.

G = (V, E, k, c) topologies with different sizes and densities,
and some real-world transport network topologies, too. By
the real-like topologies, the simulation results are obtained by
averaging several instances from the topologies with the same
properties (95% confidence interval is plotted).

Note that we do not compare our method to the DC since
the blocking probability of the DC is extremely high, due to
the fact that it requires the existence of three edge-disjoint
paths between the communication endpoints.

A. Fully Upgraded Networks Without Capacity Constraints

Here, we present the simulation results without capac-
ity constraints in Figure 6. The x-axis represents the node
numbers of the random networks, while the y-axis shows
the average capacity reserved per connection. Our results
in Figure 6a show why 1 + 1 is still the most often deployed
protection scheme, as the gap between the bandwidth cost of
1 + 1 and the theoretical lower bound for survivable routing
is small. However, our SRDC algorithm given by Theorem 2
outperforms 1 + 1, and reaches the theoretical lower bound.
This also demonstrates that the lower bound can be achieved
by dividing the data into two parts in these topologies.
On the other hand, in maximal planar graphs in Figure 6b
the theoretical lower bound requires that connection data is
divided into more than two data units. Although our algorithm
still approaches the lower bound, 1+1 reserves one more edge
(bandwidth unit) per connection to provide the same simplicity
as our SRDC method.

B. Partially Upgraded Networks Without Capacity
Constraints

In Figure 7 we show a scenario where not all nodes are
upgraded with the splitter/merger functionality. In particular,
in Figure 7 we show that just by upgrading 10% of the
nodes (which we consider as a typical scenario of incremental
network upgrade) we can achieve significant improvement
compared to the 1 + 1, both in sparse (Figure 7a) and

Fig. 7. Bandwidth cost in sparse (average nodal degree between 2.4 and
3.2) and maximal planar (maxplan) graphs (average nodal degree between
4.2 and 5.7) with no capacity constraints in partially upgraded networks.

dense networks (Figure 7b). We can observe that Algorithm 1
provides results near to the optimal solution of the ILP(100),
and demonstrates that even with 10% of upgraded nodes, our
SRDC approach can bring real benefits. As the source and des-
tination nodes are always considered to be splitter/merger for a
given connection demand, in the denser networks (Figure 7b)
almost always exist 3-disjoint paths, and no in-network split-
ting and merging is required. Hence, network node upgrades
cannot bring huge capacity savings in this setting.

C. Experimental Results With Capacity Constraints

In this subsection, we investigate the capacity constraint
case through the performance of our methods in real network
topologies (SNDLib [30] and Rocketfuel ASs [31]). In this
scenario the network is heavily loaded, i.e., due to the heavy
traffic load some edges lack free capacity (i.e., are considered
as bottleneck edges). To achieve this, we continuously increase
the traffic load and analyze the given state of the network. For
a fair comparison, we only take into account the non-blocking
scenarios, i.e., where there is still a disjoint path-pair between
all source and destination pairs even for 1+1. Since no traffic
matrix is given beforehand, we identified a certain number
of edges which are most prone to congestion based on their
betweenness centrality value. We considered these edges as
bottlenecks in the simulations (i.e., only a single capacity unit
k(e) = 1 is available on them). Three traffic scenarios are
distinguished:

• Light traffic load: no bottleneck edges in the network,
• Medium traffic load: maximum 10 bottleneck edges,
• Heavy traffic load: maximum 20 bottleneck edges.

Note that in each scenario the maximum number of bottlenecks
is chosen only if it does not violate the non-blocking condition.

In Figure 8 we show the results when both the capacity
and the node capabilities are constrained which is the most
challenging SRDC subproblem. One can observe that as the
traffic load increases, the average bandwidth cost of 1 + 1
increases dramatically (as the 1 + 1 cannot use bottleneck
edges), while the average bandwidth cost of the ILP(100), i.e.,
optimal solution in fully upgraded networks remains low and

298 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

TABLE II

SIMULATION RESULTS ON REAL NETWORKS (UPPER PART: SNDLIB [30], LOWER PART: ROCKETFUEL ASS [31]) WITH HEAVY TRAFFIC LOAD

Fig. 8. The bandwidth cost in real-world topologies with capacity constraints
in partially upgraded networks.

scales well with the traffic load. Furthermore, with the increase
of the percentage of the splitter/merger nodes the average
capacity reserved per connection decreases, demonstrating the
benefits of incremental deployment.

D. Incremental Deployment

In this subsection, we intend to give an insight for network
operators how incremental deployment of SRDC improves the
overall performance, and on the way the upgradeable nodes
should be selected according to the budget. For selecting the
upgradeable nodes, we compare two approaches:

• Random: nodes are selected uniformly random,
• Smart (S in the figures): in a pre-process phase we run the

algorithm given by Theorem 2 for each source-target pair
assuming there are no capacity constraints on the edges.
We count how many times a given node was utilized as a
splitter/merger in these solutions, and greedily upgrade
the nodes with the highest values until the budget is
reached.

In Figure 9 we show the effects of the traffic load increase.
We see that the gap between the ILP(100), ILP(10) and
ILP(S10) increases gradually as the traffic load increases.
Furthermore, it also demonstrates that even with randomly

Fig. 9. Comparison of the smart and the random node upgrade strategies
with capacity constraints in partially upgraded real-world topologies.

upgrading 10% of the nodes, SRDC performs close to the
optimal solution even in a heavy traffic scenario.

In Table II we demonstrate the benefits of a more
fine-grained incremental deployment strategy on real network
topologies in the heavily loaded network scenario. In particular
Table II compares the results of 1 + 1 and the presented ILP
solution where the number in the table refers to the number of
upgraded core nodes (besides the source and destination nodes
of each connection request, which are always considered as
merger/splitter), e.g., S4 means that 4 of the core nodes are
upgraded with splitter/merger functionality with the help of
“smart” selection. Note that 0 refers to the case where only
the source and destination nodes are capable of performing the
splitting and merging operation, i.e., the survivable routing
is either 1 + 1 or traditional diversity coding, whichever is
better. Even in this case, we can achieve a significant gain, i.e.,
the average capacity consumption can drop down to half from
1+ 1 compared to the ILP. Furthermore, even with upgrading
a small number of (random/cheap) core nodes we can further
approach the optimal solution.

E. Run-Time Analysis

The simulations were performed on a computer running
Debian Stretch Linux Version 9, with four 2.67 GHz Intel

PAŠIĆ et al.: MINIMUM COST SURVIVABLE ROUTING ALGORITHMS FOR GENERALIZED DIVERSITY CODING 299

Core2 Quad Processors with 12 GB RAM. To solve the ILPs,
we used the Gurobi Optimizer version 6.0.4.

The running time of Theorem 2 and Algorithm 1 is dom-
inated by the creation of the auxiliary graphs Ĝ and G̃,
respectively. Hence, when just a few nodes are upgraded (the
number of virtual edges between splitters and mergers is small)
the computation time is around 80 ms in the 40 node random
networks. However, if all the nodes are upgraded the time
is about ten times higher, but always less than 1.5 s per
demand.11 In other words, the running time of Theorem 2 and
Algorithm 1 is strongly influenced by the size of the network
and the extent of the upgraded network nodes.

In the capacity constrained cases, the computation time of
the ILPs is around 320 ms in the 40 node networks, and
depends on the size of the network (increased number of
variables and constraints), but it is independent of the number
of bottleneck links. By incremental deployment, as we upgrade
more nodes in the network the running time decreases slightly
since fewer constraints (Eq. (6)-(7)) are needed.

VII. CONCLUSIONS

Generalized diversity coding is a novel, easily deploy-
able routing scheme in transport networks which keeps the
ultra-fast recovery and simplicity (both in computation and
operation) of 1+1. As a missing link of its practical implemen-
tation, we investigated the minimum cost survivable routing
problem (SRDC), showed that a minimum cost subgraph can
be computed in polynomial-time without capacity constraints
on the edges (and in directed acyclic graphs), provided an
approximation algorithm for partially upgraded networks, and
proposed an integer linear program for the other scenarios.
Our simulation results suggest that even with upgrading only
a small set of network nodes, we can reduce the bandwidth
cost of 1 + 1 in most network scenarios and utilize up to
three-four edges less per connection, which could lead to
a significant capacity saving with an excessive number of
connections. We argue that the novel method can provide a
viable alternative for 1+1 in transport network protection for
the price of a minimal network upgrade.

REFERENCES

[1] Zayo Group-Communications Infrastructure Provider. Accessed:
Mar. 25, 2019. [Online]. Available: https://www.zayo.com/
wavelengths/

[2] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in Proc. IEEE
INFOCOM, vol. 4, Feb. 2005, pp. 2307–2317.

[3] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2,
pp. 125–145, 1974.

[4] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[5] A. E. Kamal, “1+N network protection for mesh networks: Network
coding–based protection using p-cycles,” IEEE/ACM Trans. Netw.,
vol. 18, no. 1, pp. 67–80, Feb. 2010.

[6] I. B. Barla, F. Rambach, D. A. Schupke, and G. Carle, “Efficient
protection in single-domain networks using network coding,” in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–6.

[7] A. Das, C. U. Martel, and B. Mukherjee, “A partial-protection approach
using multipath provisioning,” in Proc. IEEE Int. Conf. Commun.,
Jun. 2009, pp. 1–5.

11If the auxiliary graph is already built, this time is a magnitude smaller.

[8] G. Kuperman, E. Modiano, and A. Narula-Tam, “Analysis and algo-
rithms for partial protection in mesh networks,” J. Opt. Commun. Netw.,
vol. 6, no. 8, p. 730, Aug. 2014.

[9] K.-S. Sohn, S. Yeob Nam, and D. Sung, “A distributed LSP scheme
to reduce spare bandwidth demand in MPLS networks,” IEEE Trans.
Commun., vol. 54, no. 7, pp. 1277–1288, Jul. 2006.

[10] P.-H. Luo, J. Tapolcai, and T. Cinkler, “Comments on, “Segment
shared protection in mesh communications networks with bandwidth
guaranteed tunnels,” IEEE/ACM Trans. Netw., vol. 15, no. 6, p. 1616,
Dec. 2007.

[11] A. Kodian and W. Grover, “Failure-independent path-protecting
p-cycles: Efficient and simple fully preconnected optical-path protec-
tion,” J. Lightw. Technol., vol. 23, no. 10, pp. 3241–3259, Oct. 2005.

[12] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[13] S. Jaggi et al., “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982,
Jun. 2005.

[14] T. Ho et al., “A random linear network coding approach to mul-
ticast,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430,
Oct. 2006.

[15] E. Ayanoglu, C.-L. I, R. Gitlin, and J. Mazo, “Diversity coding for
transparent self-healing and fault-tolerant communication networks,”
IEEE Trans. Commun., vol. 41, no. 11, pp. 1677–1686, Nov. 1993.

[16] H. Øverby, G. Biczók, P. Babarczi, and J. Tapolcai, “Cost comparison
of 1+1 path protection schemes: A case for coding,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2012, pp. 3067–3072.

[17] S. Rouayheb, A. Sprintson, and C. Georghiades, “Robust network codes
for unicast connections: A case study,” IEEE/ACM Trans. Netw., vol. 19,
no. 3, pp. 644–656, Jun. 2011.

[18] P. Babarczi, J. Tapolcai, A. Pasic, L. Ronyai, E. R. Berczi-Kovacs, and
M. Medard, “Diversity coding in two–connected networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2308–2319, Aug. 2017.

[19] A. Pasic, J. Tapolcai, P. Babarczi, E. R. Berczi-Kovacs, Z. Kiraly, and
L. Ronyai, “Survivable routing meets diversity coding,” in Proc. IFIP
Netw. Conf. (IFIP Netw.), May 2015, pp. 1–9.

[20] A. Pašić, P. Babarczi, and A. Kőrösi, “Diversity coding-based survivable
routing with QoS and differential delay bounds,” Opt. Switching Netw.,
vol. 23, pp. 118–128, Jan. 2017.

[21] G. Ellinas, E. Bouillet, R. Ramamurthy, J. Labourdette, S. Chaudhuri,
and K. Bala, “Routing and restoration architectures in mesh optical
networks,” Opt. Netw. Mag., vol. 4, no. 1, pp. 91–106, 2003.

[22] P. Babarczi, A. Pašić, J. Tapolcai, F. Németh, and B. Ladóczki,
“Instantaneous recovery of unicast connections in transport net-
works: Routing versus coding,” Comput. Netw., vol. 82, pp. 68–80,
May 2015.

[23] G. Brightwell, G. Oriolo, and F. B. Shepherd, “Reserving resilient capac-
ity in a network,” SIAM J. Discrete Math., vol. 14, no. 4, pp. 524–539,
Jan. 2001.

[24] F. Németh, A. Stipkovits, B. Sonkoly, and A. Gulyás, “Towards smart-
flow: Case studies on enhanced programmable forwarding in Openflow
switches,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 85–86, 2012.

[25] J. Yang, B. Dai, L. Lv, and G. Xu, “Coding openflow: Enable network
coding in SDN networks,” Int. J. Comput. Netw. Commun., vol. 7, no. 5,
pp. 29–38, Sep. 2015.

[26] F. Gabriel, G. T. Nguyen, R.-S. Schmoll, J. A. Cabrera, M. Muehleisen,
and F. H. Fitzek, “Practical deployment of network coding for real-
time applications in 5G networks,” in Proc. 15th IEEE Annu. Consum.
Commun. Netw. Conf. (CCNC), Jan. 2018, pp. 1–2.

[27] T. Biermann, A. Schwabe, and H. Karl, “Creating butterflies in the
core—A network coding extension for MPLS/RSVP-TE,” in NET-
WORKING (Lecture Notes in Computer Science), vol. 5550, L. Fratta,
H. Schulzrinne, Y. Takahashi, and O. Spaniol, Eds. Berlin, Germany:
Springer, 2009.

[28] B. Ladoczki, C. Fernandez, O. Moya, P. Babarczi, J. Tapolcai, and D.
Guija, “Robust network coding in transport networks,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2015,
pp. 1–2.

[29] J. W. Suurballe and R. E. Tarjan, “A quick method for finding short-
est pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336,
1984.

[30] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0—
Survivable network design library,” in Proc. INOC, 2007.

[31] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
p. 133, Oct. 2002.

300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Alija Pašić received the M.Sc. (summa cum laude)
and Ph.D. (summa cum laude) degrees in elec-
trical engineering from the Budapest University
of Technology and Economics (BME), Hungary,
in 2013 and 2019, respectively. He is currently an
Assistant Professor with the High-Speed Networks
Laboratory, Department of Telecommunications and
Media Informatics, BME. His research interests
include survivability in optical backbone networks,
network coding, and artificial intelligence (AI).

Péter Babarczi (Member, IEEE) received the M.Sc.
and Ph.D. (summa cum laude) degrees in computer
science from the Budapest University of Technology
and Economics (BME), Hungary, in 2008 and 2012,
respectively. Since 2017, he has been an Alexan-
der von Humboldt Post-Doctoral Research Fellow
with the Chair of Communication Networks at the
Technical University of Munich, Germany. He is cur-
rently an Assistant Professor with the Department of
Telecommunications and Media Informatics, BME.
His current research interests include multipath

Internet routing, network coding in transport networks, and combinatorial
optimization in softwarized networks. He received the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and the Post-Doctoral
Research Fellowship of the Alexander von Humboldt Foundation.

János Tapolcai received the M.Sc. degree in tech-
nical informatics and the Ph.D. degree in computer
science from the Budapest University of Technol-
ogy and Economics (BME), Budapest, Hungary,
in 2000 and 2005, respectively, and the D.Sc. degree
in engineering science from the Hungarian Academy
of Sciences (MTA) in 2013. He is currently a Full
Professor with the High-Speed Networks Labora-
tory, Department of Telecommunications and Media
Informatics, BME. He has authored over 150 sci-
entific publications. His current research interests

include applied mathematics, combinatorial optimization, optical networks
and IP routing, addressing, and survivability. He is a Winner of the MTA
Lendület Program and the Google Faculty Award in 2012 and the Microsoft
Azure Research Award in 2018. He is a TPC member of leading conferences
such as the IEEE INFOCOM from 2012 to 2017. He is also the General Chair
of ACM SIGCOMM 2018. He was a recipient of several best paper awards,
including ICC 2006, DRCN 2011, HPSR 2015, and NaNa 2016.

Erika R. Bérczi-Kovács received the M.Sc.
degree in mathematics and the Ph.D. degree in
applied mathematics from Eötvös Loránd University
(ELTE), Budapest, Hungary, in 2007 and 2015,
respectively. She is currently an Assistant Professor
with the Department of Operations Research, ELTE.
Her research interests include discrete mathematics,
combinatorial optimization, and network coding. She
is a member of the MTA-ELTE Egerváry Research
Group on Combinatorial Optimization. She was a
recipient of the NaNA 2016 Best Paper Award.

Zoltán Király received the M.Sc. and Ph.D. degrees
in mathematics from Eötvös Loránd University
(ELTE), Budapest, Hungary, in 1987 and 1997,
respectively. He is currently an Associate Professor
with the Department of Computer Science, Eötvös
Loránd University. He is also a member of the
MTA-ELTE Egerváry Research Group on Combi-
natorial Optimization. His research interests include
graph theory, theory of algorithms, and combinator-
ial optimization. He received the Best Paper Award
from ESA 2008.

Lajos Rónyai received the Ph.D. degree from
Eötvös Loránd University, Budapest, Hungary,
in 1987. He is a Research Professor with the Infor-
matics Laboratory, Institute for Computer Science
and Control. He leads a research group there which
focuses on theoretical computer science and dis-
crete mathematics. He is also a Full Professor with
the Mathematics Institute, Budapest University of
Technology and Economics. His research interests
include efficient algorithms, complexity of compu-
tation, algebra, and discrete mathematics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

