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Machine learning (ML) brings many
new and innovative approaches to engi-
neering, improving efficiency, flexibil-
ity and quality of systems. This special
theme of ERCIM News focuses on ML
applications in industrial engineering
(see keynote by Christopher Ganz on
page 14), with a focus on civil, environ-
mental, mechanical, chemical, process,
agricultural, and transportation engi-
neering.

Data-driven, surrogate and hybrid
modelling

ML models can learn in a progressive
manner from empirical evidence,
which makes them great candidates for
continuously correcting modelling er-
rors and adapting to drifts in engineer-
ing systems, that are classically mod-
elled by the laws of physics.
Surrogating and/or combining these
simulations with ML algorithms can
overcome limitations of knowledge and
computational capacity and lead to im-
proved predictions and engineering in-
novations (see the introductory paper
on the advantages of ML-based surro-
gate modelling, Asgari et al., p. 16).

As reflected in this special theme, data-
driven modelling, surrogate modelling
and hybrid modelling (a combination of
physics-based and learning-based mod-
els) have been successfully used in var-
ious engineering applications.

Digital twins or meta-models that re-
place  computationally  expensive
physics-based simulation models can
significantly reduce the computational
time of modelling complex systems,
such as the simulation of a methanation
reactor in a power-to-gas process
(Asgari et al., p. 16) or the dynamic
simulation of a tall timber building
(Kurent et al., p. 29).

Complex and highly non-linear sys-
tems can be extremely sensitive to
changes in their governing parameters.
To quantify the uncertainties of model
outputs due to the possible deviations
of the input parameters from their esti-
mated value, one is often forced to run
instances of the deterministic simula-
tion model over a wide range of param-
eters. The same is true when parame-
ters have to be identified, calibrated, or
optimised. The computational time of
ML-based surrogate models can be a
small fraction of that of the original
physics-based model and so they can
enable an efficient way of handling
such problems (Hoang et al., p. 23).
Some examples presented in this spe-
cial theme include the estimation of
aerofoil aerodynamic performance sta-
tistics (Liu et al., p. 20), the surrogate-
based calibration of tall timber building
dynamics (Kurent et al., p. 29), the re-
duced order flow simulation by a theory
and data driven hybrid model (Deng et
al., p. 30), and the deep learning model
for an accurate spatio-temporal rainfall
estimation (Folino et al., p. 24).

ML algorithms can also contribute to
coarse-grained models. Coarse-grained
models are simplified models usually
defined on a coarse grid or scale that
can accurately simulate the phenomena
that happens on a finer scale. Van
Halder et al. (p. 27) describe the
process of creating a coarse-grained
model that simulates the sloshing mo-
tion of water, and Karavelic et al. (p.
21) describe a probabilistic scale bridg-
ing of micro- and macro-scales to
model the plastic behaviour of het-
erogenous composite materials. Both
models apply ML tools for upscaling.

ML algorithms have been receiving
particular attention in the field of au-
tonomous vehicles. Using sensor data,

learning agents can address the prob-
lems of traffic congestion, energy con-
sumption and emissions. Nevertheless,
when it comes to passenger safety, a
learning-based control design can
never give a 100% guarantee of avoid-
ing emergency scenarios. In such cases,
a hybrid model that combines the ben-
efits of model-based and learning-
based control design can provide an ef-
ficient but still robust compromise
(Németh et al., p. 18).

ML learning tools can control not only
the autonomous vehicle but also the
flow around it, enabling a more effi-
cient vehicle design. Using sensor data
and actuators, an automatic ML-based
closed loop control can be built
(Cornejo-Macedas et al., p. 32) to re-
duce drag or to increase lift, usually by
aiming to avoid flow separation.
Manipulating the flow in this way can
increase performance and reduce en-
ergy consumption — important goals in
aircraft design.

ML for production control and
process optimisation

Process optimisation aims to reduce
production time, optimise material and
energy consumption, and increase
product quality. Manufacturers can
profit greatly from ML tools that can
discover hidden dependencies between
production parameters, foster produc-
tion efficiency and flexibility, and man-
age complex optimisation tasks
(Samsonov et al., p. 38).

ML tools are always based on observed
data, which, unfortunately, is often dif-
ficult or expensive to collect or may
raise privacy concerns. The more data
available, the more ML can discover
and improve. We may substitute for
collecting additional data by synthetic
data generation, which is called a soft
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or virtual sensor. Garcia-Ceja et al. (p.
43) describe a soft-sensing system for
the optimisation of a chemical process.

In cases where synthetic data cannot
replace actual data, we may still im-
prove prediction accuracy by incorpo-
rating all available background engi-
neering knowledge. For example, an
agricultural prediction model of yield
of nitrogen status can be improved by
combining ML tools with complex sys-
tems theory (Raubitzek et al, p. 44).

The high dimensionality of descriptive
data can cause another type of problem
for process optimisation (Savvopoulos
et al., p. 41, Gaudin et al., p. 45 ).
Autoencoders enable high dimensional
data to be encoded in a much smaller
dimensional representation, and opti-
misation tasks can be carried out in this
reduced latent space. The use of a vari-
ational autoencoder - one that learns a
probabilistic rather than a deterministic
description of the latent variables - can
increase the robustness of the descrip-
tion (Gaudin et al., Savvopoulos et al.).

Switching from a deterministic to a
probabilistic approach can also amelio-
rate the so-called inverse problems, in
which the input parameters of
processes or models are to be cali-
brated or optimised. Inverse problems
are usually ill-posed, since several val-
ues of the parameters may result in an
equally good fit for the desired or
measured output of the model or
process. Consequently, a probabilistic
description of the optimised or cali-
brated parameters (Hoang et al., p. 23,
Smaragdakis et al., p. 35, Kurent et al.,
p- 29) gives a more robust and inform-
ative solution.

Monitoring and anomaly detection

Inherent changes in the environment
and the system itself can create anom-
alies or drifts that incrementally build
up and result in performance degrada-
tion. Continuous monitoring and con-
trol are therefore essential for the opti-
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mal operation of most engineering
processes and systems.

The use of modern machine learning
methods, such as Deep Learning and
Graph Neural Networks allows com-
plex system behaviour modelling with-
out the need to define a large, and usu-
ally partial, set of rules and patterns of
“normal” behaviour that can quickly
become obsolete with time. The appli-
cation of machine learning methods is
made possible by the extensive instru-
mentation of most engineering systems
and processes as well as the high fre-
quency at which those sensors operate.
This leads to innovation in monitoring
(such as the new positioning system
using 5G millimetre wave networks
(Gante et al., p. 26) and renders classi-
cal feature-based and rule-based meth-
ods for anomaly detection obsolete be-
cause of the combinatorial amounts of
data and feature combinations and
rules. Deep Neural Networks are par-
ticularly well suited in such cases as
they automatically learn a reduced di-
mensionality representation in which
anomalies are more efficiently charac-
terised (Kumar Jha et al., p. 47). By
continuously retraining the system as
new data arrives, machine learning
models continuously adapt their inter-
nal representation of the normal and
anomalous behaviour.

This special theme features several ex-
amples of combining machine learning
techniques and domain-specific models
for monitoring and optimising systems
in domains such as autonomous trans-
portation (Sahin et al., p. 51; Lo Duca
et al., p. 52) and neonatal intensive care
(Foldesy et al., p. 50).

Innovative approaches to anomaly de-
tection in complex networks are ad-
dressed by Gutiérrez-Gomez et al. (p.
49) in the context of anomalies or out-
liers of node attributes in graphs.
Defining anomalies in a subgraph or a
view is an interesting approach to
multi-context anomaly detection, since

graphs can represent complex dynam-
ics that are difficult to characterise at a
global scale.

As fine-grained instrumentation be-
comes pervasive in system and process
engineering, the adoption of machine
learning methods for data-driven
anomaly detection, monitoring, and on-
line control is becoming mainstream
engineering of complex systems.

Conclusion

This special theme of the ERCIM
News explores different fields in which
ML algorithms are replacing or en-
hancing analysis-based methods. By
using all available data to simulate
complex engineering systems, we can
reduce computational time or increase
accuracy and efficiency. ML can help
engineers create designs with increased
performance and reduced consumption,
identify hidden dependencies and
anomalies, and optimise and control
manufacturing. Nevertheless, a knowl-
edge gap still exists between engineer-
ing, manufacturing, and big data analy-
sis. We strongly encourage initiatives
to close the gap as described by
Bernijazov et al. (p. 36), and improve
the efficiency of ML tools as outlined
by Muccini et al. (p. 33) and Pikoulis et
al. (p. 39).
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