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3Pázmány Péter Catholic University, Faculty of Information Technology and Bionics

{lastname.firstname}@sztaki.hu

Abstract—In this paper we propose a novel approach for
upgrading real time 3D dynamic object detection methods oper-
ating on rotating multi-beam (RMB) Lidar measurements using
3D background city maps stored in new generation geographic
information systems (GIS) and previously detected dynamic
objects propagated by tracking. First, we apply a state-of-the-art
object detection method and distinguish the predicted dynamic
object candidates and the remaining static regions of the current
Lidar measurement. Next we find an optimal transformation
between the static part of the RMB Lidar measurements and the
background city map using a multimodal point cloud registration
algorithm operating in the Hough space. After the accurate
alignment, we filter false-positively detected object candidates in
the RMB Lidar data based on the map. To find additional objects
missed by the object detector on the current measurement, we
apply a Kalman-filter based object tracking. Hereby we first
predict the current state of the previously detected and tracked
objects. Next, we apply a Hungarian matcher based assignment
between the tracked and the current objects and update the
object list according to the result. For better accuracy, we keep all
predictions through a couple of frames. We evaluated our method
qualitatively and quantitatively in crowded urban scenes of
Budapest, Hungary, and the results showed that with background
map based filtering we can achieve a 26,52% improvement
detecting vehicles and 9,38% for pedestrians in precision, while
via tracking, a 12,84% improvement for vehicles and 14,34% for
pedestrians in recall against the state-of-the-art object detection
method relying purely on a single Lidar time frame.

Index Terms—Lidar, Object detection, Tracking, Background
map

I. INTRODUCTION

Detecting and tracking dynamic objects relying purely on
sparse real time Lidar point clouds is an active research area in
autonomous driving. In the recent years several deep learning-
based approaches have emerged in the literature, which are
solely based on Lidar measurements [1], [2], [3], [4], [5],
[6], [7] and show promising results on the available public
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(a) Sparse Lidar measurement (b) Dense 3D city map

Fig. 1. Measurement (left) and map (right) on Kálvin square, Budapest

datasets [8], [9]. In terms of average precision, the state-
of-the-art PointPillars network [1] also outperforms methods
based on the fusion of the onboard Lidar and camera data
[10], [11], [12], [13], [14]. However, due to the limitations of
the spatial resolution of the Lidar measurements (see Figure
1(a)), the state-of-the-art object detection method is still not
reliable alone in complex and crowded urban scenarios and
produces two sorts of errors. On one hand, its predictions are
sometimes false in static regions that have similar appearance
to dynamic objects. On the other hand, it temporarily misses
dynamic objects which are only partly sensed on the current
measurement due to cover or occlusion by other parts or
objects of the scene. The main objective of this paper is to
introduce a robust method in order to eliminate these two sorts
of errors and improve the accuracy of the state-of-the-art object
detectors using purely Lidar data utilizing 3D background
maps and tracking.

Nowadays several new generation geographic information
systems (GIS) contain high resolution and geo-referred 3D
point cloud maps (Figure 1(b)) of cities obtained by Mobile
Laser Scanning. To utilize object level information of this
point cloud, we need its semantic interpretation in order to
distinguish ground, dynamic (moving vehicle, people) and
static (street furniture, column, wall) object regions [15].
This process needs a lot of computation, although, we can
calculate it offline in order to construct a semantic background
map containing only static objects of the scene. Hence, this
background map can be accessed in real time to validate the
predicted object candidates, which process enables the removal
of the false-positive predictions.

Utilizing background maps is a good solution for filtering



Fig. 2. The workflow of the proposed method

and removing erroneous object candidates but this step does
not contribute to the elimination of missing objects. Hereby, if
we consider previously observed data by object tracking, we
can infer to their current position by a Kalman-filter and keep
them through a few time frames which resolve the temporal
errors. For reference, we apply the state-of-the-art PointPillars
network [1] that we trained on the KITTI [8] dataset and
some additional annotated scenes from Budapest. As dynamic
objects, we distinguish vehicles, pedestrians and cyclists.

II. PROPOSED METHOD

The workflow of the proposed algorithm is shown in Figure
2. First, we apply the PointPillars [1] network and distinguish
the dynamic object candidates from the remaining static part
of the scene. Then we register the static regions of the
current measurement to the background map. After accurate
alignment, we remove false dynamic object candidates based
on their overlapping ratio with the map. Owing to this fil-
tering, we keep and track all remaining candidates which are
considered as dynamic objects of the scenario.

A. Object detection

Taking the current Lidar measurement, first we apply the
PointPillars [1] network for initial dynamic object detection
in the scene. The network determines for each object (o) the
3D bounding box position (P ) and orientation (θ), label (c)
and prediction score (p) value. To achieve the best results, we
keep all objects with a score higher than 0.3, according to
[1]. Based on the detection results, we split the point cloud
measurement into dynamic object candidates and remaining
static regions (see on Figure 3.).

B. Point cloud registration

After removing the dynamic object candidates from the
measurement, we align the remaining static part to the 3D

Fig. 3. Initial static-dynamic segmentation on raw Lidar measurement. Color
codes: static parts (red), dynamic object candidates (dark green)

background map. Hereby assuming that the vehicle uses a
GPS receiver and the map is geo-referred, we transform the
vehicle’s local Lidar measurements into the global world
coordinate system as an initial alignment (Figure 4(a)). Next
we cut the surrounding environment of the measurement’s
GPS position with 35 meter radius as a basis for the precise
alignment. Since the density characteristics of the two point
clouds are significantly different, point level approaches [16],
[17], [18] can not converge because of the initial error or
they need heavy computation thus they cannot fulfill the real
time algorithm execution requirement. Instead of using point
level alignment techniques, we apply our previously proposed
multimodal point cloud registration approach [19]. Here we
first apply abstract grid based blob extraction on the static
measurements and assign keypoints to each blob. Then we
find the optimal transformation between compatible keypoints
in the following form:

Tdx,dy,dz,α =


cosα sinα 0 dx
− sinα cosα 0 dy

0 0 1 dz
0 0 0 1



(a) GPS based alignment (b) Registrated point clouds

Fig. 4. Before (left) and after (right) the registration. Color codes: onboard
measurement (red), background map (blue)



Fig. 5. Falsely detected object samples overlapping with the background map.
Color codes: predicted vehicle (red box), predicted pedestrian (blue box)

where dx, dy, dz are the GPS position error and α is the
rotation angle around the z axis. Finally we search for the
optimal parameter quartet in the generalized Hough space
through a voting process. The registration results are shown
in Figure 4(b).

C. Object filtering based on background map

By applying the previously introduced registration algo-
rithm, the current measurement is accurately aligned to the
background map. Therefore we can validate the object candi-
dates in the following way: at first, for each object candidate of
the current measurement (oic) we calculate the exact bounding
box parameters in the geo-referred coordinate system. Then
we check whether the 3D bounding box contains static points
of the map or not. If an object candidate has an intersection
with a part of the static background map (Figure 5.) and
it includes at least 10 points of the map, we mark it as
a false detection and assign its points to the static part of
the measurement. Otherwise we keep and consider oic as a
dynamic object. The 10 point threshold ensures robustness and
keeps candidates which have only a tiny intersection with a
static object, considering that we might have to deal with a
noisy segmentation and a noisy map.

D. Finding additional dynamic objects via tracking

The previously introduced steps can accurately assure the
validity of all object candidates. However, they operate solely
on a single Lidar frame. In cases when an object is temporarily
occluded, the current detection fails. By applying tracking on
the detected objects and their histories, we can still follow
dynamic objects of the scene missed by the object detector
temporarily. Based on a given object’s previous state we
predict its current position with a Kalman-filter. Note that
besides the elimination of missing objects, the application of
the Kalman-filter yields smoothed object trajectories as well.

For the Kalman-filter, we determine on the current measure-
ment three different types of objects (Figure 6.): previously
tracked and currently missed, tracked and also found or pre-
viously missed and newly found. To categorize each object of
the scene, we make an optimal assignment between the current
dynamic objects (Oc) and previously detected and tracked
dynamic objects (Ot) applying the Hungarian algorithm with

a custom cost matrix C. For each object oic ∈ Oc and ojt ∈ Ot
we define the following pairing cost value C:

C(oic, o
j
t ) = w1 ·∆P (oic, o

j
t )+w2 ·∆θ(oic, o

j
t )+w3 ·∆c(oic, o

j
t )

where ∆P is the distance between the three dimensional center
points and ∆θ is the orientation difference of the two objects
calculated from their position in the geo-referred coordinate
system. Note that since all measurements are aligned to the
background map, we get the exact position and orientation of
all dynamic objects in the same, global coordinate system and
therefore we can ignore the motion effect of the ego vehicle.
The weight parameters w1, w2, w3 were experimentally opti-
mized. The factor of the object labels ∆c can be defined as
follows:

∆c(oic, o
j
t ) =

{
0 if cic = cjt
1 otherwise

This supplement ensures pairing objects belonging to the same
class. In cases of matching objects belonging to different
classes, we check the confidence of the object detector and
keep the label with the higher confidence. Applying the
Hungarian algorithm to the cost matrix, it delivers a globally
optimal assignment. Then for each object pair, we update the

Fig. 6. Three types of objects on one Lidar frame. Color codes: tracked and
also found (orange box), newly found (green), temporarily missed but tracked
(purple) objects



Fig. 7. Qualitative results on Kálvin square, Budapest

states of the tracked objects based on the current Lidar mea-
surement. Otherwise, for newly detected objects we add them
to the tracked object list, and for not found, but previously
tracked objects, we keep the predicted state and label for
the next Lidar measurement. In general, we keep all tracked
objects for the next 10 frames after their last appearance. This
parameter was empirically set, according to our road scene
experience.

III. EVALUATION

We evaluated the proposed method on real point cloud data
sequences recorded on different crowded roads of Budapest
(Deák and Fővám square). The measurements were taken by
a Velodyne HDL-64E sensor, mounted to the top of a test
vehicle. The reference city map was provided by a Riegl
VMX-450 Mobile Laser Scanning system, recorded by the Bu-
dapest road management company (Budapest Közút Zrt.). For
qualitative evaluation, in Figure 7. we show that the proposed
method detects and tracks all dynamic objects of the vehicle’s
environment. Thanks to the exploitation of static objects in
the background map, there are not any false predictions on
the scene. In Figure 8. we show an example of the same
scene where a false prediction was filtered by the proposed
method. In Figure 9. we show an other scenario where the
detector misses pedestrians due to occlusion, but those are
still recognisable using the proposed tracking algorithm.

Method Class Precision Recall F-score

PointPillars Vehicle 64,15% 82,93% 72,34%
Pedestrian 84,37% 72,19% 77,81%

PointPillars
with map

Vehicle 90,67% 82,93% 86,62%
Pedestrian 93,75% 72,19% 81,57%

PointPillars
with map and tracking

Vehicle 93,15% 95,77% 94,44%
Pedestrian 94,41% 86,53% 90,30%

TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED ALGORITHM

Fig. 8. False object prediction without (left) and with (right) map, Kálvin
square, Budapest

Fig. 9. Missed predictions without (left) and with (right) tracking information,
Deák square, Budapest

Quantitative results are shown in Table I. We evaluated
10 sequences in two heavy traffic roads of Budapest, each
sequence contains 30 consecutive Lidar time frames. We
observed that using the background map, the average preci-
sion is improved with 26, 52% for vehicles and 9, 38% for
pedestrians. Applying tracking, the recall is also improved
with 12, 84% for vehicles and 14, 34% for pedestrians. By
tracking, we also achieved a little increase in precision as well.
Thus, we could obtain a balanced F-score value over 90%
for all classes. This result is significantly better and produces
more robust results than the frame-wise applied state-of-the-art
PointPillars (Table II.) network.

Prediction confidence GT label
Car Pedestrian Cyclist

Prediction
Car 94, 44% 4, 17% 1, 39%

Pedestrian 0% 97, 12% 2, 88%
Cyclist 0% 25% 75%

TABLE II
CONFIDENCE MATRIX OF PREDICTED CLASSES

IV. CONCLUSION

We introduced a novel method to improve the accuracy and
robustness of the current state-of-the-art object detection meth-
ods operating on purely sparse Lidar point clouds. First, we
proved that using background city maps, the falsely predicted
dynamic objects can be efficiently filtered in real time. Second,
we showed that using tracking and past information of the
dynamic objects, we can still find and track additional object
that are temporarily missed by the object detector through a
few time frames.
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