
European Journal of Operational Research 286 (2020) 129–137

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A common approximation framework for early work, late work, and

resource leveling problems

�

Péter Györgyi, Tamás Kis ∗

Institute for Computer Science and Control, Kende str 13–17, Budapest 1111, Hungary

a r t i c l e i n f o

Article history:

Received 16 September 2019

Accepted 9 March 2020

Available online 18 March 2020

Keywords:

Scheduling

late work minimization

early work maximization

resource leveling

approximation algorithms

a b s t r a c t

We study the approximability of four scheduling problems on identical parallel machines. In the late work

minimization problem , the jobs have arbitrary processing times and a common due date, and the objec-

tive is to minimize the late work , defined as the sum of the portion of the jobs done after the due date.

A related problem is the maximization of the early work , defined as the sum of the portion of the jobs

done before the due date. We describe a polynomial time approximation scheme for the early work max-

imization problem, and we extended it to the late work minimization problem after shifting the objective

function by a positive value that depends on the problem data. We also prove an inapproximability result

for the latter problem if the objective function is shifted by a constant which does not depend on the in-

put. These results remain valid even if the number of the jobs assigned to the same machine is bounded.

This leads to an extension of our approximation scheme to two variants of the resource leveling problem

with unit time jobs, for which no approximation algorithm is known.

© 2020 Elsevier B.V. All rights reserved.

1

B

a

t

a

a

s

r

h

t

e

s

S

B

f

t

v

o

H

K

f

l

j

i

a

m

l

S

m

t

i

m

l

e

s

r

p

m

h

0

. Introduction

Late work minimization, introduced by the pioneering paper of

ła ̇zewicz (1984) , is an important area of machine scheduling, for

n overview see Sterna (2011) . The variant we are going to study in

his paper can be briefly stated as follows. We have identical par-

llel machines and a set of jobs with arbitrary processing times,

nd a common due date. We seek a schedule which minimizes the

um of the portion of the jobs done after the due date. A strongly

elated problem is the maximization of the early work, where we

ave the same data and the objective is to maximize the sum of

he portion of the jobs done before the common due date. How-

ver, the list of the results for maximizing the early work is much

horter than that for the late work minimization problem, see e.g.,

terna and Czerniachowska (2017) , Chen, Liang, Sterna, Wang, and

ła ̇zewicz (2020b) .

The applications of the late work optimization criterion range

rom modeling the loss of information in computational tasks to

he measurement of dissatisfaction of the customers of a manu-
� This work has been supported by the National Research, Development and Inno-

ation Office – NKFIH, grant no. SNN 129178, and ED_18-2-2018-0 0 06. The research

f Péter Györgyi was supported by the János Bolyai Research Scholarship of the

ungarian Academy of Sciences.
∗ Corresponding author.

E-mail addresses: peter.gyorgyi@sztaki.hu (P. Györgyi), tamas.kis@sztaki.hu (T.

is).

ttps://doi.org/10.1016/j.ejor.2020.03.032

377-2217/© 2020 Elsevier B.V. All rights reserved.
acturing company. In particular, Bła ̇zewicz (1984) studies a paral-

el processor scheduling problem with preemptive jobs where each

ob processes some samples of data (or measurement points), and

f the processing completes after the job’s due date, then it causes

 loss of information. A natural objective is to minimize the infor-

ation loss, which is equivalent to the minimization of the total

ate work. A small flexible manufacturing system is described in

terna (2007) , where the application of the late work criterion is

otivated by the interests of the customers as well as by that of

he owner of the system. The common interest of the customers

s to have the portions of their orders finished after the due date

inimized. In turn, for the owner of the system, the amount of

ate work is a measure of dissatisfaction of the customers. As for

arly work maximization, we can adapt the same examples con-

idering gain and satisfaction instead of loss and dissatisfaction,

espectively.

We have three major sources of motivation for studying the ap-

roximability of the early work maximization, and the late work

inimization problems:

(i) Chen, Sterna, Han, and Bła ̇zewicz (2016) establish the com-

plexity of late work minimization in a parallel machine envi-

ronment, and then the authors describe an online algorithm

for the early work maximization problem of competitive ra-

tio

√

2 m

2 −2 m +1 −1
m −1 , where m is the number of the machines.

However, since the late work can be 0, no approximation or

online algorithm is proposed for the late work objective.

https://doi.org/10.1016/j.ejor.2020.03.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.03.032&domain=pdf
mailto:peter.gyorgyi@sztaki.hu
mailto:tamas.kis@sztaki.hu
https://doi.org/10.1016/j.ejor.2020.03.032

130 P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137

e

t

T

t

Y

i

t

b

o

(

t

c

t

t

l

a

N

a

d

w

d

a

t

a

t

w

c

X

I

i

t

A

f

t

m

f

f

a

o

u

u ∑
 ∑

p

t

i

T

X

N

i

u

l

t

i

t

i

s

a

m

I
(ii) Sterna and Czerniachowska (2017) propose a polynomial

time approximation scheme for the early work maximization

problem with 2 machines, and it is not obvious how to get

rid of some constant bound on the number of the machines.

Further on, Chen et al. (2020b) describe a fully polynomial

time approximation scheme for maximizing the early work

on a fixed number of identical parallel machines.

(iii) We have observed that some variants of the resource lev-

eling problem are equivalent to the early work maximiza-

tion and the late work minimization problems. Briefly, the

resource leveling problems we are referring to consist of a

parallel machine environment and one more renewable re-

source required by a set of unit time jobs having a common

deadline, and one aims at to minimize (maximize) the total

resource usage above (below) a threshold. We are not aware

of any published approximation algorithms for resource lev-

eling problems in a parallel machine environment, but the

results for the early- and late work problems can be trans-

ferred to this important subclass.

In this paper we propose a polynomial time approximation

scheme for the early work maximization problem in an identical

parallel machine environment, which we extend to the late work

minimization problem in the same processing environment. By ap-

plying a concept of strong equivalence, we obtain analogous re-

sults for the maximization as well as the minimization variant of

the resource leveling with unit time jobs problem on identical par-

allel machines. We emphasize that the number of identical paral-

lel machines is part of the input for all problems studied, and the

processing times of the jobs are arbitrary positive integer numbers

in the early work maximization, and the late work minimization

problems, while we have unit time jobs and arbitrary resource re-

quirements in the resource leveling problems.

The results of this paper are theoretical in nature, the proposed

algorithms are not intended for practical use. However, they pro-

vide new insight that can lead to efficient algorithms, and the tech-

nique developed, outlined in the last section, may be used for de-

riving approximation algorithms for other problems as well.

In Section 2 we precisely define the scheduling problems stud-

ied in this paper, and provide the necessary terminology. In

Section 3 we summarize related work from the literature. In

Section 4 we prove the equivalence of the late work minimiza-

tion problem with the minimization variant of the resource lev-

eling with unit time jobs problem, and an analogous result for

the early work maximization problem and the maximization vari-

ant of the resource leveling problem. An inapproximability result

is stated and proved for the late work minimization problem in

Section 5 . In Section 6 we describe a polynomial time approxima-

tion scheme for the early work maximization problem extended

with machine capacity constraints, and in Section 7 we adapt the

results of Section 6 to the late work minimization problem after

shifting the objective function by a problem-data dependent value.

By the results of Section 4 , we obtain polynomial time approxima-

tion schemes for the two variants of the resource leveling problem

as well. We conclude the paper in Section 8 .

2. Problem formulation and terminology

In the late work minimization problem in a parallel machine

environment, there is a set J of n jobs that have to be scheduled

on m identical parallel machines. If it is not noted otherwise, the

number of the machines is part of the input. Each job j ∈ J has

a processing time p j and there is a common due date d . The late

work objective Y is to minimize the total amount of work sched-

uled after d , see Chen et al. (2016) . That is, a schedule S speci-

fies a machine μ j (S) ∈ { 1 , . . . , m } and a starting time t j (S) ≥ 0 for
ach job. S is feasible if for each pair of distinct jobs j and k such

hat μ j (S) = μk (S) , either t j (S) + p j ≤ t k (S) or t k (S) + p k ≤ t j (S) .

hroughout the paper we assume that there are no idle times be-

ween the jobs on any machine. The late work of a schedule S is

 (S) =

∑ m

i =1 max { 0 , ∑

j∈ J i (S) p j − d} , where J i (S) = { j ∈ J | μ j (S) =
 } . Later we will frequently refer to the sum of the job processing

imes p sum

:=

∑

j∈J p j .

We add a further constraint to this problem. We introduce a

ound N on the number of the jobs that can be scheduled on any

f the machines. This is called machine capacity , see e.g. Woeginger

2005) . Throughout the paper we assume that m · N ≥ n , otherwise

here is no feasible solution for the problem. Note that machine

apacity is not a common constraint for the late work minimiza-

ion problem, but it will be useful later. However, by setting N = n,

he capacity constraints become void, and we get back the familiar

ate work minimization problem.

Since the late work objective can be 0, and deciding whether

 feasible schedule of zero late work exists or not is a strongly

P-hard decision problem (Chen et al., 2016), no approximation

lgorithm exists for this objective. However, by applying a stan-

ard trick, we can ensure that the objective function value is al-

ays positive, and approximating it becomes possible. We intro-

uce a problem instance-dependent positive number T , and when

pproximating the optimum late work, we will consider the objec-

ive function T + Y .

There is another way to modify the objective function so that it

llows us to achieve approximation results. The early work objec-

ive X , introduced by Bła ̇zewicz, Pesch, Sterna, and Werner (2005) ,

hich measures the total amount of work scheduled on the ma-

hines before d , is closely related to Y by the equation

 (S) = p sum

− Y (S) for any feasible schedule S. (1)

n the resource leveling problem , we have n jobs with unit process-

ng times to be scheduled on m identical parallel machines in the

ime interval [0, C], where C is a common deadline of all the jobs.

dditionally, there is a renewable resource along with a soft limit L

or the resource usage. Each job j has some requirement a j ≥ 0 from

he resource. All problem data is integral. A schedule S specifies a

achine μ j (S) ∈ { 1 , . . . , m } and starting time t j (S) ∈ { 0 , . . . , C − 1 }
or each job j . Without loss of generality, m · C ≥ n , otherwise no

easible schedule exists. Throughout the paper we assume that in

ny schedule, if k < m jobs start at some time point t , then they

ccupy the first k machines. The goal is to find a feasible sched-

le S , where each job starts in [0 , C − 1] , and the total resource

sage above L is minimized, i.e., we have to minimize ˜ Y (S) :=
 C−1
t=0 max { 0 , ∑

j∈ J t (S) a j − L } , where J t (S) = { j ∈ J | t j (S) = t} , and

j∈ J t (S) a j is the total resource usage of those jobs starting at time

oint t . A closely related problem is the maximization of the to-

al resource usage below L over the scheduling horizon [0, C],

.e., maximize ˜ X (S) :=

∑ C−1
t=0 min { L, ∑

j∈ J t (S) a j } . Let a sum

:=

∑

j∈J a j .
he two objective functions are related by the equation

˜
 (S) = a sum

− ˜ Y (S) for any feasible schedule S. (2)

otice the similarity of (1) and (2) . As we will see, this is not a co-

ncidence. Furthermore, since checking whether a feasible sched-

le S with

˜ Y (S) = 0 exists is a strongly NP-hard decision prob-

em (Neumann & Zimmermann, 20 0 0), for approximating the op-

imal solution we will use the objective function

˜ T + ̃

 Y , where ˜ T

s an instance-dependent positive number. If m ≥ n , then we get

he project scheduling version of the resource leveling problem,

.e., there are no machines and arbitrary number of jobs can be

tarted at the same time.

This paper uses the α| β| γ notation of Graham, Lawler, Lenstra,

nd Rinnooy Kan (1979) , where α denotes the machine environ-

ent, β the additional constraints, and γ the objective function.

n the α field we use P for arbitrary number of parallel machines

P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137 131

a

t

c

γ

s

r

t

a

p

s

b

t

I

m

t

t

p

t

a

(

0

t

{

�

a

d

a

1

t

g

i

t

s

c

3

p

w

t

t

w

r

i

i

i

m

a

s

S

w

F

(

w

F

a

p

(

t

l

K

o

t

w

c

b

p

w

L

p

P

r

e

w

n

t

o

t

r

i

d

f

t

H

c

I

m

p

o

w

p

v

d

p

fi

a

c

w

s

s

R

V

(

p

o

c

t

e

p

b

�

I

u

p

a

4

r

i

d

nd P 2 in case of two machines. In the β field, d j = d indicates

hat the jobs have a common due date, while n i ≤ N indicates the

apacity constraints of the machines. The symbols X and Y in the

field refer to the early work, and to the late work criterion, re-

pectively, and we use the symbols ˜ X and

˜ Y to denote the total

esource usage below and above the limit L , respectively, in case of

he resource leveling problem.

In this paper we describe approximation algorithms for the

bove mentioned, and some other combinatorial optimization

roblems. Our terminology closely follows that of Garey and John-

on (1979) . A minimization (resp. maximization) problem � is given

y a set of instances I, and each instance I ∈ I has a set of solu-

ions S I , and an objective function c I : S I → Q . Given any instance

 , the goal is to find a feasible solution s ∗ ∈ S I such that c I (s ∗) =
in { c I (s) | s ∈ S I } (c I (s ∗) = max { c I (s) | s ∈ S I }). Let OPT (I) denote

he optimum objective function value of problem instance I . A fac-

or ρ approximation algorithm for a minimization (maximization)

roblem � is a polynomial time algorithm A such that the objec-

ive function value, denoted by A (I), of the solution found by the

lgorithm A on any problem instance I ∈ I satisfies A (I) ≤ρ · OPT (I)

 A (I) ≥ρ · OPT (I)). Naturally, ρ ≥ 1 for minimization problems, and

 < ρ ≤ 1 for maximization problems. Furthermore, a polynomial

ime approximation scheme (PTAS) for � is a family of algorithms

 A ε} ε > 0 such that A ε is a factor 1 + ε approximation algorithm for

if it is a minimization problem, or a factor 1 − ε approximation

lgorithm (0 < ε < 1), for � if it is a maximization problem. In ad-

ition, a fully polynomial time approximation scheme (FPTAS) is like

 PTAS, but the time complexity of each A ε must be polynomial in

/ ε as well.

Let �1 and �2 be two optimization problems. We say that

hey are strongly equivalent if there exist bijective functions f and

 , where f establishes a one-to-one correspondence between the

nstances of �1 and that of �2 , whereas g establishes a one-

o-one correspondence between the set of solutions of each in-

tance I of �1 and that of f (I) of �2 such that for each S ∈ S I ,

I (S) = c f (I) (g(S)) .

. Previous work

In this section first we overview existing complexity and ap-

roximability results for scheduling problems with the total late

ork minimization, and the total early work maximization objec-

ive functions, but we abandon exact and heuristic methods as

hey are not directly related to our work. Then we briefly overview

hat is known about resource leveling in a parallel machine envi-

onment.

The total late work objective function (late work for short)

s proposed by Bła ̇zewicz (1984) , where the complexity of min-

mizing the total late work in a parallel machine environment

s investigated. For non-preemptive jobs it is mentioned that

inimizing the late work is NP-hard, while for preemptive jobs,

 polynomial-time algorithm, based on network flows, is de-

cribed. This approach is extended to uniform machines as well.

ubsequently, several papers have appeared discussing the late

ork minimization problem in various processing environments.

or the single machine environment, Potts and Van Wassenhove

1992b) describe an O (n log n) time algorithm for the problem

ith preemptive jobs, where each job has its own due date.

urthermore, the non-preemptive variant is shown to be NP-hard,

nd among other results, a pseudo-polynomial time algorithm is

roposed for finding optimal solutions. Potts and Van Wassenhove

1992a) devise a fully polynomial time approximation scheme for

he single machine non-preemptive late work minimization prob-

em, which is extended to the total weighted late work problem by

ovalyov, Potts, and Van Wassenhove (1994) , where the late work

f each job is weighted by a job-specific positive number. For a
wo-machine flow shop, Bła ̇zewicz et al. (2005) prove that the late

ork minimization problem is NP-hard even if all the jobs have a

ommon due date, and they also describe a dynamic programming

ased exact algorithm. A more complicated dynamic program is

roposed for the two-machine job shop problem with the late

ork criterion by Bła ̇zewicz, Pesch, Sterna, and Werner (2007) .

ate work minimization in an open shop environment, with

reemptive or with non-preemptive jobs, is studied in Bła ̇zewicz,

esch, Sterna, and Werner (2004) , where a number of complexity

esults are proved. For the parallel machine environment, Chen

t al. (2016) prove that deciding whether a schedule with 0 late

ork exists is a strongly NP-hard decision problem, while if the

umber of machines is only 2, then it is binary NP-hard even if

he jobs have a common due date. Furthermore, they describe an

nline algorithm for maximizing the early work of jobs that have

o be scheduled in a given order. For several other complexity

esults not mentioned here, we refer to Sterna (20 0 0, 20 06, 2011) .

A related problem is the minimization of the total tardiness on

dentical parallel machines, when the jobs have a common due

ate d . Kovalyov and Werner (2002) observe that without modi-

ying the objective function, there is no hope for any approxima-

ion algorithm, like in the case of minimizing the total late work.

ence, they augment the objective function value by a positive

onstant b , and prove that the problem does not admit a factor

(1 + ε) approximation algorithm for any 0 < ε < 1/ b unless P = NP.

t follows that in order to have an (F)PTAS, b must depend polyno-

ially on d or the job processing times. They also describe a fully

olynomial time approximation scheme if b = d, and the number

f the machines is fixed.

As for the early work, besides the paper of Chen et al. (2016) ,

e mention Sterna and Czerniachowska (2017) , where a PTAS is

roposed for maximizing the early work in a parallel machine en-

ironment with 2 machines, where all the jobs have a common

ue date. Chen et al. (2020b) describe a fully polynomial time ap-

roximation scheme if the number of identical parallel machine is

xed. They also provide computation results for the previous PTAS

s well as for the FPTAS on problem instances with 2 and 3 ma-

hines and up to 65 and 13 jobs, respectively.

Resource leveling is a well studied area of project scheduling,

here a number of exact and heuristic methods are proposed for

olving it for various objective functions and under various as-

umptions, see e.g., Kis (2005) , Neumann and Zimmermann (20 0 0) ,

ieck, Zimmermann, and Gather (2012) , Verbeeck, Van Peteghem,

anhoucke, Vansteenwegen, and Aghezzaf (2017) . Drótos and Kis

2011) consider a dedicated parallel machine environment, and

ropose and exact method for solving resource leveling problems

ptimally with hundreds of jobs. In the same paper, some new

omplexity results are obtained.

Chen, Kovalev, Sterna, and Bła ̇zewicz (2020a) introduce the no-

ion of mirror scheduling problems, which is a kind of strong

quivalence. Two scheduling problems, �1 and �2 , constitute a

air of mirror scheduling problems if there is a bijective mapping

etween their instances, and any solution S 1 of any instance I 1 of

1 can be mapped to a solution S 2 of the corresponding instance

 2 of �2 such that the objective function values of the two sched-

les are equal, and there is a mirror time point T and if a machine

rocesses job j at time t in S 1 , then the same machine processes j

t time T − t in S 2 .

. Equivalence of the late work minimization problem and the

esource leveling problem

In this section we prove the equivalence of the late work min-

mization problem and the resource leveling problem in the sense

efined at the end of Section 2 .

132 P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137

Fig. 1. Corresponding schedules for late work minimization problem and resource

leveling problem.

P

n

M

t

j

i

L

i

L

C

N

5

i

w

a

W

T

d

s

T

i

P

t

l

P

P

a

d

l

o

a

s

r

c

a

o

m

t

t

6

t

m

b

w

w

p

S

v

1 We thank a referee for calling our attention to this paper.
Theorem 1. The late work minimization problem P | d j = d, n i ≤ N| Y,

and the resource leveling problem P | p j = 1 | ̃ Y are equivalent.

Proof. The proof consists of two parts. First, we define a bijective

function between the set of instances of the late work minimiza-

tion problem and the set of instances of the resource leveling prob-

lem with unit time jobs. Then, we consider an arbitrary pair of

instances of the two problems (the pair is determined by the pre-

vious function) and we define another bijective function between

the schedules of the two instances.

Consider an arbitrary instance I of the late work minimiza-

tion problem (m machines, n jobs with processing times p j (j ∈
{ 1 , . . . , n }) and common due date d , and upper bound N on the

number of jobs on each machine). The corresponding instance of

the resource leveling problem has N machines, n jobs with pro-

cessing times 1, resource requirements a j := p j (j = 1 , . . . , n), com-

mon deadline C := m , and resource limit L := d . Now we verify that

the given mapping between the instances of the two problems is

a bijection. Indeed, the function is injective (different instances of

the late work minimization problem are mapped to different in-

stances of the resource leveling problem), and surjective (for every

instance I ′ of the resource leveling problem there is an instance I

of the late work minimization problem such that I is mapped to

I ′), thus it is bijective.

Now, we describe a mapping from the set of feasible schedules

of any instance of the late work minimization problem to that of

the corresponding instance of the resource leveling problem. Let

instance I of the late work minimization problem be fixed and let

I ′ be the corresponding instance of resource leveling problem. Let

S be any feasible schedule for the instance I , our function defines

a schedule S ′ for I ′ based on S as follows. If a job j is the � th job

scheduled on machine i in S then schedule the corresponding job

of I ′ on machine � at time t j (S ′) := i − 1 , for an illustration, see

Fig. 1 . �

The following series of claims will prove the theorem:

Claim 1. S ′ is feasible for I ′ .

Proof. Since there are at most N jobs scheduled on a machine in

S , thus we assign each job to one of the N machines of I ′ . Further-

more, each job in I ′ has a unit processing time, hence the jobs do

not overlap. �

Claim 2. The mapping between the schedules for I and that for I ′ is a
bijection.

Proof. It is easy to see that the given mapping of schedules is in-

jective. Moreover, let S ′ be any schedule for I ′ . We define S for I

such that S is mapped to S ′ as follows. Suppose job j starts on

M

′
� at time point i − 1 for some i ∈ { 1 , . . . , C} in S ′ , then j is the

� th job on μ j (S) = i . Since in S ′ , there is no idle machine among

M

′
1
, . . . , M

′
� by definition, S is feasible, and the value of t j (S) is well

defined. �

Claim 3. If the late work of some schedule S for instance I is Y , then

the objective function value of the corresponding schedule S ′ for I ′ is

also Y.
roof. Consider the i th machine M i (i ∈ { 1 , . . . , m }) in S , let J i de-

ote the set of jobs scheduled on M i in S . The late work on

 i is max { 0 , ∑

j∈J i p j − d} , thus Y =

∑ m

i =1 max { 0 , ∑

j∈J i p j − d} . On

he other hand, observe that the jobs of J i are mapped to those

obs of the resource leveling problem that start at time point

 − 1 in S ′ . The total resource requirement of these jobs exceeds

 by max { 0 , ∑

j∈J i a j − L } , thus the objective function value of S ′

s
∑ C

i =1 max { 0 , ∑

j∈J i a j − L } =

∑ m

i =1 max { 0 , ∑

j∈J i p j − d} = Y, since

 = d, C = m, and p j = a j by the mapping defined above.

The above claims prove the theorem. �

By (1) and (2) , we have the following:

orollary 1. The early work maximization problem P | d j = d, n i ≤
| X, and the resource leveling problem P | p j = 1 | ̃ X are equivalent.

. Inapproximability of P 2 | d j = d| c ′ + Y

In this section we prove that if we simply add a value c ′ to Y

n the objective function of the late work minimization problem,

here c ′ is a fixed positive number, then it is impossible to get an

pproximation algorithm of factor smaller than

c ′ +1
c ′ unless P = NP .

e will use the following result of Chen et al. (2016) :

heorem 2 (Theorem 2 in Chen et al., 2016) . The problem P 2 | d j =
| Y is NP-hard. In particular, it is NP-hard to decide if a feasible

chedule of total late work 0 exists.

The following statement and its proof is analogous to that of

heorem 2 of Kovalyov and Werner (2002) for the inapproximabil-

ty of P m | d j = d| b +

∑

T j .
1

roposition 1. Let c ′ be a positive constant. Then for any 0 < ε < 1/ c ′ ,
here is no (1 + ε) -approximation algorithm for P 2 | d j = d| c ′ + Y un-

ess P = NP .

roof. Suppose we have a factor 1 + ε approximation algorithm for

 2 | d j = d| c ′ + Y for some 0 < ε < 1/ c ′ . We show how to apply this

pproximation algorithm to decide if for any instance of P 2 | d j =
| Y a feasible schedule of total late work 0 exists. However, the

atter decision problem is NP-hard by Theorem 2 , which implies

ur claim.

Consider any instance of P 2 | d j = d| c ′ + Y . If the approximation

lgorithm returns a solution of value c ′ , then clearly, there is a

chedule of 0 late work. Now suppose the approximation algorithm

eturns a solution of value at least c ′ + 1 (no value between c ′ and

′ + 1 is possible, because all problem data is integral). Indirectly,

ssume that there is a schedule of total late work 0, and hence, the

ptimum solution value is c ′ . But then c ′ + 1 ≤ (1 + ε) c ′ < c ′ + 1

ust hold, where the first inequality follows from the approxima-

ion factor and the second form ε < 1/ c ′ . This is a contradiction,

hus all feasible schedules must have total late work at least 1. �

. A PTAS for P | d j = d, n i ≤ N| X
In this section we describe a PTAS for P | d j = d, n i ≤ N| X . Note

hat the machine capacity N is a positive integer such that

 · N ≥ n , where n is the number of the jobs, and m is the num-

er of identical parallel machines.

We will devise two algorithms (both parameterized by ε), and

e will run both of them on the same input, and finally, we

ill choose the better of the two schedules obtained as the out-

ut of the algorithm. The first family of algorithms, described in

ection 6.1 , has an approximation factor of (1 − 4 ε) if the optimum

alue is at least ε · m · d . In contrast, the approximation algorithm

P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137 133

p

i

g

a

e

i

6

s

p

n

a

w

a

s

h

t

i

P

a

t

e

P

m

m

a

P

f

o

c

P

a

c

t

i

j

e

n

M

a

u

o

t

u

o

e

a

j

s

t

i

s

s

r

t

s

j

c

o

t

ε

o

c

B

v

i

T

j

e

n

b

h

b

s

d

o

T

n

w

i

A

e

A

A

a

t

s
resented in Section 6.2 is of factor 1 − 2 ε if the optimum value

s smaller than ε · m · d . Running both methods on the same input

uarantees an approximation factor of (1 − 4 ε) .

After some preliminary observations, we will describe the two

lgorithms along with the proofs of their soundness, and in the

nd we combine them to obtain the PTAS.

Throughout this section, S ∗ denotes an optimal schedule for an

nstance of P | d j = d, n i ≤ N| X .

.1. Family of algorithms for the case X (S ∗) ≥ ε · m · d

In this section we describe a family of algorithms {A ε | ε > 0 } ,
uch that A ε is a factor (1 − 4 ε) approximation algorithm for the

roblem P | d j = d, n i ≤ N| X under the condition X (S ∗) ≥ ε · m · d .

We start by observing that if a job starts after d then we do

ot have to deal with its exact starting time and with its machine

ssignment, because the total processing time of this job is late

ork. We can schedule these jobs from any time point after d on

ny machine where we do not violate the machine capacity con-

traints.

Let ε > 0 be fixed. We divide the set of jobs into three subsets,

uge, big and small. The set of huge jobs is H := { j ∈ J | p j ≥ d} ,
he set of big jobs is B := { j ∈ J | ε 2 d ≤ p j < d} , and the remain-

ng jobs are small .

roposition 2. If there are at least m huge jobs, then scheduling m ,

rbitrarily chosen huge jobs on m distinct machines, and the rest of

he jobs arbitrarily, yields an optimal schedule both for the maximum

arly work and the minimum late work objectives.

roof. Let S ′ be the schedule constructed as described in the state-

ent of the proposition. Then X(S ′) = m · d, which is the maxi-

um possible early work. By Eq. (1) , S ′ has minimum late work

s well, thus it is optimal for both objective functions. �

roposition 3. If |H| ≤ m − 1 , then there exists an optimal schedule

or the maximum early work as well as for the minimum late work

bjectives such that the huge jobs are scheduled on |H| distinct ma-

hines.

roof. Let S ∗ be an optimal schedule for the early work (as well

s for the late work) objective with the maximum number of ma-

hines on which a huge job is scheduled. Indirectly, suppose less

han |H| machines process at least one huge job, hence, there ex-

sts a machine M 1 processing at least two huge jobs, say j 1 and

 2 , in this order. Since there are at most m − 1 huge jobs, there

xists a machine M

∗ (in fact there are at least two), which does

ot process any huge jobs. If less than N jobs are scheduled on

∗, then move job j 2 from M 1 to M

∗, otherwise swap job j 2 with

ny of the jobs scheduled on M

∗, and let S ′ be the resulting sched-

le. Clearly, the machine capacities are respected by S ′ , and both

f the machines M

∗ and M 1 work in the period [0, d] in S ′ , while

he work assigned to any other machine is the same in both sched-

les. Hence, X (S ′) ≥ X (S ∗). Therefore, S ′ is optimal for the early work

bjective, and by Eq. (1) , for the late work objective as well. How-

ver, in S ′ more machines process at least one huge job than in S ∗,

 contradiction. �

From now on, we assume that there are at most m − 1 huge

obs, and we fix an optimal schedule S ∗ in which the huge jobs are

cheduled on distinct machines.

Our algorithm has three main phases: first, we schedule all of

he huge jobs, and some of the big jobs such that they get a start-

ng time smaller than d , then we schedule some of the small jobs

uch that they get a starting time smaller than d , and finally, we

chedule the remaining big and small jobs, if any, arbitrarily while

especting the machine capacity constraints.
For each big job j we round down its processing time p j

o the greatest integer p ′
j

:= 	 ε 2 d(1 + ε) k
 by selecting k ∈ Z

uch that p ′
j
≤ p j . Since we have ε2 d ≤ p j < d for each big job

 , the number of the different p ′
j

values is bounded by the

onstant k 1 := � log 1+ ε (1 /ε 2) � + 1 that depends on the fixed ε
nly. Let B 1 , B 2 , . . . , B k 1

denote the sets of the big jobs with

he same rounded processing times, i.e., B h := { j ∈ J : p ′
j
= 	 (1 +

) h −1 · ε 2 d
} (B h = ∅ is possible).

For each machine without a huge job, we guess the number

f the big jobs from each set B h that start before d . This guess

an be described by an assignment A , which consists of k 1 numbers

(γ1 , γ2 , . . . , γk 1
) , where γ h describes the number of the jobs from

 h . A big job assignment (γ1 , γ2 , . . . , γk 1
) is feasible , if it does not

iolate the constraint on the number of the jobs on a machine,

.e.,
∑ k 1

h =1
γh ≤ N, and all the selected jobs can be started before d .

o verify the latter condition, it suffices to schedule the selected

obs in any order such that the longest job is scheduled last, which

nsures that the last job starts as early as possible. Let k 2 be the

umber of possible big job assignments. Since the total number of

ig jobs that may start before d on a machine is at most � 1/ ε2 � , we

ave k 2 ≤ k
� 1 /ε 2 �
1

. Let A 1 , A 2 , . . . , A k 2
denote the different feasible

ig job assignments.

A layout is a k 2 tuple (t 1 , t 2 , . . . , t k 2) that specifies for each fea-

ible assignment the number of the machines that uses it. Let γ ih

enote the number of big jobs from B h assigned by A i . A lay-

ut is feasible if and only if
∑ k 2

i =1
t i γih ≤ |B h | for each h = 1 , . . . , k 1 .

he number of feasible tuples is bounded by the number of

on-negative, integer solutions of the inequality
∑ k 2

i =1
t i ≤ m − |H| ,

hich is bounded by
(

m −|H| + k 2
k 2

)
, a polynomial in the size of the

nput, since k 2 is a constant (that depends on ε only). In Algorithm

 , we examine each big job layout and get a complete schedule for

ach of them.

lgorithm A

1. Determine the set of feasible layouts.

2. For each layout t , perform Steps 3–6.

3. Assign the huge jobs of H to machines M 1 , . . . , M |H| arbitrarily,

and big jobs to the remaining m − |H| machines according to t

(t i machines use assignment A i)

4. On each machine, schedule the assigned jobs from time point 0

on in arbitrary order.

5. If N ≥ n , then invoke Algorithm B , otherwise invoke Algorithm C

to schedule small jobs.

6. Schedule the remaining jobs (small and big, if any) on the ma-

chines arbitrarily such that no machine receives more than N

jobs in total (including the pre-assigned huge and big jobs).

7. Output S A , which is the best schedule found in Steps 2–6.

Now we turn to Algorithms B and C for scheduling small jobs.

lgorithm B is a simple greedy method which works only if there

re no machine capacity constraints, i.e., N ≥ n .

Algorithm B

Input: partial schedule of big jobs

1. For i = 1 , . . . , m do:

2. Schedule a maximal subset of small jobs on machine M i after

the big jobs without idle time such that no small job finishes

after d .

Observe that the above method may assign a lot of small jobs

o a machine, thus it may not yield a feasible schedule if N < n .

Algorithm C is much more complicated. Let J

small denote the

et of small jobs, P small
i

≥ 0 the idle time on machine i before d ,

134 P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137

s

e

P

b

P

(

S

P

a

b

o

i

j

e

	

o

c

j

i

c

S

T

a

P

i

t

r

X

j

t

S

a

L

P

s

h

i

i

A

t

t

S

r

X

a

P

P

a

R

m

x

m

l

(

v

w
and n small
i

the number of the jobs that can be scheduled on ma-

chine i after the partial schedule of big jobs, i.e., n small
i

is the dif-

ference between N and the number of the big jobs assigned to ma-

chine M i . Note that P small
i

= 0 if a huge job is assigned to machine

M i .

Our goal is to maximize the early work of the small jobs for a

fixed assignment of big and huge jobs. To simplify our problem, we

only want to maximize the total processing time of the small jobs

that a machine completes before d . This may decrease the objective

function value of the final schedule, but we will show that this

error is negligible.

We can model the above problem with an integer program.

We introduce n · (m + 1) binary variables x i , j (i = 0 , 1 , 2 , . . . , m, j =
1 , 2 , . . . , n), where x 0 , j = 1 means that we do not schedule job j

to any machine before d , while in case of 1 ≤ i ≤ m , x i, j = 1 means

that job j will be scheduled on machine i , and will be completed

not later than d .

max

m ∑

i =1

∑

j∈J small

x i, j p j (3)

s.t. ∑

j∈J small

x i, j p j ≤ P small
i , i = 1 , . . . , m, (4)

∑

j∈J small

x i, j ≤ n

small
i , i = 1 , . . . , m, (5)

m ∑

i =0

x i, j = 1 , j ∈ J

small , (6)

x i, j ∈ { 0 , 1 } , i = 0 , . . . , m, j ∈ J

small . (7)

We get the LP-relaxation of the above integer program by replacing

x i , j ∈ {0, 1} with x i , j ≥ 0 in the constraints (7) .

Algorithm C

Input: partial schedule of big jobs

1. Determine the values P small
i

, n small
i

for i = 1 , . . . , m .

2. Solve the LP-relaxation of (3) –(7) , and let x̄ be a basic optimal

solution.

3. For i = 1 , . . . , m, if x̄ i, j = 1 for a job j , then assign that job to

machine i .

4. For each machine, schedule the assigned jobs right after the big

jobs without idle times in arbitrary order.

Observe that fractional jobs of the optimal LP solution are not

assigned to any machine by Algorithm C , but they will be sched-

uled by Step 6 of Algorithm A .

The proofs of the following two claims easily follow from the

definitions.

Proposition 4. S A is feasible.

Proposition 5. The time complexity of Algorithm B is polynomially

bounded in the size of the input.

Proposition 6. The time complexity of Algorithm C is polynomially

bounded in the size of the input.

Proof. We can determine a basic solution of a linear program

with nm variables and n + 2 m constraints in two steps. First, ap-

ply a polynomial time interior-point algorithm to find a pair of

primal-dual optimal solutions, and then, we can use Megiddo’s

method to determine a basic solution x̄ for the primal program,
ee e.g., Wright (1997) . The other steps of Algorithm C require lin-

ar time. �

roposition 7. The time complexity of Algorithm A is polynomially

ounded in the size of the input.

roof. Recall that the number of the feasible layouts is polynomial

at most
(

m + k 2
k 2

)
). Each of the Steps 3–6 requires O (nm) time, except

tep 5 if it invokes Algorithm C , but it is also polynomial due to

roposition 6 . �

Without loss of generality, we assume that in S ∗ the huge

nd big jobs precede the small jobs on each machine, and the

ig jobs are scheduled in non-decreasing processing time order

n each machine. We introduce an intermediate schedule S int : it

s the same as S ∗ except that the processing time of each big

ob is rounded as in Algorithm A . That is, the processing time of

ach big job is rounded down to the greatest number of the form

 ε 2 d(1 + ε) k
 , (k ∈ Z), and after rounding we re-schedule the jobs

n each machine in the same order as in S ∗, but with the de-

reased processing times of the big jobs. By considering those big

obs on the machines that start before d in S int , we can uniquely

dentify an assignment of big jobs for each machine. Therefore, we

an determine the layout t ∗ of the big jobs that start before d in

 int . Now we state and prove the main result of this section.

heorem 3. If X (S ∗) ≥ ε · m · d , then Algorithm A is a factor (1 − 4 ε)

pproximation algorithm for P | d j = d, n i ≤ N| X.

roof. Recall that S int is the schedule obtained from S ∗ by round-

ng down the processing time of each big job, and shifting the jobs

o the left, if necessary, to eliminate any idle times (created by

ounding) on the machines. Since p j / (1 + ε) < p ′
j
≤ p j , we have

(S int) ≥ X(S ∗) / (1 + ε) ≥ (1 − ε) X(S ∗) . Let t ∗ be the layout of big

obs corresponding to S int . Algorithm A will consider the layout

∗ at some iteration, and let S be the schedule created from t ∗.

ince X (S A) ≥ X (S), it suffices to prove that X(S) ≥ (1 − 4 ε) X(S ∗) . To

chieve this, we proceed by proving a series of lemmas. �

emma 1. If N ≥ n and X (S ∗) ≥ ε · m · d , then X(S) ≥ (1 − ε) X(S ∗) .

roof. If Algorithm B schedules all the small jobs when creating

chedule S , then the only jobs finishing after d can be big and

uge jobs. Since the set of big and huge jobs that start before d

n schedule S contains all the big and huge jobs that start before d

n schedule S int , we get X (S) ≥ X (S int).

If there is at least one small job that remains unscheduled by

lgorithm B , then consider the early work in S . We know that the

otal processing time on each machine is at least d(1 − ε 2) due

he condition of Step 2 of Algorithm B . Hence, X(S) ≥ md(1 − ε 2) .
ince X (S) ≤ X (S ∗) ≤ m · d , and X (S ∗) ≥ ε · m · d by assumption, we de-

ive

 (S) ≥ (1 − ε 2) d · m ≥ (1 − ε) X (S ∗) ,

s claimed. �

roposition 8. If N < n , then X(S) ≥ X(S int) − 3 ε 2 · d · m .

roof. Consider Algorithm C , when it creates S . It solves (3) –(7)

nd x̄ is the optimal basic solution that we get from the algorithm.

ecall that if i ≥ 1 then x̄ i, j = 1 if and only if job j is assigned to

achine i by Algorithm C . We introduce another integer solution

′ of (3) –(7) . Let x ′
i, j

:= 1 , if a small job j completes before d on

achine i in S int , otherwise, x ′
i, j

:= 0 . Note that x ′ is a feasible so-

ution, because S int is a feasible schedule.

Let v (x) denote the objective function value of a solution x of

3) –(7) , OPT IP the optimum value of (3) –(7) and OPT LP the optimum

alue of its linear relaxation. For any feasible solution x of (3) –(7) ,

e have OP T LP ≥ OP T IP ≥ v (x) . Let X small
int

denote the early work of

P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137 135

t

w

d

s

r

X

T

t

v

j

e

e

x

n

n

O

w

e

X

f

L

P

i

X (S ∗)

t

p

(

t

w

6

i

s

i

i

o

c

j

c

v

c

l

T

2

P

f

t

S

c

ε

k

s

j

ε

T

c

S

t

t

m

T

c

c

l

t

u

t

c

d

i

p

M

i

j

s

i

ε

b

o

i

u

t

H

i

C

l

o

j

t

he small jobs in S int and X small
S

the same in S . Observe that v (x ′) ,
hich is the total early work of the small jobs that complete before

 in S int , is at least X small
int

− ε 2 dm, because there is at most one

mall job on each machine that starts before, and ends after d , and

ecall that each small job is shorter than ε2 d . Then

small
S ≥ v (� ̄x �) ≥OP T LP − 2 ε 2 dm ≥OP T IP − 2 ε 2 dm ≥v (x ′) −2 ε 2 dm

≥ X

small
int − 3 ε 2 dm.

he first inequality is trivial, while we have already proved the last

hree inequalities. It remained to prove the second inequality, i.e.,

 (� ̄x �) ≥ OP T LP − 2 ε 2 dm . Let e denote the number of the small jobs

 with x̄ i, j = 1 for some i (i = 0 , . . . , m) in Algorithm C , and f := n −
 the number of the ‘fractionally assigned’ small jobs. Note that for

ach of these small jobs, we have i 1 � = i 2 (0 ≤ i 1 , i 2 ≤ m) such that

¯ i 1 , j , ̄x i 2 , j > 0). Since x̄ is a basic solution there are at most n + 2 m

on-zero values among its coordinates. Hence, we have e + 2 f ≤
 + 2 m, therefore, we have f ≤ 2 m . To sum up, we have

P T LP =

m ∑

i =1

(∑

j: ̄x i, j =1

p j +

∑

j frac. assigned

x̄ i, j p j

)

=

v (� ̄x �) +

∑

j frac. assigned

p j

m ∑

i =1

x̄ i, j ≤

v (� ̄x �) + 2 ε 2 md,

here the last inequality follows from f ≤ 2 m , from p j ≤ ε2 d for

ach small job j , and from

∑ m

i =1 x̄ i, j ≤ 1 .

Finally, observe that X small
S

≥ X small
int

− 3 ε 2 dm implies X(S) ≥
(S int) − 3 ε 2 dm, since the set of big and huge jobs that start be-

ore d in S contains those of schedule S int . �

emma 2. If N < n and X (S ∗) ≥ ε · m · d , then X(S) ≥ (1 − 4 ε) X(S ∗) .

roof. By Proposition 8 , X(S) ≥ X(S int) − 3 ε 2 · d · m . Therefore, us-

ng the assumption of the lemma, we derive

 (S) ≥ X (S int) − 3 ε 2 · d · m ≥ X (S ∗)(1 − ε) − 3 εX (S ∗) = (1 − 4 ε) X

Now we can finish the proof of Theorem 3 . We have proved

hat Algorithm A creates a feasible schedule S A (Proposition 4) in

olynomial time (Proposition 7) such that X(S A) ≥ (1 − 4 ε) X(S ∗)
 Lemmas 1 –2), thus the theorem is proved. �

Theorem 3 has a strong assumption, namely, X (S ∗) ≥ ε · m · d . In

he next section, we describe a complementary method, which

orks if X (S ∗) < ε · m · d .

.2. Approximation algorithm for the case X (S ∗) < ε · m · d

We will show that if X (S ∗) < ε · m · d , then scheduling the jobs

n longest-processing-time-first order 2 by list-scheduling while re-

pecting the capacity constraints of the machines yields an approx-

mation algorithm both for minimizing the late work and for max-

mizing the early work as well. Recall the list-scheduling method

f Graham (1969) for scheduling jobs on parallel machines. It pro-

esses the jobs in a given order, and it always schedules the next

ob on the least loaded machine. In order to take into account the

apacity constraints of the machines, we will use the following

ariant of list-scheduling.

Algorithm LPT

Input: set of jobs, number of machines m , and common ma-

hine capacity N .

1. Let n i := 0, and L i := 0 for i = 1 , . . . , m .
2 the jobs are scheduled in non-increasing processing time order

X

w
 .

2. Schedule the jobs in longest-processing-time-first order, ties

are broken arbitrarily. When processing the next job j ,

choose the machine with minimum L i value among those

machines with n i < N , and break ties arbitrarily. Let i be

the index of the machine chosen. Then set t j (S LPT) = L i ,

μj (S LPT) := i , L i := L i + p j and n i := n i + 1 .

3. Return S LPT .

The schedule S LPT computed by the algorithm satisfies the fol-

owing properties.

heorem 4. If X (S ∗) < ε · m · d and ε ≤ 1/3, then X(S LPT) ≥ (1 −
 ε) X(S ∗) and c · p sum

+ Y (S LPT) ≤ (1 + 2 ε/c)(c · p sum

+ Y (S ∗)) .

roof. First, we prove X(S LPT) ≥ (1 − 2 ε) X(S ∗) , and then we derive

rom it the second statement of the theorem. Since X (S ∗) ≤ ε · m · d ,

here can be at most m − 1 jobs of processing time at least εd .

ince X (S LPT) ≤ X (S ∗), we can also deduce that in S LPT there is a ma-

hine on which the total processing time of the jobs is less than

d .

First suppose that all jobs start before εd in S LPT . Since there are

 ≤ m − 1 jobs of processing time at least εd , all these long jobs

tart on distinct machines in S LPT , since these are the longest k

obs. All the remaining jobs have a processing time smaller than

d , and they are scheduled on the remaining m − k machines.

herefore, the work finishes by time 2 εd on the remaining ma-

hines. Since ε ≤ 1/3, the jobs, if any, that do not finish before d in

 LPT must be long jobs. Since the long jobs are scheduled on dis-

inct machines in S LPT , there is no way to decrease the late work of

his schedule, or equivalently, to increase the early work, thus, S LPT

ust be optimal for both objectives.

Now suppose there is a job j which starts at or after εd in S LPT .

hen there is a machine M

∗ in S LPT with N jobs and the total pro-

essing time of these jobs is smaller than εd , otherwise either job j

ould be scheduled on M

∗ (which would contradict the rules of the

ist-scheduling algorithm), or X (S LPT) ≥ ε · m · d (which would con-

radict the assumption X (S ∗) < ε · m · d , since S LPT is a feasible sched-

le, and S ∗ is an optimal schedule, thus ε · m · d ≤ X (S LPT) ≤ X (S ∗)).

We claim that on any machine, the total processing time of

hose jobs that start at or after εd is at most εd . This is so, be-

ause the jobs are scheduled in non-increasing processing time or-

er, and no machine may receive more than N jobs. Consequently,

f a job is started at or later than εd on some machine, it has a

rocessing time not greater than the shortest processing time on

∗. Hence, the total processing time of the jobs scheduled on M

∗

s indeed an upper bound on the total processing time of those

obs started at or later than εd on any single machine.

By our claim, if there are only short jobs (of processing time

maller than εd) on a machine, then the total work assigned to

t by S LPT is at most 3 εd . Hence, all these jobs finish by d , since

≤ 1/3. Consequently, if a job finishes after d in S LPT , then it must

e scheduled on a machine with a long job. Let g be the number

f those machines on which some job is late, i.e., finishes after d

n S LPT . Consider any of these g machines. It has a long job sched-

led first, and then some short jobs. The total processing time of

hese short jobs is at most εd , since each of them starts after εd .

ence, the late work can be decreased by at most g · εd by schedul-

ng some of the short jobs early in a more clever way than in S LPT .

onsequently, X(S LPT) + g · εd ≥ X(S ∗) .
Now, we bound gd . As we have observed, if a machine has some

ate work on it in S LPT , then it has a long job, and some short jobs

f total processing time at most εd . Hence, the length of the long

ob must be at least d(1 − ε) . Therefore, X(S ∗) ≥ gd(1 − ε) . Using

his observation, we obtain the first statement:

 (S LPT) ≥ X (S ∗) −ε · gd ≥ X (S ∗) −εX (S ∗) / (1 −ε) ≥ X (S ∗)(1 −2 ε) ,

here the last inequality follows from ε/ (1 − ε) ≤ 2 ε if 0 < ε ≤ 1/2.

136 P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137

Y

Y

t

Z

�

j

s

ε

j

b

T

a

P

t

r

L

S

t

s

a

i

L

P

w

h

c Y (S ∗) .

L

2

P

s

h

i

i

S

t

d

ε

Y

c

w

X

L

4

P

3

c

w

X

t A
Now we derive the second statement of the theorem. By Eq. (1) ,

 (S LPT) = p sum

− X(S LPT) . Hence, we compute

 (S LPT) = p sum

− X (S LPT) ≤ p sum

− X (S ∗)(1 − 2 ε)

= p sum

− (p sum

− Y (S ∗))(1 − 2 ε)

= p sum

− (p sum

− 2 εp sum

− Y (S ∗) + 2 εY (S ∗))

≤ Y (S ∗) + 2 εp sum

.

To finish the proof, observe that

c · p sum

+ Y (S LPT) ≤ c · p sum

+ Y (S ∗) + 2 εp sum

≤ (1 + 2 ε/c)(c · p sum

+ Y (S ∗)) .

�

6.3. The combined method

In this section we combine the methods of Sections 6.1 and

6.2 to get a PTAS for P | d j = d, n i ≤ N| X .

Theorem 5. There is a PTAS for P | d j = d, n i ≤ N| X.

Proof. By Theorems 3 and 4 , the following algorithm is a PTAS for

P | d j = d, n i ≤ N| X .

Algorithm PTAS

Input: problem instance and parameter 0 < ε ≤ 1/3.

1. Run Algorithm A and let S A be the best schedule found.

2. Run Algorithm LPT , and let S LPT be the schedule obtained.

3. If X (S A) ≥ X (S LPT), then output S A , else output S LPT .

Since the conditions of Theorems 3 and 4 are complementary, it

follows that Algorithm PTAS always outputs a solution of value at

least (1 − 4 ε) times the optimum. The time complexity in either

case is polynomial in the size of the input, hence, the algorithm is

indeed a PTAS for our scheduling problem.

The time complexity of the combined method is dominated by

that of Algorithm A , which is polynomial in the size of the input

by Proposition 7 , but exponential in 1/ ε. �

Since our result is valid even if N ≥ n , we have the following

corollary:

Corollary 2. There is a PTAS for P | d j = d| X.

By Corollary 1 , we immediately get an analogous result for the

maximization variant of resource leveling problem:

Corollary 3. There is a PTAS for the resource leveling problem P | p j =
1 | ̃ X .

7. A PTAS for P | d j = d, n i ≤ N| c · p sum

+ Y

In this section we adapt the PTAS of Section 6 to the problem

P | d j = d, n i ≤ N| c · p sum

+ Y . Throughout this section, S ∗ denotes an

optimal solution of a problem instance for the late work objective,

and by Eq. (1) for the early work objective as well.

7.1. The first family of algorithms

In this section we describe a family of algorithms {A ε | ε >
0 } , such that A ε is a factor (1 + c 0 · ε) approximation algorithm

for the problem P | d j = d, n i ≤ N| c · p sum

+ Y under the condition

X (S ∗) ≥ ε · m · d , where c 0 is a universal constant, independent of ε
and the problem instances.

Recall the definition of huge, big and small jobs from Section 6 ,

we use the same partitioning of the set of jobs in this section as

well.

By Propositions 2 and 3 , it suffices to consider the case

when there are at most m − 1 huge jobs. However, in this sec-

tion we round up the processing time p j of each big job j
o the smallest integer of the form � ε 2 d(1 + ε) k � , where k ∈
 ≥0 . Since ε2 d ≤ p j < d for each big job, there are at most k 1 :=
 log 1+ ε 1 /ε 2 � + 1 distinct rounded processing times of the big

obs. Let B 1 , B 2 , . . . , B k 1
denote the sets of the big jobs with the

ame rounded processing times, i.e., B h := { j ∈ J : p ′
j
= � ε 2 d · (1 +

) h −1 �} (B h = ∅ is possible). We also define the assignments of big

obs to machines and the layouts in the same way as in Section 6 ,

ut using the jobs classes B h just defined.

heorem 6. If X (S ∗) ≥ ε · m · d , then Algorithm A is a factor (1 + 4 ε/c)

pproximation algorithm for P | d j = d, n i ≤ N| c · p sum

+ Y .

roof. Let S int be the schedule obtained from S ∗ by rounding up

he processing time of each big job, and shifting the jobs to the

ight, if necessary, so that the jobs do not overlap on any machine.

et t ∗ be the layout of big jobs corresponding to S int (defined as in

ection 6). Algorithm A will consider the layout t ∗ at some itera-

ion, and let S be the schedule created from t ∗. Since Y (S A) ≤ Y (S), it

uffices to prove that c · p sum

+ Y (S) ≤ (1 + O (ε))(c · p sum

+ Y (S ∗)) ,
nd this is what we accomplish subsequently. The claimed approx-

mation factor is proved by a series of three lemmas. �

emma 3. c · p sum

+ Y (S int) ≤ (1 + ε/c)(c · p sum

+ Y (S ∗)) .

roof. Observe that the rounding procedure increases the late

ork by at most εp sum

(recall that p sum

:=

∑

j∈J p j). Hence, we

ave

 · p sum

+ Y (S int) ≤ c · p sum

+ Y (S ∗) + εp sum

≤ (1 + ε/c)(c · p sum

+

�

emma 4. If N ≥ n and X (S ∗) ≥ ε · m · d , then c · p sum

+ Y (S) ≤ (1 +
 ε/c)(c · p sum

+ Y (S ∗)) .

roof. If Algorithm B schedules all the small jobs when creating

chedule S , then the only jobs finishing after d can be big and

uge jobs. Since the set of big and huge jobs that start before d

n schedule S contains all the big and huge jobs that start before d

n schedule S int , we get Y (S) ≤ Y (S int).

If there is at least one small job that remains unscheduled after

tep 5 of Algorithm A , then consider the early work in S . We know

hat the total processing time on each machine is at least (1 − ε 2) d
ue to the condition in Step 2 of Algorithm B , thus X(S) ≥ (1 −

2) d · m . On the other hand, X (S int) ≤ d · m is trivial, thus we have

 (S) ≤ Y (S int) + ε 2 d · m due to (1) . Finally, we have

 · p sum

+ Y (S) ≤ c · p sum

+ Y (S int) + ε 2 d · m

≤ c · p sum

+ Y (S int) + εX (S ∗)

≤ (1 + ε/c)(c · p sum

+ Y (S ∗)) + ε(p sum

− Y (S ∗))

≤ (1 + 2 ε/c)(c · p sum

+ Y (S ∗)) ,

here the second inequality follows from the assumption

 (S ∗) ≥ ε · m · d , and the third from Lemma 3 and Eq. (1) . �

emma 5. If N < n and X (S ∗) ≥ ε · m · d , then c · p sum

+ Y (S) ≤ (1 +
 ε/c)(c · p sum

+ Y (S ∗)) .

roof. By Proposition 8 and Eq. (1) , we have Y (S) ≤ Y (S int) +
 ε 2 dm . Therefore,

 · p sum

+ Y (S) ≤ c · p sum

+ Y (S int) + 3 ε 2 dm

≤ c · p sum

+ Y (S int) + 3 εX (S ∗)

≤ (1 + ε/c)(c · p sum

+ Y (S ∗)) + 3 ε(p sum

− Y (S ∗))

≤ (1 + 4 ε/c)(c · p sum

+ Y (S ∗)) ,

here the second inequality follows from the assumption

 (S ∗) ≥ ε · m · d , and the third from Lemma 3 and Eq. (1) .

Now we can finish the proof of Theorem 6 . We have proved

hat Algorithm A creates a feasible schedule S (Proposition 4) in

P. Györgyi and T. Kis / European Journal of Operational Research 286 (2020) 129–137 137

p

4

p

7

S

T

P

f

f

m

c

i

c

C

Y

t

C

1

8

f

h

s

a

t

S

r

m

i

k

p

g

(

f

t

d

t

u

I

ε

t

O

s

a

i

t

m

m

a

m

A

s

R

B

B

B

B

C

C

C

D

G

G

G

K

K

K

N

P

P

R

S

S

S

S

S

V

W

W
olynomial time (Proposition 7) such that c · p sum

+ Y (S A) ≤ (1 +
 ε/c)(c · p sum

+ Y (S ∗)) (Lemmas 3, 4 , and 5), thus the theorem is

roved. �

.2. The combined method

In this section we show how to combine the methods of

ections 6.2 and 7.1 to get a PTAS for P | d j = d, n i ≤ N| c · p sum

+ Y .

heorem 7. There is a PTAS for P | d j = d, n i ≤ N| c · p sum

+ Y .

roof. By Theorems 6 and 4 , we propose the following algorithm

or P | d j = d, n i ≤ N| c · p sum

+ Y .

Algorithm PTAS

Input: problem instance and parameter ε ≤ 1/3.

1. Run Algorithm A and let S A be the best schedule found.

2. Run Algorithm LPT , and let S LPT be the schedule obtained.

3. If Y (S A) ≤ Y (S LPT), then output S A , else output S LPT .

Since the conditions of Theorems 6 and 4 are complementary, it

ollows that Algorithm PTAS always outputs a solution of value at

ost (1 + 4 ε/c) times the optimum. The time complexity in either

ase is polynomial in the size of the input, hence, the algorithm is

ndeed a PTAS for our scheduling problem. �

Since our result is valid even if N ≥ n , we have the following

orollary:

orollary 4. There is a PTAS for P | d j = d| c · p sum

+ Y .

Notice that Theorem 1 remains valid if we replace Y by c ·
p sum

+ Y in the late work minimization problem and

˜ Y by c · a sum

+
˜
 in the minimization variant of the resource leveling problem,

hus we get the following by combining Theorems 1 and 7 :

orollary 5. There is a PTAS for the resource leveling problem P | p j =
 | c · a sum

+ ̃

 Y .

. Final remarks

In this paper we have described a common approximation

ramework for 4 problems which have common roots. On the one

and, we have proposed the first polynomial time approximation

cheme for the early work maximization problem on identical par-

llel machines with a common job due date when the number of

he machines is part of the input, which generalizes the PTAS of

terna and Czerniachowska (2017) . Further on, we extended this

esult to the late work minimization problem, and to the maxi-

ization as well as the minimization variant of the resource level-

ng with unit time jobs problems. No approximation schemes were

nown for these problems before.

In the design of the PTAS for the early work maximization

roblem, we had some difficulties in showing the approximation

uarantee. The technique we found may be used for designing

fully) polynomial time approximation schemes for completely dif-

erent combinatorial optimization problems as well. We illustrate

he main ideas for a maximization problem �. Suppose we have

evised a family of algorithms { A ε} ε > 0 for �, but we are able

o prove that it is a factor (1 − ε) approximation algorithm only

nder the hypothesis that OPT (I) ≥ f (I , ε) for a problem instance

 , where f is a function assigning some rational number to I and

. Then we have to devise another algorithm, which is also a fac-

or (1 − ε) approximation algorithm on those instances such that

PT (I) < f (I , ε). Now, if we run both methods on an arbitrary in-

tance I , then at least one of them will return a solution of value

t least (1 − ε) times the optimum. Clearly, the combined method

s an (F)PTAS for the problem �.
There remained a number of open questions. For instance, is

here a simple constant factor approximation algorithm for maxi-

izing the early work on identical parallel machines with a com-

on job due date, and has a running time suitable for practical

pplications? The same question can be asked for the late work

inimization problem with the objective c + Y for some positive c .

cknowledgments

The authors are grateful to the anonymous referees for con-

tructive comments that helped to improve the presentation.

eferences

ła ̇zewicz, J. (1984). Scheduling preemptible tasks on parallel processors with infor-

mation loss. Technique et Science Informatiques, 3 (6), 415–420 .
ła ̇zewicz, J. , Pesch, E. , Sterna, M. , & Werner, F. (2004). Open shop scheduling prob-

lems with late work criteria. Discrete Applied Mathematics, 134 (1–3), 1–24 .

ła ̇zewicz, J. , Pesch, E. , Sterna, M. , & Werner, F. (2005). The two-machine flow-shop
problem with weighted late work criterion and common due date. European

Journal of Operational Research, 165 (2), 408–415 .
ła ̇zewicz, J. , Pesch, E. , Sterna, M. , & Werner, F. (2007). A note on the two machine

job shop with the weighted late work criterion. Journal of Scheduling, 10 (2),
87–95 .

hen, X., Kovalev, S., Sterna, M., & Bła ̇zewicz, J. (2020a). Mirror scheduling problems

with early work and late work criteria. Journal of Scheduling, in press . doi: 10.
1007/s10951- 020- 00636- 9 .

hen, X. , Liang, Y. , Sterna, M. , Wang, W. , & Bła ̇zewicz, J. (2020b). Fully polynomial
time approximation scheme to maximize early work on parallel machines with

common due date. European Journal of Operational Research, 284 (1), 67–74 .
hen, X., Sterna, M., Han, X., & Bła ̇zewicz, J. (2016). Scheduling on parallel identical

machines with late work criterion: Offline and online cases. Journal of Schedul-

ing, 19 (6), 729–736. doi: 10.1007/s10951-015-0464-7 .
rótos, M., & Kis, T. (2011). Resource leveling in a machine environment. European

Journal of Operational Research, 212 (1), 12–21. doi: 10.1016/j.ejor.2011.01.043 .
arey, M. R. , & Johnson, D. S. (1979). Computers and intractability: A guide to the

theory of NP-completeness . New York, NY: Freeman .
raham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17 (2), 416–429 .

raham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. (1979). Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of

Discrete Mathematics, 5 , 287–326. doi: 10.1016/S0167- 5060(08)70356- X .
is, T. (2005). A branch-and-cut algorithm for scheduling of projects with vari-

able-intensity activities. Mathematical Programming, 103 (3), 515–539 .
ovalyov, M. Y. , Potts, C. N. , & Van Wassenhove, L. N. (1994). A fully polyno-

mial approximation scheme for scheduling a single machine to minimize total

weighted late work. Mathematics of Operations Research, 19 (1), 86–93 .
ovalyov, M. Y. , & Werner, F. (2002). Approximation schemes for scheduling jobs

with common due date on parallel machines to minimize total tardiness. Journal
of Heuristics, 8 (4), 415–428 .

eumann, K., & Zimmermann, J. (20 0 0). Procedures for resource leveling and net
present value problems in project scheduling with general temporal and re-

source constraints. European Journal of Operational Research, 127 (2), 425–443.

doi: 10.1016/S0377- 2217(99)00498- 1 .
otts, C. N. , & Van Wassenhove, L. N. (1992a). Approximation algorithms for

scheduling a single machine to minimize total late work. Operations Research
Letters, 11 (5), 261–266 .

otts, C. N. , & Van Wassenhove, L. N. (1992b). Single machine scheduling to mini-
mize total late work. Operations Research, 40 (3), 586–595 .

ieck, J. , Zimmermann, J. , & Gather, T. (2012). Mixed-integer linear programming
for resource leveling problems. European Journal of Operational Research, 221 (1),

27–37 .

terna, M. (20 0 0). Problems and algorithms in non-classical shop scheduling . Scientific
Publishers, Polish Academy of Sciences .

terna, M. (2006). Late work scheduling in shop systems . Dissertation 405. Pozna ́n:
Publishing House of Pozna ́n University of Technology .

terna, M. (2007). Late work minimization in a small flexible manufacturing system.
Computers & Industrial Engineering, 52 (2), 210–228 .

terna, M. (2011). A survey of scheduling problems with late work criteria. Omega,

39 (2), 120–129. doi: 10.1016/j.omega.2010.06.006 .
terna, M., & Czerniachowska, K. (2017). Polynomial time approximation scheme for

two parallel machines scheduling with a common due date to maximize early
work. Journal of Optimization Theory and Applications, 174 (3), 927–944. doi: 10.

1007/s10957- 017- 1147- 7 .
erbeeck, C. , Van Peteghem, V. , Vanhoucke, M. , Vansteenwegen, P. , & Aghez-

zaf, E.-H. (2017). A metaheuristic solution approach for the time-constrained

project scheduling problem. OR Spectrum, 39 (2), 353–371 .
oeginger, G. J. (2005). A comment on scheduling two parallel machines with ca-

pacity constraints. Discrete Optimization, 2 (3), 269–272 .
right, S. J. (1997). Primal-dual interior-point methods. Other Titles in Applied Math-

ematics : 54. SIAM, Philadelphia, PA .

http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0004
https://doi.org/10.1007/s10951-020-00636-9
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0006
https://doi.org/10.1007/s10951-015-0464-7
https://doi.org/10.1016/j.ejor.2011.01.043
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0010
https://doi.org/10.1016/S0167-5060(08)70356-X
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0014
https://doi.org/10.1016/S0377-2217(99)00498-1
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0021
https://doi.org/10.1016/j.omega.2010.06.006
https://doi.org/10.1007/s10957-017-1147-7
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30246-0/sbref0026

	A common approximation framework for early work, late work, and resource leveling problems
	1 Introduction
	2 Problem formulation and terminology
	3 Previous work
	4 Equivalence of the late work minimization problem and the resource leveling problem
	5 Inapproximability of
	6 A PTAS for
	6.1 Family of algorithms for the case X(S*) · m · d
	6.2 Approximation algorithm for the case X(S*) < · m · d
	6.3 The combined method

	7 A PTAS for
	7.1 The first family of algorithms
	7.2 The combined method

	8 Final remarks
	Acknowledgments
	References

