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Abstract. In the paper an improved Model Predictive Control (MPC)
design is presented for autonomous vehicles. The improvement of the
control design is based on big data analysis of the lateral vehicle dynam-
ics. In the big data analysis, the decision tree algorithm, C4.5 is used to
determine the stable regions of the vehicle. Moreover, C4.5 is extended
with the MetaCost algorithm, which is able to weight the percentages of
certain misclassifications. In this way, the safe motion of the vehicle can
be guaranteed. The results of the big data analysis are states-sets, which
are used as constraints in the MPC control design.

Keywords: Big data analysis · Model Predictive Control · Machine
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1 Introduction

The application of the big-data methods is a novel field of vehicle control. One of
the most important applications of big data is the coordination of autonomous
vehicles in vehicular networks [1]. Another field of big data is its application in
individual autonomous vehicles for estimation, prediction and control purposes.
Big data provides large amount of relevant information about the environment,
with which the perception can be improved [2]. Moreover, big data have been
used in the prediction of vehicle slip through the combination of individual mea-
surements of the vehicle and database information [3]. Another application of
big data techniques in vehicle control is the estimation of the adhesion coeffi-
cient (μ) between tire and the road. The estimation of the road surface is still
a challenging problem since the relationship between the slip angle and the tire
force is highly nonlinear and depends on several external circumstances. For
example, a BP neural network based solution is described in [6], which is able to
estimate μ coefficient at stationary velocities. Apart from the neural networks,
other machine learning techniques can be used for estimating the road surface. A
support vector machines (SVM) based estimation can be found in [5]. Of course,
in the literature, many other big data and machine learning based solutions can
be found, which are related to vehicle control problems.
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The contribution of the paper is the improvement of lateral autonomous vehi-
cle control design through vehicle dynamic constraints, which are derived from
the big data analysis on the measured signals. The analysis is performed through
machine learning methods, such as C4.5 and MetaCost decision tree generation
algorithms [4]. The main goal of the MetaCost algorithm is to decrease the per-
centage of the misclassification of unstable instances. It is crucial issue since this
kind of misclassification can result in unstable motion of the vehicle. The results
provide information about the state space regions of the vehicle, in which its
motion can be acceptable from the viewpoint of path following. The tracking
control problem of the autonomous vehicle is formed in a Model Predictive Con-
trol (MPC) structure, in which the result of the big data analysis is incorporated.
Through the enhanced design algorithm the path following functionality of the
autonomous vehicles in a wide set of vehicle maneuvers is improved.

2 Big Data-Based Analysis of Lateral Vehicle Dynamics

For big data-based analyses, a lot of measured data is required. In this paper,
the dataset is provided by the high fidelity simulation software CarSim, in which
numerous simulations have been performed with various parameters, e.g. longi-
tudinal velocity vx, steering angle δ, yaw-rate ψ̇, side-slip β, adhesion coefficient,
etc. In this way more than 10 million instances have been saved.

Initially, the instances have been divided into two classes, such as ‘accept-
able’ and ‘unacceptable’. The acceptable class includes the instances, in which
the lateral vehicle motion is considered to be stable and with good tracking
performances. The approach of this paper is based on the idea that the motion
of the vehicle is generally acceptable in the linear region of the tire force char-
acteristics. The defined criterion expresses the similarity between the current
side-slip of the front axle (1 +α1) and the expected side-slip based on the linear
formulation of the vehicle:

if − ε ≤ |1 + α1|
|1 + δ − β − l1ψ̇

vx
|
− 1 ≤ ε, then ith instance is acceptable, (1)

where ε is an experimentally defined parameter. Further instances are classified
as ‘unacceptable’.

The main purpose of the big data analysis is to create an agent, which is
able to classify the instances as acceptable/unacceptable using only the mea-
sured attributes. In this paper the agent is a decision tree, which is designed
through the widely-used C4.5 machine learning algorithm, see [7]. The main
advantage of the decision trees is that their results can be visualized easily and
the formed rules can be used for on-line classification. The fundamental concept
of the algorithm is to create subsets, whereby the entropy E(S) of the dataset
S can be minimized.

E(S) =
n∑

i=1

pilog2pi (2)
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where pi represent the probabilities of the classes.
During the generation of the decision tree the misclassification of the ‘unac-

ceptable’ instances must be minimized. Therefore, the MetaCost algorithm is
also used, with which a specific misclassification can be penalized during the
classification process. Briefly, the classification is performed in the following way:

1. The C4.5 algorithm is performed on the data set S, which results in the
decision tree T .

2. Through the MetaCost algorithm the results of T are evaluated.
3. If the result of the confusion matrix is not acceptable, the original data set

S is extended with some new elements, which are related to the misclassified
instances, considering the weights of misclassification.

4. Then, C4.5 is performed again on the extended data set to generate new T .

The detailed description of the optimization task and its iterative solution are
found in [4].

As an example, the result of the decision tree is illustrated in Fig. 1. The vali-
dation of the decision tree is shown in Fig. 1(a), which illustrates the ‘acceptable’
instances of the test set (blue). It can be seen that the results of the generated
decision tree (red) fits well on the test data, there are only few misclassified
instances. The computation is performed in a wide range of instances, which
yielded Fig. 1(b), in which the resulted ‘acceptable’ sets in the plane of ψ̇ and β
at different vx are illustrated.

Fig. 1. Results of the decision tree

3 Design of Model Predictive Control Using Big Data

In this section, a MPC based control design is presented for passenger cars.
The goal of the control design is to guarantee the trajectory tracking of the
vehicle. The conventional MPC design is extended with the results of the big
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data analysis. These results are built in the control design as constrains for states
of the vehicle. The control design is based on the following lateral vehicle model,
which is described by three equations:

mvx(ψ̇ + β̇) = C1α1 + C2α2, (3a)

Jψ̈ = C1α1l1 − C2α2l2, (3b)

v̇y = vx(ψ̇ + β̇), (3c)

where J is the yaw inertia, m is the mass of the vehicle Ci represents cornering
stiffness on the front and the rear axles and li is the distance between vehicle’s
COG and the wheels and α1 = δ − β − ψ̇l1/vx and α2 = β + ψ̇l2/vx are the
side-slip angles of the wheels. The lateral velocity of the vehicle is vy, from which
the lateral displacement y can be computed. The basic idea of this model is that
the first and rear wheels are replaced by one-one wheels, which are placed on the
longitudinal symmetrical axis of the vehicle. Therefore, α1, α2 are the averaged
side-slip angles of the front and rear wheels. For the MPC design, this model is
transformed into a state space representation, whose states are x =

[
β ψ̇ vy y

]T

and the state space is:

ẋ = Ax + Bu, (4)

where u is the steering angle.
The MPC control design requires a discrete-time model of the continuous

system, therefore the presented state space representation is discretized using
the sampling time Ts. The discrete state-space representation is:

x(k + 1) = φx(k) + Γu(k), (5)

The motion of the vehicle is predicted for n steps ahead of the vehicle.

ypred(k, n) =

⎡

⎢⎢⎢⎣

y(k + 1)
y(k + 2)

...
y(k + n)

⎤

⎥⎥⎥⎦ (6)

This prediction is calculated from the discrete state space representation of the
lateral vehicle model. Of course, the main goal of the control design is to guar-
antee the trajectory tracking of the vehicle, which can be formalized as the
minimization of the tracking error:

ey(k, n) = yref (k, n) − ypred(k, n), (7)

where the reference signal is derived from the road geometry, which is consid-
ered to be known, at least, n-step ahead. These predefined performances can be
guaranteed through a cost function, such as:

J =
1
2
ey(k, n)T Qey(k, n) + U(k, n)T RU(k, n), (8)
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where U(k, n) =
[
u(k) . . . u(k + n − 1)

]T . Moreover, Q and R are weighting
matrices, which guarantee a balance between lateral error minimization and
control actuation. Using (6) and (7) the cost function can be transformed into
the following MPC problem:

min
U(k,n)

U(k, n)T σU(k, n) + νT U(k, n). (9)

The solution of (9) can ensure the trade-off between the tracking and the steering
of the vehicle. Nonetheless, this linear approach can sometimes result in the
unstable motion of the vehicle. Therefore, this MPC solution is extended with
the result of the presented big data analysis. It means that the MPC controller
must guarantee the trade-off between the tracking and the actuation while, in
parallel, it must also guarantee that the states of the vehicle stay inside the
presented sets. This condition can be formalized as:

Umax =
[
umax . . . umax

]T
, Umin =

[
umin . . . umin

]T
, (10a)

and the sizes of both vectors are n − 1 × 1. The upper and lower limits must
guarantee that the yaw rate and the side-slip angle of the vehicle are inside the
sets of the acceptable states (Rgood) on the horizon n ahead. The prediction of
ψ̇(k + 1) . . . ψ̇(k + n) and β(k + 1) . . . β(k + n) are computed as

ψ̇pred(k, n) =

⎡

⎢⎢⎢⎣

ψ̇(k + 1)
ψ̇(k + 2)

...
ψ̇(k + n)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦

T
⎡

⎢⎢⎢⎣

φ
φ2

...
φn

⎤

⎥⎥⎥⎦ x(k)

+

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦

T
⎡

⎢⎢⎢⎣

Γ 0 · · · 0
φΓ Γ · · · 0
...

. . . . . .
...

φn−1Γ φn−2Γ · · · Γ

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

ui(k)
ui(k + 1)

...
ui(k + n − 1)

⎤

⎥⎥⎥⎦ , (11a)

βpred(k, n) =

⎡

⎢⎢⎢⎣

β(k + 1)
β(k + 2)

...
β(k + n)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦

T
⎡

⎢⎢⎢⎣

φ
φ2

...
φn

⎤

⎥⎥⎥⎦ x(k) (11b)

+

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦

T
⎡

⎢⎢⎢⎣

Γ 0 · · · 0
φΓ Γ · · · 0
...

. . . . . .
...

φn−1Γ φn−2Γ · · · Γ

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

ui(k)
ui(k + 1)

...
ui(k + n − 1)

⎤

⎥⎥⎥⎦ ,

where ui represents umin or umax. Moreover, it is necessary to select umin and
umax, so that Rgood contains the entire trajectory:

max umax s.t. ψ̇pred(k, n), βpred(k, n) ∈ Rgood, (12a)

min umin s.t. ψ̇pred(k, n), βpred(k, n) ∈ Rgood. (12b)
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The result of (12a) is formed in a constraint on the control input U(k, n)

MU(k, n) � H, (13)

where

M =
[
I 0
0 −I

]
, H =

[
Umax

−Umin

]
. (14)

Finally, the improved MPC optimization task is formed using (9) and (13)

min
U(k,n)

U(k, n)T σU(k, n) + νT U(k, n) (15a)

s.t.
MU(k, n) � H. (15b)

The result of the optimization is U(k, n), and it is necessary to actuate u(k) =
δ(k) at the time step k of the computation.

4 Conclusion

The paper has presented a new MPC based lateral control design for autonomous
vehicles. The conventional control algorithm has been extended with the result
of the big data analysis. The big data analysis has been carried out with the
well-known decision tree algorithm, C4.5. In addition, the result of the decision
has been improved by the MetaCost algorithm. In this way, the percentage of
the misclassified ‘bad’ instances has been reduced, which enhanced the stability
of the vehicle. Finally, the last section has shown a way to build the result of
the decision tree into the MPC problem as constraints for the input signal.
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