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Performance Guarantees on Machine-Learning-based Overtaking
Strategies for Autonomous Vehicles

Balazs Németh, Tamas Heged{is and Péter Gaspar

Abstract— The control of autonomous vehicles in overtaking
scenarios is an important challenge, in which an autonomous
vehicle in a multiple vehicle environment must be safely driven.
Due to the complexity of vehicle scenarios, several machine-
learning-based design strategies have been developed, which
provide outstanding results. However, in most of these methods
it is difficult to provide a theoretical guarantee on the most
important performance of the overtaking strategy, i.e., the
avoidance of collisions with the surrounding vehicles. This pa-
per proposes a design architecture with which this performance
can be guaranteed. The method is based on the robust control
framework and it is independent from the structure of the
machine-learning-based agent. The effectiveness of the method
is illustrated through simulation examples.

I. INTRODUCTION AND MOTIVATION

Machine-learning techniques are important components
in the control of automated and autonomous vehicle sys-
tems. The advantage of the learning methods is that several
decision processes, perceptions and the characteristics of
human driving interventions can be effectively integrated
in their agents. Machine-learning techniques have a special
importance at the handling of the complex multi-vehicle
scenarios.

Although there exist several optimal control solutions
to the problem of overtaking maneuvers [1], [2], [3], [4],
machine-learning-based methods have also been successfully
applied. A reinforcement-learning-based overtaking control
strategy is proposed in [5], [6]. In [7] a Q-learning strategy
is used in the design of driving algorithms for multi-lane
environments. An analysis method of the robust properties
of the machine-learning-based overtaking decision strategies
is found in [7]. A deep-reinforcement-learning method is
used in [8], which is applied to decision making in different
manoeuvres. The applied method provides the possibility of
behaviour adaptation without re-training and thus, the agent
is capable of adhering to traffic rules and learns to drive
safely in a variety of situations.

In spite of the promising results on the application of
machine learning methods in the overtaking control strate-
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gies, a crucial problem is the lack of performance guar-
antees, see [9]. A current issue is how it is possible to
quantify and guarantee performance levels of a machine-
learning-based agent in the sense of the control theory.
The challenge is that the mathematical structure of the
machine-learning-based algorithms and the formulation of
the dynamic control systems are different. This complexity
makes it difficult to examine the system which is yielded via
their interconnections. Moreover, the conventional control
systems are generally designed based on simplified control-
oriented models, which are also used in the evaluation of
closed-loop stability and performances [10]. It means that
the machine-learning-based control systems can be complex
for the evaluation of the closed-loop system through the
conventional analysis methods. Although there are some
novel results in the research on guarantees, e.g. [11], [12],
the problem is still open.

This paper focuses on trajectory design and control design
methods for machine-learning-based overtaking strategies
with which the performance of collision avoidance can be
guaranteed. The motivation of the paper is to provide a
design framework, which is able to provide the advantages
of a machine-learning agent (e.g. self-learning, achievement
of human expectations through samples), while its drawback
about the lack of performance guarantee is eliminated. As
a novelty of the method, the generated trajectory of the
machine-learning method is verified using a guaranteed safe
trajectory, which is computed through an optimization task.
Formally, it results in a measured disturbance, which is
incorporated in the robust design of the local trajectory track-
ing control. The effectiveness of the method is illustrated
through simulations using CarMaker. It is illustrated that the
emergency, which results from an unexpected event for the
machine learning algorithm, can be avoided.

The paper is organized as follows. The machine-learning-
based trajectory design is presented in Section II. The design
method of the guaranteed safety trajectory is formed in
Section III. Section IV proposes the LPV-based control
design, which guarantees the minimum performance level
of the system. Simulation results are shown in Section V
and the contributions are summarized in Section VI.

II. MACHINE-LEARNING-BASED TRAJECTORY DESIGN

In this section a machine-learning-based trajectory design
algorithm for the overtaking problem is presented. The
design of the agent has three stages.

1./ The training set of the supervised learning method
is generated. It requires an off-line method, in which the



route and the acceleration outputs for various scenarios are
computed. The method is based on the results of [13], [14].
In this solution a graph-based algorithm is applied, in which
several factors can be incorporated, e.g. a probability map of
the surrounding vehicle positions, the comfort in the route
selection, the decision of the overtaking, etc. Although the
graph-based optimization provides an acceptable route for
the vehicle, the numerical complexity makes it difficult in an
online implementation. Thus, optimization can be used only
as an off-line process. The motivation of the learning is to
ignore the necessity of the online solution of the graph-based
optimization problem. Therefore, in the proposed solution the
optimization is performed for numerous scenarios and their
results are used as a training set.

2./The generated training set must be processed by a su-
pervised learning method, which results in a neural network.
The training is also an off-line process, but the resulting
neural network can be used in an on-line process.

3./ During the cruising of an autonomous vehicle several
multi-vehicle scenarios must be handled. The scenarios can
be used to enlarge the training set. This requires the logging
of the input data and an off-line solution of the graph-based
optimization. If the training set is enlarged, the initial neural
network based on the enlarged set can be retrained. Using
this self-learning process the trajectory design method for the
autonomous vehicle can be improved, which is an advantage
of the method. Unfortunately, the self-learning capability has
the drawback that the future structure and the numerical
values of the neural network may be unknown.

In the rest of this section the training process of the neural
network is briefly presented.

Training of the machine learning agent

The neural network is a member of the machine learning
family. The artificial neural network is modeled after the
human brain in such a manner that it is able to solve
complex, nonlinear problems. The main advantage which
distinguishes this technique from the conventional machine
learning algorithms is its ability to deal with different kinds
of optimization tasks, such as clustering, classification, pre-
diction, fitting etc. A neural network contains weights and
activation functions, which are called neurons. They are
grouped into layers. A network has one input and one output
layer and, at least, one hidden layer. The number of the
hidden layers and the type of the activation function can
be chosen freely, and they are the main parameters of the
neural network [15].

In this paper the neural network is trained using a su-
pervised learning technique, which requires a data set for
training and testing purposes. The training set is a subset of
the collected data set, which is used for training the network.
Another subset is the test set, which is used for evaluating the
neural network. The data set is generated through 5000 dis-
tinct scenarios, in which the proposed graph search algorithm
has been performed. During the data collection the initial
parameters of the scenarios are selected randomly, e.g., the
positions or the velocity values of the vehicles. The results of
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the graph-based decision-making algorithm are the computed
trajectory and the velocity profile. For the reduction of the
computation in the training, the resulting lateral position
values are transformed into discrete values 0; +-1. The value
means that the lateral position is not modified concerning
the previous computation. =1 represents that the trajectory
is modified to one step right or left on the grid. In the
computation of the trajectory the road horizon is divided into
10 steps in longitudinal, and 7 in lateral directions, which
results in a grid with 70 points.

The structure of the network consists of one input, one
output and 3 hidden layers. The hidden layers contain
8 — 10 — 12 neurons. The numbers of the hidden layers and
the neurons are selected by using the so-called k-fold cross
validation technique [16]. The input vector of the network
on the input layer contains

« the velocity difference between the actual velocity of
the vehicle and the current velocity regulations,

the lateral position of the vehicle,

the distances and the velocity differences between the
controlled vehicle and the further vehicles in the over-

taking scenario.

The results of the neural network are the trajectory in grid
step representation and the velocity profile v ;41 ;. The
trajectory is converted into position values using a further
smoothing layer, which results in y; 1 ;.

A further crucial part of the network is the used activation
functions. Although there exist numerous functions that can
be used in the training process, the rectified linear unit
(ReLU) and the log-sigmoid functions are used in this
estimation problem, because they can be easily adjusted to
nonlinear problems. For training the network, the Levenberg-
Marquardt algorithm is used [17].

III. FORMULATION OF SAFE REFERENCE TRAJECTORY

The generation of a safe trajectory for overtaking is de-
signed through a predictive optimization strategy [18], whose
minimum performance level is quantified. The following
description provides a brief overview of the mehtod. In the
trajectory design problem the lateral motion of the vehicle is
formulated based on the kinematic model of the vehicle and
the trajectory of the vehicle is formed as clothoid segments
[19].

The curvature of the clothoid is a continuous function,
which means that the relation between the curve in section
1 and ¢ 4+ 1 1S k41 = Ky + ¢;L;, where L; is the distance
between two section points and ¢; is the ratio of the clothoid
section. Moreover, during the cruising of the vehicle the
velocity v, ; may vary with constant acceleration a, which
leads to the relation vy ;411 = vy, + a1, where T is
sampling time. The kinematic motion equations using the
representation of the curvature and the velocity profile is
transformed into a state-space representation

xip1 = Aa)x; + B(a)e;, (1)



where z; [yi P; Iii] r is the state vector of the system
and ¢; is its input and A(a), B(a) are acceleration-dependent
matrices.

The goal of the design is to provide a trajectory which
guarantees the avoidance of the objects on the road with min-
imum lateral displacement. The objective of the optimization
is to minimize |y;| for all ¢ = 1...n, which represents the
prediction horizon. The criterion is formed in an objective
function

J(C) = %YT(C)QY(C) +CTRe,

2
where Y contains the predicted lateral errors, C involves the
clothoid ratios, @) and R are weighting matrices.

During the optimization the actual positions of the objects
and the borders of the lanes must be considered. The posi-
tions are incorporated in constraint relations on ¥;4;, Vj €
{1,n—1}. The role of the constraints is to limit the minimum
and the maximum lateral values of the designed trajectory,
such as yi; > Yy vivj < yiy5", Vi € {1,n — 1}. where

min __ , mMin,o
Yitr; = Yivj
mazxr mazx,o

Yitrj = Yiyj

+d,
—d.

(3a)
(3b)

In the computation of y/\'F',yin%
involved. y;"}"/" and y;\";"* are determined by the positions
of the objects and the borders of the lane. d is safe distance,
which has an important role in the performance specification
of the trajectory design algorithm. d represents the smallest
distance between the safe trajectory and the objects or the
borders of the lane. It has impact on the guaranteed minimum
performance level of the vehicle control system.

The trajectory design leads to a constrained optimiza-
tion problem, in which the objective function (2) must
be minimized subject to the constraints on y;4;. During
the optimization the constrained optimization is solved for
various fixed a acceleration values and the minimum of .J(C)
is requested depending on C, a. The variables in C and the
parameter a are also bounded by constraint. The optimization
leads to a series of clothoid ratios on the horizon from which
the safe trajectory ¥;i1 s, Vs,i+1,s in the next step 7 + 1 is
computed.

* two components are

IV. ROBUST CONTROL DESIGN OF THE AUTONOMOUS
OVERTAKING STRATEGY

In this section the tracking control design method is
proposed. The goal of the control is to perform the overtaking
maneuver without a collision. It contains two tasks:

« it is necessary to decide about the acceptability of the
machine-learning-based reference signal,

« the reference signal must be tracked with a limited error,
with which a predefined safe distance s from the objects
is guaranteed.

In the following the solutions of these tasks are presented.
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A. Examinations on the reference signals

The reference signals for the vehicle control are the
designed trajectory ¥,y and the desired longitudinal velocity
Vres. In the generation of these signals ;41 , v, 41, and
Yi+1,s, Va,i+1,s are considered.

The calculation of ¥,.; and v,.s are based on the rela-
tionships

(4a)
(4b)

Yref = Yi+1,s + A7,17 if Azl S Al,la

Uref = Uz,i+1,s + AZ27 if AZQ S Al727
where A}, Af, are scalar design parameters and A; 1, A; 2
are domains.

The values of A}, A}, are selected in such a way that if
the conditions of (4) are guaranteed, then y,.; = y;41, and
Vpef = Vg it1,l, SUch as
(5a)
(5b)

Al*,l = Yi+1,0l — Yi+1,s5

AZQ = VUg,i+1,l — VUgz,i+1,s-
But, if the conditions of each relation are not guaranteed
in (4), then the design parameters are limited with the

boundaries of their domains. It means that the general rule
of the reference signal formulation is

Yref = Yit1,s T Au1, (6a)
Upef = Uzit1,s T Au2, (6b)
where
Alvl = min (maX(A?,l; Al,l,max)? Al,l,yyﬂﬁ), (7a)
AI’Q = min (maX(AZQ; Al,Z,maz); Al,Z,min)a (7b)

where Al,l,min, Al,l,maw» Al,2,7ﬂina Al,2,ma:r are the bound-
aries of Ay 1, Ay 2.

The formulations (6)-(7) show that y,.s, v,y must be
inside of a limited neighbourhood of the safe trajec-
tory yiy1,s,Vz,i+1,s- In practice, it is suggested to select
|Al,i,max‘ = |Al,i,min| = Al,i,ms T = {172}s which
leads to symmetric domains. If the domains are small, then
the machine learning based trajectory is often overridden,
with which the benefits of the learning can be degraded.
But, if the domains are broad, then an incorrect reference
signal ¥;41,1,Vz,i+1, 1s not improved in time. Thus, it is
recommended to select the initial value of A; 1, A; 2 bound-
aries through test experiences on the trajectory generation
algorithms, e.g. simulations or real experiments. Moreover,
there are further conditions, which must be considered during
the selection, as it is proposed below.

The selection of A;; has high importance on the guar-
anteed minimum performance level of the entire overtaking
control system, because the distance between the safe refer-
ence trajectory ;41,5 and the object or the lane border can
decrease through A;; ,,,. The minimum performance level
of the system is influenced by d (see (3)), A m and ey, e,
tracking errors of Yref, Vref.

The performance specification of the overtaking control is
defined that the minimum distance between the controlled
vehicle or the lane border is sgqfc. In a worst case scenario



the following constraint must be guaranteed, see an illustra-
tion in Figure 1:

d— Al,l,m — €y — €y — H/2 > Ssafer ()
where the components are the following. The value d is
selected in the design of the safe reference trajectory. The
value A1, is selected and built in the control design
through the scaling of the reference signal. The value of
ey is built in the control design directly through the scaling
of the control performances. Since v,, influences the lateral
motion of the vehicle, e, can cause a lateral position error
€y,v. It is computed through kinematic relations as

Uref — Vg i e, T
Yir1 = Yi + Ty + %T 12 =
= Yi+1,s + €y v, 9
where e, , = % The value e, is built in the control design

directly through the scaling of the control performances,
which leads to e, ,. Moreover, the value H represents the
width of the vehicle.

safe trajectory

Fig. 1.

Tllustration of the overtaking trajectories

The inequality (8) shows that there are several parameters
which must be selected during the design. In practice, it is
recommended to select d and A;; ,,, at high values, while
ey and e, must be selected at a small value in the design.

B. Design process of the robust controller

The design of the tracking control requires the model
of the vehicle, which is described through the following
dynamical model [20]:

Iy +79 bl — 3
mij = Cy (5 - W) 1a, <M) (10a)
Jip = Cyly (5 _ Wf‘f'y) —C,l, (wlr—y) (10b)
i Vg
mva: = Eong - Fdist (IOC)

where J is the yaw inertia of the vehicle, m is the vehicle
mass, Cy,C, are the cornering stiffness coefficients and
Iy, 1, are geometric parameters. The signal y is the lateral
velocity and 7,/} is the yaw rate. The longitudinal dynamics
is described by v, and the longitudinal traction force Fjopgq
and the disturbances Fy;g;, e.g. rolling resistance, air drag
etc.

139

The designed controlled system must perform the follow-
ing control performances

21 = Yref — Y, |21] — min, (11a)

29 = Uref — Ug, |z2| — min, (11b)

z3 =0, |z3| — min, (11¢)

24 :Eong7 |Z4| — min. (11d)

The performance vector is compressed as: 2z =

[21 22 23 24 The performances 2,2, can be
reformed using (6) as

21 = Yiy1,s T D1 — v, (12a)

22 = Vg,i+l,s + Al,2 — Vg, (12b)

in which y;41.s,v2,441,s and Ay 1,49 are measured dis-
turbances. There is an important difference between these
signals

e Yitl,s, Us,it1,s are generated by the safe trajectory
design method. Their characteristics (i.e. bounds, rates)
are determined by the optimization algorithm.

o Ay, are the result of various signals, such as the
machine learning algorithm, the safe trajectory design
algorithm and the selected values A; 1, A2 ;-

Since the sources of disturbances are different it is recom-
mended to handle them separately.
The measured signals of the systems are the tracking errors

(13a)
(13b)

Ym,1 = Yref — Y,
Ym,2 = Uref — Vg,
T .
where vy, = [ymvl ym_rg] vector contains the measured
signals.
The dynamic equations (10), the performance (11)-(12)
and the measurement equations (13) are transformed into a
LPV state-space representation

&= A(p)x + Byw + Bsu, (14a)
z = Cix + Dyiw + Disu, (14b)
Ym = Cox + Da1w (140)

where A(p), B1, Bs and C1, Cs, D11, D12, Doq are matrices.
[g'/ Y ’UI]T is the state vector, the disturbance
is w = [Fust Yitrs Vsists Aug Ayg]’ and the
control input vector is u = [4 Flong}T. p = v, is selected
as a scheduling variable of the LPV system.

The control design is based on a weighting strategy,
which is formulated through the closed-loop interconnec-
tion structure, see Figure 2. The interconnection structure
contains several weighting functions, whose roles are to
guarantee the trade-off between the performances and to
scale the signals. The weights W, 1, W), o are related to the
sensor characteristics on the lateral and the velocity error
measurements, where nj,ny represent noises. Wy, scales
the longitudinal disturbance force.

T



K(p)
1

Fig. 2. Closed-loop interconnection structure

The role of weights W, , W,  is to consider the dynamics
of the reference signals ;41 s, Vg, i+1,s. Similarly, W; 1, W o
scale the disturbances A; 1, A; 2. The weights are selected as

o Al,l,rn Wi o = Al,2,m
- 2 ) 1,2 — 2 )
Tios2 +Tiis+1 To9s? +To1s+1
(15

Wi

)

where T ; are design parameters, which represent the dy-
namics of the signal. A;;,, are selected based on (8). The
selected forms guarantee that the values of the disturbances
are A;1,m, A2, in steady state.

W,1,W, 2 and W, 3, W, 4 are the weights for the perfor-
mances, which represent the minimization of them. Weights
W 1, W 2 have important role from the aspect of the overall
performance of the overtaking control, because they scale the
tracking errors ey, e, (8). The forms of the weights are

Sy
Tios+1 ’

€y

W.,1= —_—
1 Ts0s + 1’

2= (16)
where T1,T50 are design parameters and e,,e, are the
expected tracking errors. The selected forms guarantee that
the tracking errors are e,, e, in steady state.

The design of the control is based on robust LPV method
[21]. The problem is set up by gridding the parameter space
and solving the set of LMIs that hold on the subset of Fp.
The induced Lo norm of parameter-dependent stable LPV
systems with zero initial conditions is defined as

121l

: (17)
[[wll,

inf sup sup
K 0eFp ||lw|l,#0,weLs

The result of the optimization are the LPV controller Kp,
which which steering angle § and the longitudinal force
Flong are computed.

Finally, Figure 3 shows the architecture of the entire
control system, which is incorporated in the robust LPV
controller and the generation blocks of the learning and
safe reference signals. The role of the measured disturbance
generator is to perform the computations (5)-(7).
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robust LPV
controller

road & traffic
information

Fig. 3. Architecture of the entire control system

V. SIMULATION RESULTS

The effectiveness of the proposed method is illustrated
through simulation examples, in which the CarMaker vehicle
dynamic software is used. In the scenario the machine-
learning-based algorithm designs a trajectory of the vehicle,
which is not safe enough and the vehicle may lease the road.
This results in a scenario, which has been rare in the training
set and thus, the machine-learning-based algorithm has a
low performance. Nevertheless, the proposed robust control
algorithm is able to guarantee the safety of the vehicle owing
to the modification of the trajectory.

In the example the performance is guaranteed based on the
inequality (8). The required safe distance is s4,fe = 0.5m.
The width of the vehicle is H = 2m. In the design of the
LPV control e, = 0.005m and e, = 0.05m/s tracking
errors are selected. Since T 0.05s sampling time is
selected, the lateral error from the velocity tracking error
is ey, = €,7/2 = 0.05 = 0.00125m. It means that the
selection of d = 2.1m and A;1,, = 0.5m guarantees the
required performance, such as

2.1m — 0.5m — 0.005m — 0.00125m — 1m =
= 0.59375m > 0.5m.

The trajectory and velocity profile results are presented
in Figure 4. They show that the motion of the vehicle is
smooth and the maximum velocity regulation is kept through
the tracking of the safe velocity profile generation.

Lateral position (m)

50 100 150 200

Longitudinal position (m)

250
Time (s)

(a) Lateral position (b) Velocity signals

Fig. 4. Motion of the vehicle

Figure 5 compares results of the learning and the safe
trajectories at three periods of the overtaking manoeuvre. The
results show that y; 1 ; can lead to the departure of the road,
which is avoided through the proposed method. Moreover, in
the second segment the safe distance between the vehicles is
preserved, see after 8.8 s. As a result, the reference trajectory
is inside of the safe trajectory during the entire scenario. It
guarantees the most important performance of the overtaking
strategy.
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Finally, the control inputs of the system are illustrated
in Figure 6, which are actuated on the vehicle. Through
the steering angle (Figure 6(a)) and Fj,,, (Figure 6(b))
the tracking of the reference trajectory (Figure 5) and the
velocity (Figure 4(b)) are successfully performed.

Steering angle (rad)

5 10
Times (s)

15 0 5
Time (s)

10 15

(a) Steering angle ¢ (b) Longitudinal force Fjong

Fig. 6. Control interventions

VI. CONCLUSIONS

The paper has proposed a design architecture for machine-
learning-based trajectory design methods, with which the
avoidance of collisions with the surrounding vehicles during
the overtaking strategy can be guaranteed. During the simu-
lation examples the effectiveness of the method is illustrated
as follows. The proposed neural-network-based trajectory
design method has been able to provide an appropriate trajec-
tory. However, it has also been presented that in some special
scenarios the generated trajectory may cause hazardous sit-
uations. Using the proposed robust design framework it has
been possible to avoid these situations: the trajectory has
been limited to vary in a neighbourhood of a safe trajectory.
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The neighbourhood has been represented by the domain of
a known disturbance, which has been incorporated in the
robust control framework. The result of the paper has been a
control design method which satisfies the safety requirements
of overtaking manoeuvres.
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