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Abstract— The paper presents a new big data based control
design for autonomous vehicles. The main contribution of this
work is the longitudinal velocity optimization process, which
is based on the approximation of the reachability sets of
a passenger vehicle by using a machine-learning approach.
The data, which is used for the approximation, is provided
by the high-fidelity car simulation software, CarSim. The
approximation is performed by applying a well-known decision
tree algorithm, C4.5. The reachability sets are computed for
different longitudinal velocities. Moreover, a LPV technique
based lateral control design is proposed, which is used to
guarantee the trajectory tracking of the vehicle. To enhance the
capability of the LPV controller, the control scheme is extended
with the longitudinal velocity optimization process. Thus, the
stable and safe motion of the vehicle is guaranteed.

I. INTRODUCTION AND MOTIVATION

The development of the autonomous vehicles has brought
new challenges for the whole automotive industry and the
control engineers. The automated vehicles requires more
accurate sensors, decision making algorithms and advanced
control solutions. Since the dynamics of the vehicle is
highly nonlinear and cannot be modeled accurately due to
the uncertainties, the conventional control methods cannot
provide robust and reliable solutions for this problem. In the
recent years, the new artificial intelligence (AI) based and
other traditional machine learning (or big data) methods have
become popular among control engineers. They can be used
for a variety of problems including: state estimation, object
recognition and even for control problems, such as tracking
of a predefined signal, see e.g., [1], [2], [3]. Most of the
machine learning and artificial intelligence methods require a
lot of data for teaching their models. Fortunately, the modern
vehicles are getting equipped with more and more sensors,
which measure a lot of information about the car. From the
measurements of the individual vehicles, gigantic databases
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can be created. These databases can provide good bases for
machine learning algorithms and big data analyses, see [4].

Several papers utilize these huge amount of information.
For example in [5], a pace regression based solution can
found for the estimation of the side-slip angle of the vehicle.
Another example is given in [6], which describes a machine
learning algorithm based method for the determination of
the road surface. The machine learning methods can also
be used for computing the reachability sets of the vehicle,
see [7]. Furthermore, [8] presents an MPC (Model Predic-
tive Control) scheme, which is extended with the result
of the big data analysis. This paper presents a method to
determine the reachability sets of the vehicle, which are
used in the computation of the optimal longitudinal velocity
profile. Furthermore, a Linear Parameter Varying (LPV)
based lateral control design is proposed for autonomous
vehicles. The control structure is extended with a velocity
profile optimization process, which can guarantee the safe
and stable motion of the vehicle. The velocity optimization
process utilizes the reachability sets of the vehicle, which
are determined by using a machine learning method, more
precisely the decision tree algorithm, called C4.5. The paper
describes the acquisition of the data, which is the basis of
the determination of the reachability sets. Furthermore, the
prepocess steps of the acquired data are also presented. The
main contributions of the paper are the LPV-based lateral
control design and the longitudinal velocity optimization
algorithm.
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Fig. 1. Scheme of the proposed control structure

The structure of the proposed autonomous vehicle control
solution is illustrated in Figure 1. As a first step, the
collection of the dataset must be done. Then, the collected
raw data has to be prepared for the further data analysis steps.
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The prepared dataset is used for computing the reachability
sets of the vehicle, which will serve as the basis of the
velocity optimization algorithm. The block ’LPV steering
control’ represents the design of a lateral tracking control
algorithm, which is based on the LPV framework. Whilst,
the ’Longitudinal controller’ is responsible for guaranteeing
the realization of the computed optimal velocity profile. The
longitudinal controller is based on a simple PID structure,
therefore it’s not detailed in this paper.

The remainder of the paper is structured as follows.
Section II presents the data acquisition, the preprocess of
the data and the computation of the reachability sets. The
next section details the LPV-based lateral control design and
the longitudinal velocity optimization process. Finally, the
last section shows a comprehensive simulation to show the
operation and effectiveness of the proposed control scheme.

II. BIG DATA ANALYSIS ON LATERAL DYNAMICS

In this section, the determination of the reachability sets
of the vehicle is presented by using a machine learning
approach. For the computation of the reachability sets a well-
known decision tree algorithm is applied, which is called
C4.5. Furthermore, the acquisition of the datasets and the
prepocess of the raw data are also detailed in this section.

Acquisition of dataset

The first step of any data-based analysis is the acquisition
of the appropriate dataset. In this research, the dataset is
provided by the high fidelity simulation software, CarSim.
In the simulations the test vehicle has been controlled by
the CarSim’s built-in driver model. Several simulations have
been conducted using different parameter sets. During the
simulations the following parameters have been changed:
longitudinal velocity, adhesion coefficient, simulation track.
From the simulations, only those variables/measurements
have been save, which could be measured in all modern cars,
such as:
• Longitudinal velocity (vx)
• Yaw-rate (ψ̇)
• Accelerations (ax, ay)
• Wheel speeds (ωfl, ωfr, ωrl, ωrr)
• Side-slip angle (β) (for illustration purposes)
• Adhesion coefficient µ (Simulation parameter)

In this manner, more than 10 million instances have been
collected and saved.

Prepocessing of dataset

The measurements and other information, which are pro-
vided by car’s sensors, require some preprocess steps before
using them in any machine learning algorithms. These steps,
for example, includes the selection of the relevant signals
(variable). Since not all of the measured attributes must
be used (or necessary) for a given machine learning based
problem, the selection of the most significant ones is a crucial
step. Another problem is the selection of the stable instances.
Since the reachability sets contain only the stable states of
a given system, an appropriate criterion must be found to

split the measured instances into stable and unstable groups.
In the literature, several criteria can be found that can give
information on the stability of the vehicle e.g. [9], [10].
Unfortunately, they do not fit for this classification problem.

Therefore, a new criterion is used, which is based on
the linearized one-track lateral model, see [11], [12], [13].
The basic idea behind this criterion is that the motion of
the vehicle is considered to be stable, when its dynamical
behavior is close to the linear region. Thus, the criterion is
formed as the deviation of the actual vehicle motion and the
linear model, which can be expressed as:

−ε1 <
|1 + α1|

|1 + δ − β − l1ψ̇
vx
|
− 1 ≤ ε1, (1)

where α1 is the averaged side-slip angle of the front wheels,
δ is the averaged steering angle of the front wheels, β denotes
the side-slip angle of the CoG of the vehicle, ψ̇ represents the
yaw-rate of the vehicle, l1 is the distance between the front
axis and the CoG and vx is the longitudinal velocity of the
vehicle. Moreover, ε1 is an experimentally defined parameter.
An instance is considered to be stable, if it satisfies the
inequality (1), while in the other case, it said to be unstable.

Approximation of the reachability sets

As mentioned earlier, the so-called C4.5. decision tree
algorithm is used to determine the reachability sets of the
vehicle. In this subsection a brief introduction is given to
this method, see [14], [15]. The result of the algorithm is a
decision tree, which can determine that whether an instance
belongs to the group, which contains the stable instances, or
not. A decision tree has three main components:

1) Nodes: They represents a condition e.g.: the value of
an variable is bigger or smaller than a given value. The
outcome of a node can lead to another node or to a
leaf.

2) Branches: The nodes and the leaves are connected by
branches. A branch connects the outcome of a node to
another node or to a leaf.

3) Leaves: Finally, the leaves determine the class of the
instances. In this case, the leaves separate the instances
into stable and unstable groups.

The C4.5 algorithm was developed by R. Quinlan in 1993,
detailed descriptions can be found in [15] and [16]. The de-
cision tree algorithm C4.5 uses the metric called information
gain to optimize the generated decision tree. Furthermore, a
crucial parameter of the algorithm is the ’number of minimal
objects per leaf’. This parameter influences the size of the
generated tree. If the value of this parameter is set to a
small number, in general, the resulted tree consists of a huge
number of nodes and leaves. In the other case, the number
of the components can be reduced by setting this parameter
to a small value. Therefore, the size of the decision tree can
be controlled by this parameter, which is especially useful
when the decision trees are used in any control system.

The results of the decision tree are illustrated in Figures
2. Only the instances, which are classified as stable by the
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decision tree, are depicted. Moreover, in the figures the stable
instances are approximated by a convex hull, which is a
conservative inner approximation of the reachability sets. As
the figures shows the reachability sets, which are illustrated
in the plane of ψ̇ (yaw-rate) and β (side-slip angle) with
respect to the adhesion coefficient (µ) in the top figure and
to the longitudinal velocity (vx) in the second figure. It can
be observed that the shapes and the sizes of the reachability
sets can change along with the velocity and the adhesion
coefficient. This means that the intervention of the vehicle
must be fitted to the actual circumstances.
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Fig. 2. Illustration of the reachability set approximations

III. LPV-BASED VEHICLE CONTROL DESIGN AND
VELOCITY SELECTION STRATEGY

This section focuses on the lateral control design and
longitudinal velocity optimization for autonomous vehicles.
The main goal of these algorithms is to create an enhanced
control scheme, which is able to guarantee the safe and stable
motion of the vehicle. The lateral control design is based
on the LPV (Lateral Parameter Varying) approach, in which
the longitudinal velocity is used as a scheduling parameter.
Whilst, in the velocity optimization process, the presented
reachability sets are utilized to compute the optimal velocity
profile.

Design of lateral LPV control

In the lateral control design, the one-track lateral vehicle
model is used, whose detailed description can be found in

[11]. The model consists of the following three equations:

mvx(ψ̇ + β̇) = Fy(α1) + Fy(α2), (2)

Jψ̈ = Fy(α1)l1 − Fy(α2)l2, (3)

v̇y = vx(ψ̇ + β̇), (4)

where β denotes the side-slip angle of the vehicle, ψ̇
represents the yaw-rate of the vehicle, vx and vy are the
longitudinal and lateral velocities of the vehicle, l1, l2 are
the distances between the axes and CoG of the vehicle,
while m is the mass of the vehicle and J is the yaw inertia.
Furthermore, Fy denotes the lateral force of the tires, see
[17]. They depend the side slips of the tires (α1, α2). In this
case, this relationship is considered to be linear, therefore
it can be approximated as Fy = Cαi. C is the cornering
stiffness.

Using these equations, the following state-space represen-
tation can be derived:

ẋ = A(ρ1)x+B(ρ1)u, (5)

whose state-vector consists of x =
[
ψ̇ β vy y

]T
, the

actuation is u = δ and ρ1 = vx is the scheduling variable.
Moreover, A(ρ1), B(ρ1) are matrices of system (5). The
lateral control design has two main goals: 1./ To ensure the
safe and the stable trajectory tracking of the vehicle, 2./ To
minimize the actuation of the system. These goals form the
following performances:
• Minimization of the lateral error:

One of the main goals of the controller is to guarantee
the trajectory tracking of the vehicle, which means that
the controller must minimize the error between the
actual lateral position (y) and reference signal (yref ):

z1 = yref − y, |z1| → min. (6)

• Minimization of the actuation:
The mentioned trajectory tracking must be reached by
using minimal energy (intervention):

z2 = δ, |z2| → min. (7)

These performances are summed up by the performance vec-
tor: z =

[
z1 z2

]T
, which forms the performance equation:

z = C1x+D11r +D12u, (8)

where C1, D11, D12 are matrices and r contains the reference
signal yref .

The LPV-based control design aims to find a controller that
can ensure the balance between the presented performances
and the external noises. The optimal balance between the
performances can be reached by using scaling or weight-
ing functions. The structure of the closed-loop system is
illustrated in Figure 3. As it can be seen, several weighting
functions are used to guarantee the predefined performances
of the system. The goal of Wref,1 is to weight the reference
signal in such a manner to ensure the smooth tracking.
Wz1 represents the weight of the first performance, which
means it is responsible for the tracking of the lateral position.

2252



The weighting function Wz2 is to minimize the intervention
(steering angle) of the system. Finally, Wω,1 attenuates the
external noise on the measured signal.
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Fig. 3. Closed-loop interconnection structure

The quadratic LPV performance problem is to choose the
parameter-varying controller K(ρ1) in such a way that the
resulting closed-loop system is quadratically stable and the
induced L2 norm from the disturbance and the performances
is less than the value γ. The minimization task is the
following:

inf
K(ρ1)

sup
ρ1,∈Fρ

sup
‖w‖2 6=0,w∈L2

‖z‖2
‖w‖2

, (9)

where Fρ bounds the scheduling variables. The optimization
problem is solved by using the LPVTools in MATLAB
environment, see [18]. The yielded controller K(ρ1) is
formed as

ẋK = AK(ρ1)xK +BK(ρ1)yK , (10)
u = CK(ρ1)xK +DK(ρ1)yK , (11)

where xK is the state vector of the dynamic controller,
AK , BK , CK , DK are ρ1 dependent matrices. yK is the
vector of the lateral error and yaw-rate error measurements,
which is formed as

yK = C2x+D21r, (12)

where C2, D21 are matrices.
The existence of a controller that solves the quadratic LPV

γ-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. The
constraints set by the LMIs are not finite. The infiniteness of
the constraints is relieved by a finite, sufficiently fine grid.
To specify the grid of the performance weights for the LPV
design the scheduling variables are defined through lookup-
tables, see [19], [20].

Design of the optimal velocity profile

The goal of the velocity profile optimization is to guaran-
tee the safe and stable motion of the vehicle. It means that
the state of the vehicle remain close to the linear region of
its dynamics. This condition can be ensured by keeping the
states of the vehicle inside the reachability sets. Of course,

the ultimate goal is to maximize the longitudinal velocity,
while keeping the states inside the reachability sets.

For guaranteeing this criterion, the prediction of the mo-
tion of the vehicle, especially the states ψ̇ (yaw rate) and
β (side-slip angle) must be computed. This can be made
by forming the closed-loop system using the nominal LPV
model (2) and the controller (10).

ẋcl = Acl(ρ1)xcl +Bcl(ρ1)r, (13)

where ẋcl =
[
ẋ ẋK

]T
and the components are

Acl(ρ1) =

[
Acl,11 Acl,12
Acl,21 Acl,22

]
, (14)

Bcl(ρ1) =

[
B(ρ1)DK(ρ1)D21

BK(ρ1)D21

]
. (15)

with the following matrices

Acl,11 = A(ρ1) +B(ρ1)DK(ρ1)C2,

Acl,12 = B(ρ1)CK(ρ1),

Acl,21 = BK(ρ1)C2,

Acl,22 = AK(ρ1),

In order to predict the motion of the vehicle, the presented
closed-loop system must be discretized using the sample time
T , detailed explanation can be found in [21]:

xcl(k + 1) = Acl(k)xcl(k) +Bcl(k)r(k), (16)
ycl(k) = Cclxcl(k), (17)

where Acl(k), Bcl(k) are used as compact notations of
Acl(ρ1(k)) and Bcl(ρ1(k)). Moreover, ycl(k) contains ψ̇ and
β, and Ccl is the corresponding matrix. The prediction of
ycl(k) can be computed on a n-steps long horizon as:

ycl(k, n) =


ycl(k + 1)
ycl(k + 2)

...
ycl(k + n)

 = A+ BR, (18)

where

A =


CclAcl(k)

CclAcl(k)Acl(k + 1)
...

Ccl
k+n∏
i=k

Acl(i)

xcl(k) (19)

B =


CclBcl(k) · · · 0

CclAcl(k)Bcl(k) · · · 0
...

. . .
...

Ccl
k+n−1∏
i=k

Acl(i)Bcl(k) · · · CclBcl(k)

 (20)

R =

r(k + 1)
...

r(k + n)

 . (21)
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Fig. 4. Michigan track

Using these notations, the optimization problem can
be formed. The main goal of the velocity profile de-
sign is to maximize the elements of the vector ρ =[
ρ1(k + 1) . . . ρ1(k + n)

]T
, which contains the reference

longitudinal velocity on the forthcoming road segments. Of
course, the elements of this vector have upper bounds, which
can be handled as constraints during the optimization process

ρ ≤ ρmax. (22)

ρmax contains the upper bounds of the longitudinal velocity
on the forthcoming road horizon. The stability of the vehicle
can be guaranteed by ensuring that the predicted states of
the vehicle ycl(k, n) remain inside the reachability sets,
presented in Section II. This criterion can be formed as:

ycl(k, n) ∈ R
(
ρ1(i)

)
, ∀k ≤ i ≤ n. (23)

Then, the final optimization task is:

max
ρ1(k+1)...ρ1(k+n)

ρ (24)

subject to the constraints (22), (23):

ρ ≤ ρmax (25)

ycl(k, n) ∈ R
(
ρ1(i)

)
, ∀k ≤ i ≤ n. (26)

The solution of the optimization is a vector, which contains
the optimized velocity profile for n steps ahead.

IV. SIMULATION EXAMPLES

In this section a comprehensive simulation examples is
presented to show the operation and the effectiveness of the
proposed control algorithm. The analysis has been performed
using the Weka data mining software [22], while the dataset
has been collected through the CarSim vehicle dynamic
simulator.

The vehicle, which is used in the simulation, a D-class
passenger car, whose mass is m = 2015kg. During the
simulation, the vehicle is driven along a segment of Michigan
Waterford Hills Road Racing track twice, see IV. In the first
run, the vehicle uses the optimized velocity profile, while
in the second simulation, the car uses the nominal velocity
profile.

The results of the simulations are illustrated in the follow-
ing figures. Figure 5 shows the lateral error for both cases. As
it can be seen the vehicle, which uses the original velocity
profile, leaves the road at 120m. At that station, a sharp
bend begins, which cannot be tracked by the vehicle with
the predefined velocity profile. In the first case, the car is
able to track the road at the sharp bend since the original
velocity profile is overwritten by the velocity optimization
process.
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Fig. 5. Lateral error of the vehicles on Waterford Hills track

The modified velocity profile is illustrated in Figure 6.
It can be seen that the algorithm reduces the longitudinal
velocity after 6s, which reflects on the mentioned sharp
bend.
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Fig. 6. Velocity profiles

The Figures 7 show the states of the vehicle in the plane
of ψ̇ (yaw-rate) and β (side-slip angle) for that case when
the modified velocity profile is used. As the figures indicate,
the states of the vehicle do not leave the stable region of
its states, therefore the stability of the vehicle is guaranteed
throughout the simulation. Furthermore, this is the reason
why the vehicle does not leave the road in the first case.

Finally, the Figure 8 shows the steering actuation in the
simulation. The steering angle is between [−4, 1deg], which
is a reasonable range for this system.

V. CONCLUSIONS

The paper has presented a LPV bases lateral control
design for autonomous vehicles. The control system has been
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extended with a longitudinal velocity profile optimization
process. This algorithm utilized the reachability sets of the
vehicle, which had been determined by using a decision
tree algorithm, called C4.5. Furthermore, a comprehensive
simulation example has been presented to show the operation
and the effectiveness of the proposed control algorithm. In
the simulations, two cases have been compared to each other.
In the first case, the vehicle has used the original velocity
profile, while in the second case the car has been driven
by the modified profile. It has been shown that without the
modified velocity the vehicle was not able to follow the
predefined path.
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