
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Allocating raw materials to competing projects
Peter Egri⁎, Tamás Kis
Institute for Computer Science and Control, Kende u. 13-17, 1111 Budapest, Hungary

A R T I C L E I N F O

Keywords:
Material allocation
Project scheduling
Mechanism design without money
Serial Dictatorship Mechanism

A B S T R A C T

This paper considers the problem of material allocation to competing self-interested agents. A novel resource
allocation model is presented and studied in a mechanism design setting without using money as incentive. The
novelties and specialties of our contribution include that the materials are supplied at different dates, the jobs
requiring them are related with precedence relations, and the utilities of the agents are based on the tardiness
values of their jobs. We modify a classical scheduling algorithm for implementing the Serial Dictatorship
Mechanism, which is then proven to be truthful and Pareto-optimal.

1. Introduction

Recently, there has been a growing interest in game theoretical
analysis in the supply chain management and scheduling research
communities. For large-scale manufacturing systems embedded in a
strategic setting, agents often possess private information, and since
they are self-interested, they intend to manipulate the outcome of the
system for their benefit. Allocation of multiple goods or resources is a
frequently studied optimization problem of this sort. When the protocol
controlling the system behavior includes monetary transfers, like in
case of supply chains, setting the payments appropriately can be used to
make manipulations ineffective (see e.g., Egri & Váncza, 2012). If such
transfers are not allowed, usually only dictatorial mechanisms can
prevent manipulations (see e.g., Abdulkadroğlu & Sönmez, 1998). In
this paper, we study this latter situation specialized for an industrial
project scheduling application. The novelties and specialties of our
contribution are: (i) the raw materials are supplied over the scheduling
time horizon at different dates, (ii) the jobs requiring the materials are
related with precedence relations, and (iii) the utilities of the agents are
not arbitrary, but based on the tardiness values of their jobs.

More specifically, we consider a project scheduling problem with non-
renewable (consumable) resource constraints, where each project is owned
by a self-interested agent. The projects consist of jobs that compete for
commonly used resources (materials). In this paper we consider only raw
materials, but other non-renewable resources are also conceivable, such as
energy and money (Gafarov, Lazarev, & Werner, 2011; Grigoriev,
Holthuijsen, & van de Klundert, 2005). Even computational re-
sources—such as CPU, memory and network bandwidth—are frequently
modeled as consumable resources in cloud infrastructures (see e.g., Kash,
Procaccia, & Shah, 2014). The materials are consumed by the jobs and

they have an initial stock which is replenished over time at given dates and
in known quantities. The jobs have to be executed while meeting pre-
cedence and resource constraints. That is, each job may have some pre-
decessors, all of which have to be completed prior to starting the job, and
it may require some materials which have to be on stock when starting the
job. Once the job is started, the stock levels of the respective resources are
decreased by the required quantities. The stock levels can never be ne-
gative, so if the initial stock of some resource is not enough to complete all
the jobs, some of them have to be delayed in order to meet the resource
constraints. Each project has a due date, and if it is completed afterwards, it
will be tardy. A schedule specifies the start time of each job, and it is feasible
if all the precedence and resource constraints are satisfied, see Fig. 1 for an
illustration. The figure depicts a schedule (on top) and the corresponding
resource consumption (on the bottom). The schedule of the jobs is re-
presented by dark rectangles where their left and right ends correspond to
the start and end times. For the sake of intelligibility, the jobs of the
projects are separated vertically, and different light rectangles contain the
jobs of different projects. The thin arrows indicate the precedence relations
between the jobs (in a feasible schedule the arrows always point to the
right), while the thin vertical lines show the times of supply. Thick vertical
lines mark the due dates of the projects, and to the right of these lines, the
background is diagonally hatched in order to indicate that any job in this
area is tardy. Thick, two-ended arrows denote the tardiness of the projects
(if exist). In addition, Fig. 1 shows the cumulative demand of a resource
implied by the schedule as well as its supply.

Throughout the paper we assume that the total supply from each
resource equals the total demand in order to guarantee the existence of
feasible schedules. Since the materials are replenished over time, it is
not obvious when to start the jobs when some optimization criteria are
involved. In the basic problem (where all data is publicly known, and
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there are no selfish agents) a feasible schedule is sought in which the
maximal tardiness among the projects is as small as possible. This
problem can be efficiently solved optimally by the method of Carlier
et al. (Apr. 1982).

In a multi-agent environment, projects are owned by self-interested
rational agents which act autonomously to achieve their own goals. The
due date of a project is only known by the corresponding agent. Further
on, there is a central inventory, which allocates the materials to the jobs
of the projects over time. However, there is also a conflict of interests:
while the central inventory still aims at minimizing the maximum tar-
diness over all projects1, each agent is interested in minimizing only its
own tardiness. Therefore, the agents are competing for the resources,
and they are inclined to be untruthful about their due dates in hope of
achieving a more advantageous resource allocation for themselves. It is
the central inventory, who can inspire the agents to tell their true due
dates by using a truthful allocation mechanism, which ensures that re-
porting the true due dates yields the best outcome for each agent.

Main results of this paper. We investigate truthful mechanisms
without payments for the above project scheduling problem. We will
show that there exists no truthful mechanism that always finds an op-
timal2 solution. After this, we describe the Serial Dictatorship Mechanism
(SDM), which is truthful, and always finds a Pareto-optimal solution.
Our SDM is based on the polynomial time procedure of Carlier et al.
(Apr. 1982) for solving the project scheduling problem (without
agents). We will investigate the properties of the SDM, and among
others, we will show that it is not able to find all Pareto-optimal solu-
tions for the problem. We will also summarize computational results.
Further on, we define a randomized SDM which can find any Pareto-
optimal solution with positive probability.

The motivation for this research comes from real world industrial
production environments, where project leaders (the agents in the
model) want to reserve the necessary resources greedily, in many cases
too early, and in larger than necessary quantities, in order to finish their
projects on time. Practical approaches, like prioritizing the most im-
portant products or customers, can help to alleviate the problem, but
cannot guarantee any optimality criteria. This situation also resembles
the coordination problem in supply chains, but a crucial difference is
that in the latter appropriate payments can ensure truthfulness (see e.g.,
Egri & Váncza, 2013).

The paper is organized as follows. In Section 3, we review the classical
scheduling model and its solution that will be the basis of the resource
allocation problem. In Section 4, the mechanism design model is

introduced, the impossibility of truthful and optimal mechanisms is
proven, then the SDM for this problem is described and analyzed. Next, we
present a randomized version of the SDM in Section 6. Finally, in Section
7, we conclude the results and mention some future research directions.

2. Literature review

Planning assembly operations including precedence constraints and
material supply is a relevant and frequently studied problem in production
systems (see e.g., Györgyi & Kis, 2018; Leyman & Vanhoucke, 2016;
Nudtasomboon & Randhawa, 1997). Most of these studies, like traditional
optimization problems, usually assume a central decision maker and do
not consider the conflict of interests. The most natural situation where
multiple non-cooperative parties are involved occurs in supply chain in-
ventory control problems (see e.g., Aminzadegan, Tamannaei, & Rasti-
Barzoki, 2019; Wang, Guo, &Wang, 2017). However, the game theoretical
analysis and design is not limited to supply chains. Scheduling problems
involving self-interested agents were already studied in the seminal work
on algorithmic mechanism design (Nisan & Ronen, 2001), and even earlier
(e.g., Váncza & Márkus, 2000). Since then, several authors have combined
scheduling and mechanism design (e.g. Christodoulou & Koutsoupias,
2009; Heydenreich, Müller, & Uetz, 2007), but most scheduling papers
consider renewable resources—such as machines—as agents. A large
number of mechanisms involve payments for incentivizing the agents in
scheduling or allocation settings (e.g., Chen et al., May 2016; Krysta,
Telelis, & Ventre, 2015; Robu et al., Oct. 2013). Recently, mechanisms
without money are also studied for scheduling problems (Giannakopoulos,
Koutsoupias, & Kyropoulou, 2016), but to the best of our knowledge,
scheduling mechanisms with non-renewable resources and without pay-
ments are not yet investigated.

Our resource allocation problem is related to one-sided matching pro-
blems without money, such as house allocation and course allocation (see
e.g., Manlove, 2013). These models consist of two different sets of objects,
where the elements of one set (called applicants) have privately known
preference orderings over the elements of the other set (Kurata, Hamada,
Iwasaki, & Yokoo, 2017). This is in contrast with two-sided matching
problems, where the elements of both sets have preferences over the ele-
ments of the other set. The goal of the mechanism design for these pro-
blems is to give a matching between the two sets that satisfy certain
properties, such as truthfulness and stability (e.g., Pareto-optimality)3.

For these matching problems, a frequently used mechanism is the
Serial Dictatorship Mechanism (SDM), which, in several cases, is the
only mechanism satisfying the required properties, and furthermore, it
is straightforward to implement (e.g., Abizada & Chen, 2016; Aziz &
Mestre, 2014). An SDM considers a—random or pre-existing—priority
ordering of the applicants and works as follows. First, it determines the
set of optimal allocations with regard to the preferences of the applicant
with the highest priority. Then in each consecutive step, it takes the set
from the previous step, and determines a subset of the best allocations
considering the preferences of the next applicant. After the last appli-
cant, it yields an allocation from the final set. Note that if the pre-
ferences always imply a unique preferred allocation, then only the
preferences of the applicant with the highest priority (the dictator)
matters, which is the classical dictatorship.

The house allocation problem is the one-to-one version of one-sided
matching, where each applicant can be paired with at most one house,
and conversely, each house can be assigned to at most one applicant.
For this problem the SDM is truthful, and in addition, it can generate
every Pareto-optimal matching—with different priority orderings—,
and it is the only Pareto-optimal mechanism (Abdulkadroğlu & Sönmez,
1998).

Dughmi and Ghosh (2010) study a one-sided, one-to-many General
Assignment Problem (GAP) without money, and some of its special

Fig. 1. A sample schedule with 3 projects and a single resource.

1 In the mechanism design literature this is referred to as egalitarian social
welfare, which is considered to be more fair than minimizing the total tardiness,
the utilitarian social welfare (see e.g., Rothe, 2015). However, most of the results
presented in this paper remains valid when this latter objective is considered
instead (see remarks).
2 Throughout the paper we refer to optimality with respect to the objective of

the central inventory. 3 These properties will be formally defined in Section 4.
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cases. In their model, job agents should be matched with capacitated
machines. The problem is formulated as an integer program, and by
relaxing the integrality constraints, an LP-based technique is shown to
provide truthful approximate mechanisms.

The many-to-many extension of one-sided matching is the course
allocation problem, where both the applicants and the courses have
quotas for their connections. The SDM can generate every Pareto-op-
timal matching, however, it is truthful only in special cases (Cechlárová
et al., 2016; Cechlárová & Fleiner, 2017). Kash et al. (2014) present a
dynamic version of the matching problem, where the agents are not
present simultaneously, but can arrive any time, and their demands are
not known in advance. They regard renewable computational resources
(such as CPU and memory), but they consider them consumable, i.e.,
once allocated, it is irrevocable, thus they are actually non-renewable.

Our resource allocation model is different from the above men-
tioned matching problems in several aspects. First of all, the preferences
are not ordinal but cardinal, and not arbitrary: there is a scheduling
problem in the background with a predefined structure that influences
the preferences. For example, having a resource earlier is (weakly)
preferred compared to having it later—if the goal is to minimize the
tardiness. The matching also cannot be arbitrary, each job should be
matched exactly with the required resources, only the timing can vary.
Furthermore, contrary to the house and course allocation problems, the
incoming batches of resources are divisible: they can be shared among
several jobs. However, since satisfying only a part of the resource re-
quirements has no value for the jobs, the problem resembles more to the
matching than the cake-cutting models (see e.g., Brandt, Conitzer,
Endriss, Lang, & Procaccia, 2016; Rothe, 2015).

Finally, we mention that if, in addition to non-renewable resources,
the processing of jobs also require some renewable resources, such as
machines, then quite a few results are known. Carlier (1984) was the
first who studies machine scheduling problems with non-renewable
resources, and further complexity results can be found in e.g., Grigoriev
et al. (2005), Gafarov et al. (2011). The approximability of machine
scheduling problems is thoroughly studied for the makespan objective
in single as well as parallel machine environments by Györgyi and Kis
(2015, 2015, 2017), for the maximum lateness objective by Györgyi
and Kis (2017), and for the total weighted completion time objective by
Kis (2015) and Györgyi and Kis (2019).

3. The scheduling model

3.1. The project scheduling problem with non-renewable resources

Let us consider a set of projects P. Each project p P has a due date
dp and a set of jobs Jp. Each job j Jp has a processing time tj. We
assume that the Jp are disjoint and let J denote the union of all the Jp,
containing altogether n jobs. Each project has a set of precedence re-
lations ×A J Jp p p, and if j k A( , ) p then job j must be finished before
job k starts. We assume that the precedence relations induce a directed
acyclic graph.

There is a set of non-renewable resources R, where each R has
an initial supply of b ,1 at time =u 01 , and additional supplies of b at
times u for = … q2, , , where we assume that < < … <u u uq1 2 . Each
job j requires a quantity of a 0j of resource R at its start.

We assume that for each resource R the demand does not ex-
ceed the supply, i.e., =a bj J j

q
1 , otherwise the scheduling

problem has no solution. For simplicity, we assume equality without
loss of generality.

Let I denote an instance of the scheduling problem defined by the
above introduced parameters.

Let µ j denote the quantity of resource allocated to job j at time
u . We call =µ µ{ }j an allocation of the supplied resources to the jobs,
if for each resource and time u the supply b is divided among the
jobs: =µ bj J j . We call an allocation feasible, if every job j has

enough resources allocated, i.e., =R a µ: j
q

j1 .4 Hencefor-
ward we consider only feasible allocations and refer to them simply as
allocations.

A schedule s is a function mapping each job j to its start time sj,
along with an allocation µ. In order to have the schedule uniquely
determined by an allocation, we assume that each job starts as early as
possible, i.e., when (i) all the required resources are allocated to it, and
(ii) every one of its predecessors defined by the precedence constraints
are finished. Let us denote therefore the start time of job j Jp w.r.t.
allocation µ by

=s s µ a k j A e smin 0| : and ( , ) : ,j
µ

u s
j j p k

µ( ) ( )

(1)

where ek
µ( ) denotes the finish time of job = +k e s t: k

µ
k

µ
k

( ) ( ) .
Finally, let Tp

µ( ) denote the tardiness of project p as the non-negative
difference between its due date and the maximal finish time of its jobs:

=T e dmax{max , 0}.p
µ

j J
j
µ

p
( ) ( )

p (2)

If allocation µ determines a schedule s, then the tardiness of the sche-
dule is the maximal tardiness of the projects, i.e., =T Tmaxs p P p

µ( ).

3.2. The Carlier–Rinnooy Kan algorithm

Carlier et al. (Apr. 1982) gave a polynomial time algorithm for
solving the above defined problem. We briefly recapitulate the main
ideas of their solution here, since we are going to use a modified version
of it in the SDM. Let us consider the graph defined by the jobs as nodes
and precedence relations as edges, where the weight of edge j k( , ) is tj.
LetU j( ) denote the set of all (direct or indirect) successors of job j, and
Wjk the weight of the maximal path length between jobs j and k U j( ).
For each project p, we define the cost function for each job j Jp as

=f t t d( ) max{ , 0}j p , i.e., the tardiness of the job j finishing at time t,
with regard to the project’s due date. In addition, let = =B u b( ) 1 ,
the cumulative supply of resource until time u .

Then one can define a lower bound on the maximal tardiness in case
job j starts at time u :

= + + +f u t f u t W k U jmax{ ( ), max{ ( ) | ( ) }}.j j j k k jk (3)

The algorithm seeks the smallest (denoting the maximal tardiness),
such that <a B u, : { | } ( )j J j j 1 , where =B u( ) 00 (see
A). For a fixed the smallest can be found with a median search
procedure, and the optimal = max , for more details, see Carlier
et al. (Apr. 1982).

Having the , the allocation µ can be computed by Algorithm 1.

Algorithm 1. Computing the allocation

Require
for = 2 to q do
{Allocate resources to jobs that would be late starting at u }
for >j: j j1 do
Allocate the necessary resources to job j arbitrarily from the resources arriving

earlier than time u and not yet allocated. (Due to the construction of , there
always exist enough free resources.)
end for

end for
for j: qj do
Allocate the necessary resources to job j arbitrarily from the resources not yet-
allocated.

end for

4 Since we assumed that the total supply equals the total demand of the re-
sources, it is easy to see that equality holds in the definition of feasibility.
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3.3. An example

In order to demonstrate the algorithm, let us consider a simple ex-
ample with only one resource, two projects, four jobs and two supply
times. Each job j ( j1 4) has equal processing times =t 1j and re-
quires one unit of the resource: =a 1j , where we have omitted the index
for the single resource. The precedences of the projects are as follows:
j j A( , ) p1 2 1 and j j A( , ) p3 4 2, while their due dates are =d 2p
( p1 2). There are two supply times, =u 01 and =u 22 , both with
two units of supplied materials: =b 2 (1 2)—again with omitted
index for the resource. The resulted j values are shown in Table 1.

Then the algorithm will compute = 01 and = 12 , from which
= 1, i.e., the optimal schedule will result in one time unit tardiness.

This schedule is when jobs j1 and j3 receive their required resources and
start at time u1, while the rest at time u2.

4. Mechanism design for project scheduling

In the mechanism design problem we consider project agents with
their due dates as private information. All other information is assumed
to be public knowledge.5 We examine the problem of a central in-
ventory, which has to allocate the resources supplied over time to the
jobs.

We seek a direct revelation mechanism that consists of two steps: (i)
collecting due date information from the projects, and (ii) allocating
resources to the jobs. Since the project agents are interested in their
own tardiness, they might report false due dates to the central inventory
in order to influence the allocation to their advantage. We refer to the
reported due dates as dp . For practical reasons, we restrict our study to
mechanisms without money, i.e., it is not allowed to offer resources at
different prices based on their arrival time.

Definition 1 (Mechanism). Let I denote a scheduling problem instance.
A deterministic resource allocation mechanism is a function mapping
the problem instance to an allocation: =I µ( ) .

Definition 2 (Preference). Project p prefers allocation µ to µ (µ µp ), if
<T Tp

µ
p

µ( ) ( ), and weakly prefers µ to µ (µ µp ), if T Tp
µ

p
µ( ) ( ).

An important property of a mechanism is truthfulness, when the
agents cannot decrease their resulted tardiness by misreporting the due
dates.

Definition 3 (Truthfulness). Let I denote an arbitrary scheduling
problem instance and I p the same problem, but with due date dp of
project p instead of dp. A mechanism is truthful, if for each instance I,
project p, and due date d I I: ( ) ( )p p p .

Note that the definition uses weak preference, thus reporting a false
due date does not necessarily worsen the tardiness of a project.
Requiring strict preference would be problematic for the existence of
truthful mechanisms. For example, if a project has an appropriately late
due date, any feasible allocation results in no tardiness for that project,

thus reporting any due date results in the same zero tardiness for the
agent. However, we assume benevolent agents henceforward, i.e., they
report truthfully, if they cannot decrease their tardiness by mis-
reporting.

Definition 4 (Optimality). We consider an allocation µ optimal for a
scheduling problem instance, if µ determines a schedule that minimizes
the maximal tardiness of the projects with respect to the true due dates
dp.

Note that an optimal allocation µ may not be optimal for the re-
ported due dates d p.

Since it is often impossible to guarantee an optimal solution, fre-
quently weaker criteria are considered instead. A widely used property
for characterizing an acceptable solution is the Pareto-optimality, when
the resulted allocation cannot be improved for any agent without da-
maging the others.

Definition 5 (Pareto-optimality). An allocation µ Pareto-dominates µ , if
p µ µ: p and p µ µ: p . An allocation µ is Pareto-optimal, if no other

allocation Pareto-dominates it. A mechanism is Pareto-optimal, if for all
inputs it yields a Pareto-optimal allocation.

Note that in case of maximal tardiness minimization, not every
optimal allocation is Pareto-optimal. However, if an allocation µ Pareto-
dominates µ , then the maximal tardiness implied of µ cannot be greater
than that of µ . This property guarantees that there is at least one op-
timal allocation among the Pareto-optimal ones.

4.1. Impossibility of truthful and optimal mechanisms

Firstly, it is obvious that if a mechanism is not truthful—hence it
does not always receive the real due dates of the projects—then it is
impossible to guarantee the optimality of the solution. Therefore, we
restrict our investigation to truthful mechanisms in the sequel. The first
fundamental question is whether there exists a truthful mechanism that
can always find an optimal solution. The next proposition shows that
unfortunately this is not the case.

Proposition 1. If a mechanism is truthful, it cannot determine an optimal
solution for all scheduling problem instances.

Proof. The mechanism is assumed to be truthful, therefore it is
informed about the real due dates. In this setting two different
scheduling problems are considered. In addition, the optimality of the
mechanism is also assumed, thus it results in the optimal schedule for
both problems. It is then shown that these two assumptions contradict
each other, therefore no mechanism can be truthful and optimal at the
same time.

By contradiction, suppose we have a mechanism that is truthful, and
on all inputs returns an optimal solution to the scheduling problem.
Now we examine how it works on the following problem instance I.
There are only two projects, p1 and p2, consisting of one job each, j1 and
j2, respectively, and a single resource with an initial supply of =b 11
at =u 01 , and a second supply of =b 12 at =u 42 . The two jobs are
identical, i.e., = =t t 3j j1 2 , and = =a a 1j j1 2 , but project p1 has a due-
date of =d 4p1 , and project p2 has a due-date of =d 5p2 . Notice that in
any feasible schedule at most one job may start at =u 01 , the other must
wait for the second supply at u2. Since the mechanism is truthful, both
projects report their true due dates. Then the mechanism must find the
unique optimum in which j1 starts at u1, and j2 starts at u2. The tardiness
of p1 is then 0, and that of p2 is 2 time units. This is depicted in Fig. 2a.

Now consider the problem instance I which differs from I only in
the due date of p2, which is =d 2p2 . Then the mechanism must return
the unique optimum for this instance, in which job j1 starts at u2, and
job j2 starts at u1, giving a tardiness of 3 for project p1, and 1 for project
p2, see Fig. 2b.

Considering again the problem instance I, this latter schedule—-
which is also feasible, but not optimal for instance I—results in 0

Table 1
The j values for the example

j

1 2 3 4

1 0 0 0 0
2 2 1 2 1

5 This restriction is not necessary, only assumed for keeping the model simple.
The set of private information can be extended to every parameter related to the
projects. In this case, one does not have to use a direct mechanism—i.e., where
the agents should report the full private information—only the a j and j values
are required by the mechanism.
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tardiness for project p2, thus I I( ) ( )p2 . This means that even in case
of instance I, project p2 would be better off reporting the due dates of
instance I , which contradicts the assumption of truthfulness of the
mechanism. Assuming both truthfulness and optimality has led to a
contradiction, therefore both of them cannot be true at the same
time. □

Note that the claim of the proposition remains valid if we change
the optimality criterion to the total tardiness instead of the maximal
tardiness.

Corollary 1. The naï ve mechanism in which the central inventory
computes an optimal allocation with the Carlier–Rinnooy Kan
algorithm is not truthful.

This corollary means that if the central inventory uses the naï ve
mechanism, it is beneficial for the projects to report an earlier due date
than the true one. This corresponds to the industrial practice where
everyone requests the resources as soon as possible.

4.2. Serial Dictatorship Mechanism

Instead of minimizing the maximal tardiness as the naï ve me-
chanism does, the well-known SDM considers a multi-objective opti-
mization problem. The basic idea is having the agents fixed in some
priority ordering, and the set of possible outcomes are restricted
iteratively according to the preferences of the agents, respecting the
ordering. That is, the mechanism chooses from the set of all schedules a
subset minimizing the tardiness of the agent with the highest priority.
Afterwards, the mechanism chooses a subset of this subset containing
schedules minimizing the tardiness of the next agent in the order, and
this process continues iteratively. Finally, the output is chosen from the
remaining set. For the sake of simplicity we assume that the priority
ordering is a fixed, commonly known input of the mechanism.

More formally, the mechanism takes the projects in decreasing
order of priority, i.e., the higher the priority of a project, the lower its
index is. The mechanism executes an optimization step for each project.
In step 1, it takes the project p1 with the highest priority, and creates an
allocation µ(1) that minimizes T p

µ( )
1

(1)
, where T denotes the tardiness

function of (2) considering the reported due dates instead of the real
ones. Then in each subsequent step k, a new allocation µ k( ) is computed
that minimizes T p

µ( )
k

k( )
, with the constraints that it cannot increase the

tardinesses of the projects with higher priorities, i.e.,
…k k T T{1, , 1 }: p

µ
p
µ( ) ( )

k

k

k

k( ) ( 1)
. The resulted tardinesses of

projects with lower priorities than pk are completely disregarded in step
k. An allocation is said to be optimal in step k, if it minimizes T p

µ( )
k

k( )

with respect to the above mentioned tardiness constraints.
The allocation µ k( ) can be computed with a modified version of the

Carlier–Rinnooy Kan algorithm. In step k, instead of j, we use the
following j

k( ):

= < >

j J

j J k k T

,

, and and
0 otherwise

,j
k

j p

p j p
µ( ) ( )

k

k k

k( 1)

(4)

where j is defined by (3), but considering the reported dp due dates
in the cost function f instead of the real ones. For the jobs of project pk ,
this involves the lower bounds j for the tardiness, while for any other
job it is either zero or infinity. For projects considered before pk , any
allocation that would result in larger tardiness for them than in the
previous step, infinite tardiness is used, these are therefore cannot start
at u or later. For the remaining case (when j

k( ) is defined as 0), the jobs
may start at u without increasing the tardiness of the corresponding
project.

Similarly to the original algorithm, we are looking for the smallest
k( ), such that <a B u, : { | } ( )j J j

k
j
k( ) ( )

1 , see Algorithm 2.

Algorithm 2. Serial Dictatorship Mechanism

Require …p p, , n1 : an arbitrary priority ordering of the projects
The projects announce their due dates to the central inventory
for =k 1 to n do
for = 1 to q do
Compute the j

k( ) values

<{ }a B umin | : { | } ( )k k
j J j k

j
k( ) ( ) ( ) ( )

1

end for
maxk k( ) ( )

Compute µ k( )6

end for
Allocate the resources according to µ n( ).

6 This is not necessary in steps <k n, since only the tardinesses of projects
…p p, , k1 are used in the next step. For project pk this will be equal to k( ) , while

for the other projects the tardinesses remain the same as in the previous step.
When =k n, the allocation can be computed by Algorithm 1 using k( ) instead
of whenever j Jpk .

Theorem 1. The SDM is truthful.

Proof. Let us consider an arbitrary project pk . In steps … k1, , 1, the
due date dpk is disregarded by the mechanism, therefore reporting it
falsely cannot decrease the tardiness of pk . In step k, the mechanism
minimizes the tardiness of pk with respect to the constraints derived
from the previous steps, and using the reported due date of pk . We claim
that reporting a false due date cannot decrease the tardiness of pk .
Suppose, pk reports a false due date <d dp pk k and let µ k( ) and µ k( )

denote the corresponding allocations. If the tardiness of pk is smaller
with respect to µ k( ) than that for µ k( ), then µ k( ) would be a better
allocation for pk even when reporting its true due date, which is a

contradiction. In steps = + …k k n1, , , the tardiness =T Tp
µ

p
µ( ) ( )

k

k

k

k( ) ( )

remains constant: it cannot increase due to the construction of the
mechanism, but it also cannot decrease, otherwise µ k( ) is not optimal in
step k, which is a contradiction. □

Note that the proof of truthfulness requires that the agents cannot
influence the priority ordering. From now on, we take advantage of its
truthfulness, and assume that the SDM possesses the real due dates. Let

Fig. 2. The optimal schedules in two different problem instances.
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us prove the Pareto-optimality of the mechanism.

Theorem 2. The SDM is Pareto-optimal.

Proof. Let’s indirectly assume that µ Pareto-dominating µ n( ), i.e.,
p P µ µ: p

n( ) and p µ µ:k p
n( )

k . This contradicts optimality of µ k( )

in step k, thus such µ cannot exist. □

Corollary 2. If there is a schedule where no project is tardy, then the SDM
returns such a schedule.

For several matching problems, every Pareto-optimal solution can
be generated by an SDM by using different priority orderings.
Unfortunately, this does not hold for our resource allocation problem.
As a consequence, although there exists at least one optimal allocation
among the Pareto-optimal ones, it is possible that such allocations
cannot be found by the SDM with any permutation of priority ordering.

Proposition 2. There might be Pareto-optimal solutions of the scheduling
problem that cannot be found using an SDM with any permutation of priority
ordering.

Proof. Let us consider a simple scheduling problem with two projects of
two jobs each, one resource and two supply times. Let = =d d u ,p p 21 2

=a 1,j1 =a 1,j2 =a 1,j3 =a 1,j4 =A j j{ ( , ) },p 1 21 =A j j{ ( , ) },p 3 42
= =b b 21 2 , and = = = =t t t t u u( )/2j j j j 2 11 2 3 4 .
There are only two priority orderings for two agents, but 3 Pareto-

optimal solutions shown in Fig. 3. The two possible orderings of the
projects for the SDM result in (maximal) tardiness + = +t t t tj j j j1 2 3 4,
illustrated in Fig. 3a and b. However, the allocation shown on Fig. 3c is
also Pareto-optimal and its maximal tardiness is the half of what is
achievable with an SDM. □

Proposition 2 implies that using SDMs may exclude the possibility of
generating an optimal solution—despite always being Pareto-optimal.
Unfortunately, there is an even more serious drawback of the SDMs. As
the next theorem shows, the difference between the optimal and the
maximal tardiness generated by an SDM is unbounded.

Proposition 3. The maximal tardiness found by the SDM can be arbitrary
larger than the optimal one.

Proof. Let us consider a simple scheduling problem with two projects of
one job each, one resource and two supply times. Let

= = = = = =d u d u a a b b, , 1, 1p p j j2 1 1 21 2 1 2 and =t tj j1 2 (a fixed
constant).

Fig. 4a illustrates the optimal schedule for this case, when the job of
the second project gets the resource at u1 and the other job at u2. This

result in tardinesses for both projects equal to their processing times.
The solution on Fig. 4b is resulted by an SDM where p1 has the higher
priority. In order to avoid (or minimize) its tardiness, the job of p1 must
get the resource arriving at u1. This results in +u u t j2 1 2 maximal
tardiness at project p2.

As u2 , the maximal tardiness resulted by the optimal allocation
does not change, but with the SDM it grows infinitely. □

Note that the claim of Proposition 3 remains valid if we change the
optimality criterion to the total tardiness instead of the maximal tar-
diness.

In order to compare the optimum of the scheduling problem with
the one obtained by SDM, we shift the tardiness values of the schedules,
which is a common technique in scheduling theory (see e.g., Grigoriev
et al., 2005). That is, the shifted tardiness value of a schedule s is

+T T u .s s q

The shifted tardiness of any feasible schedule is uq or more. Let
+T T uqopt opt denote the tardiness of an optimal schedule increased

by uq. The relative error of some schedule s is

Rel s T
T

( ) .s

opt (5)

By this formula, the relative error of an optimal schedule is 1. The
following easy observation shows that with this normalized objective
function, the relative error of those schedules obtained by SDM is at
most 2.

Proposition 4. The relative error of any schedule computed by SDM is at
most 2.

Proof. In order to prove the statement, we define a trivial feasible
schedule with a relative error of at most 2, and argue that no job in a
schedule obtained by SDM starts later than the same job in the trivial
schedule.

In the trivial schedule strivial all the jobs of all the projects are started
at time uq or later if they have some predecessors. More precisely, in the
trivial schedule first we schedule all the jobs without any predecessors
at time uq, then we schedule their immediate successors at the earliest
possible time without violating the precedence constraints, etc. (or in
other words, we schedule the jobs in topological order from time uq on
without any unnecessary delays). The trivial schedule satisfies all the
precedence constraints by construction, and all the resource constraints
as well, since by time uq, all the resources are supplied, and the total

Fig. 3. Pareto-optimal solutions of the problem.
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supply equals the total demand for each resource by assumption.
Now consider the allocation computed by the SDM. In this alloca-

tion each job gets its required resources not later than uq. In the sche-
dule determined by the allocation each job starts as early as possible,
therefore no job can start later than the same job in the trivial schedule.

Finally, we claim that the relative error of the trivial schedule is at
most 2. On the one hand, in any feasible schedule, the shifted tardiness
of any project is at least uq as we have already noted. Now consider an
optimal schedule sopt, and increase the start time of each job by uq. In
the resulting schedule s , every job starts after uq. Notice that in s , no
job starts before the same job in the trivial schedule. Since the tardiness
of each project is increased by uq in s , we conclude that

Rel = =
+ +

+
s T

T
T
T

T u
T

T u
T u

( )
2

2.s q q

q
trivial

trivial

opt opt

opt

opt

opt

opt

Note that the tardiness value is shifted in order to avoid zero in the
denominator of the relative error. Another possibility to do this is to
compare the resulted error to the optimal tardiness with the following
formula:

T T
Tmax{ , 1}

,sdm opt

opt (6)

where Tsdm denotes the tardiness of the schedule produced by an SDM.
Due to Corollary 2, if =T 0opt then this equals zero, otherwi-
se—assuming integer parameters—it reduces to T T T( )/sdm opt opt.
However, we will consider the relative error defined by (5) hereafter.

We can also get an upper bound on the absolute error of the sche-
dule resulted by the SDM. In order to do this, let us define a relaxed
problem without resource constraints. The optimal solution for this
problem, srelaxed, is when each job starts as early as possible: those jobs
that do not have predecessors start at =u 01 , while others start as soon
as their predecessors are finished. Note that in srelaxed every job starts
exactly uq time unit earlier than in strivial. Thus, if Trelaxed and Tsdm denote
the maximal tardiness of srelaxed and a schedule resulted by an SDM,
respectively, we have +T T T T T uqrelaxed opt sdm trivial relaxed . By
rearranging these inequalities, we get an upper bound for the absolute
error:

T T u .qsdm opt (7)

This can be used to measure the relation of the absolute error and its
upper bound by T T u( )/ qsdm opt , which yields a value between 0 and 1.

5. Numerical study

In order to asses the performance of SDM in practice, we have
conducted a series of computational experiments. To this end, we have
generated several problem instances with various characteristics, and
compared the maximal tardinesses obtained by the Carlier–Rinnooy
Kan algorithm and by the SDM with a random priority ordering. For
comparison, we used the relative error defined by formula (5). Due to
the efficient polynomial-time algorithms used, solving one problem

instance takes only a few milliseconds on a standard laptop computer,
including the execution of the Carlier–Rinnooy Kan algorithm, the SDM
and the input/output operations.

5.1. Illustration of the performance of the SDM

We have generated problem instances with P| | {10, 50, 100} pro-
jects and q {5, 10, 15} supply dates. In all instances the number of jobs
in each project was =J| | 5p . The project parameters were random
numbers, i.e., d U~ (1, 50)p for each project p, t U~ (1, 5)j and a U~ (0, 5)j
for all the jobs j and resources , where U a b( , ) denotes the discrete
uniform distribution on the interval a b[ , ]. The density of the pre-
cedence graph of each project was 0.2, i.e., each project p contained

=J J0.2| |(| | 1) 4p p directed edges. These edges were generated be-
tween random jobs of the project, but without adding multiple edges or
cycles to the graph. The supplies were generated with =u 1,1
u u U q( )~ (1, 50/ ),1 b U a B u~ (0, ( ))j j 1 , and =b q

a B u( )j j q 1 . The results show how the relative error varies de-
pending on P R| |, | | and q. Each value in Table 2 represents the average
(or maximum) of the relative errors over 1000 problem instances.

Tables 2,a c and e suggest that there are two ways to decrease the
expected error: with more frequent supplies or with less resources.
When the number of supplies increases, there are usually more oppor-
tunities to schedule the non-tardy projects closer to their due dates, thus
freeing some resources for the low priority projects. Decreasing the
number of resources seems to be difficult in practice, but only the scarce
resources are relevant for the problem. If the inventory keeps enough
safety stock, then that resource does not constrain the schedule, thus it
can be omitted from the model. Of course, both approaches come at a
price which should be considered and balanced with the estimated cost
of the tardiness.

Tables 2,b d and f present the maximum error considering the same
instances as for the average. Similarly to the average case, the max-
imum error also decreases when q increases. Furthermore, it can be
observed that the maximum error tends to decrease with more projects.
Since these values are the extreme cases, it is more difficult finding
trends in these tables, but they can be used for estimating the worst case
scenarios.

5.2. Experiments with varying the number of supplies

One may presume that when the number of supplies increases while
the total amount supplied remains the same, the resources are available
earlier, thus the error decreases. As the following example shows, not
only the error does not always decrease, but the resources can even
arrive later, thus it is possible that the tardiness increases. In contrast to
the previous subsection, here we consider an evenly distributed supply.
Fig. 5 shows that increasing the number of supplies results almost al-
ways in delayed availability. If evenly distributed supply is not as-
sumed, even less relationship can be said between the number of sup-
plies and the availability.

Using the above supply patterns, we considered a simple scheduling
problem with =P| | 10 and =J| | 5p . The jobs of each project had

Fig. 4. Two possible allocations for the problem.
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sequential precedence relations, the due dates for each project were
=d 0p , while the processing times of the jobs and the demands for the

resource were generated according to t U~ (1, 5)j and a U~ (0, 5)j1 . In
both =q 5 and =q 15 cases the optimal schedule resulted in =T 20opt ,
while in the former =T 24sdm and in the latter =T 25sdm . Therefore the
error increased together with the number of supplies, due to the de-
layed availability shown in Fig. 5.

In order to investigate further the relationship between the number
of supplies and the relative error considering only one resource and
evenly distributed supply, we have performed further simulations.

Table 3 shows the resulted average and maximum errors based on 100
simulation runs.

6. SDM with random endowments

In order to remedy the negative consequences of Proposition 2, we
introduce a randomized extension of the SDM in this section.

Definition 6 (Randomized mechanism (Nisan & Ronen, 2001)). A
randomized mechanism is a probability distribution over a family

Table 2
Average and maximum relative errors

Fig. 5. Cumulative supply of a resource.
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{ }r of deterministic mechanisms. A randomized mechanism is called
truthful (Pareto-optimal), if each deterministic mechanism in its support
is truthful (Pareto-optimal).

Let us modify the SDM such that it starts with a random (feasible)
allocation µ(0), and in each step k it makes a Pareto-improvement on it,
resulting in allocation µ k( ). This randomized mechanism can be inter-
preted as follows: given a random allocation r, the mechanism r is a
deterministic mechanism that executes Pareto-improvements on the
allocation r according to the given priority ordering. Then the SDM with
random endowments (SDMRE) is a probability distribution over { }r .

Algorithm 3. Computing a random allocation

for = 1 to q do
for R do
while >b 0 do
Let j be a random job such that >a 0j

Let =µ a bmin{ , }j j

Decrease a j and b with the allocated quantity a bmin{ , }j
end while

end for
end for

The initial allocation can be computed for example with Algorithm
3. Note that not every feasible allocation can be produced by this al-
gorithm: whenever a supply and a demand is chosen, either the whole
demand will be covered with the allocation or the whole supply will be
allocated for that demand. It is easy to see however, that any allocation
can be transformed into an allocation that can be the output of
Algorithm 3 and they both imply the same schedule. Therefore this
method does not exclude any significant solutions.

The allocation µ k( ) can be computed with a modified version of the
SDM algorithm, where in step k we use the following j

k( ):

= >

j J

j J k k T

,

, and and
0 otherwise

.j
k

j p

p j p
µ( ) ( )

k

k k

k( 1)

(8)

For project pk , this takes the lower bounds of the tardiness, while for
any other job it is either zero or infinity. For projects other than pk , any
allocation that would result in larger tardiness for them than in the
previous step, infinite tardiness is considered, these are therefore ex-
cluded from an optimal solution. Any other allocation is allowed, thus
they cause no tardiness in this step. This means that the algorithm
minimizes the tardiness of project pk , while it enforces upper bounds on
the other projects’ tardinesses.

Similarly to the SDM, we are looking for the smallest k( ), such that
<a B u, : { | } ( )j J j

k
j
k( ) ( )

1 , see Algorithm 4.

Algorithm 4. SDM with Random Endowments (SDMRE)

Require …p p, , n1 : an arbitrary ordering of the projects

Let µ(0) be a random (feasible) allocation
The projects announce their due dates to the central inventory
for =k 1 to n do

for = 1 to q do

Compute the j
k( ) values

<{ }a B umin | : { | } ( )k k
j J j k

j
k( ) ( ) ( ) ( )

1

end for
maxk k( ) ( )

Compute µ k( )

end for
Allocate the resources according to µ n( )

Theorem 3. The SDMRE is truthful.

Proof. Let us consider an arbitrary step k of the mechanism. Since the
algorithm minimizes the tardiness of pk in this step, it cannot benefit
from a false dpk . For any other k k , the T p

µ( )
k

k( 1)
tardiness serves

only as a constraint on the T p
µ( )
k

k( )
, which both change similarly

depending on dpk . Therefore also pk cannot benefit from reporting a
false due date. □

Note that the proof of truthfulness requires that the agents can in-
fluence neither the priority ordering nor the initial allocation.

Theorem 4. An allocation is Pareto-optimal if and only if it can be the
output of an SDMRE.

Proof. The mechanism executes Pareto-improvements on the allocation
until no more such improvement exists. When the algorithm stops, it
results in an allocation which is not Pareto-dominated by any other
allocation, therefore it is Pareto-optimal by definition. In addition, since
the initial allocation is arbitrary (any Pareto-optimal allocation can be
generated with positive probability). □

Note however, that since every Pareto-optimal solution can be the
output of the SDMRE, the claim of Proposition 3 is still valid for this
mechanism. Furthermore, numerical studies on the same problem in-
stances have shown that the resulted relative errors of the SDMRE are
almost the same as those of the SDM presented in Table 2: the average
errors were exactly the same in case of 10 projects, in case of 50 pro-
jects 0.01 was the difference in only one case, while in case of 100
projects 0.01 was the difference in only three cases. The differences
between the maximum errors were not greater than 0.05 on average. It
seems that the randomization resulted only in a theoretical improve-
ment compared to the SDM and does not provide any increase in effi-
ciency.

7. Conclusions

In this paper the material allocation problem was introduced for
project scheduling involving competing self-interested agents with
privately known due dates. A novel resource allocation model was
presented and studied in a mechanism design setting without using
monetary transfers as incentives. A classical scheduling algorithm has
been modified for implementing the Serial Dictatorship Mechanism,
which is then proven to be truthful and Pareto-optimal.

It would be interesting to investigate realistic special cases for the
scheduling problem. For example, the supply of resources is usually not
random, but follows some pattern resulted from the applied ordering
policy, such as the fixed order quantity or fixed time period. Another
possibility is to consider similar projects, which occurs when the

Table 3
Relative errors considering one resource and evenly distributed supply.
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products with different features define almost identical projects with
slightly different resource requirements. The model also could be ex-
tended with renewable resource (e.g., machine) constraints, for which
case the computational complexity introduces additional challenges.
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Appendix A. Modification of the Carlier–Rinnooy Kan algorithm

In Carlier et al. (Apr. 1982), the following inequalities can be found
(considering only a single resource): a B u: { | } ( )j J j j , and
“for fixed , the smallest value for which [the inequality] is satisfied
can be found by a median finding procedure […]”. However, such
smallest value may not exist. Consider the following simple example
with a single job j and one resource only. There are two supplies at
times =u 01 , and =u 12 with supplied quantities =b 11,1 and =b 11,2 ,
respectively, and demand =a 2j . Hence, the cumulative supplies are

=B u( ) 11 and =B u( ) 22 , respectively, and job j can start only at u2.
Then for = 1, with = 1,1 the inequality does not hold, but for any

> 0, with = +1,1 the inequality is satisfied, since the left-hand-
side is 0.

Thus we use <a B u, : { | } ( )j J j j 1 instead. We now
show that if these inequalities are satisfied, then the resulted maximal
tardiness cannot be greater than in an optimal schedule. Let us in-
directly assume that for an optimal µ allocation there exists a project p
with >Tp

µ( ) . This means that >j J f e: ( )p j j
µ( ) . Let us consider a

chain … =( )j j j, , l1 max , where +j j A( , )l l p1 and =
+

e sj
µ

j
µ( ) ( )

l l 1
, but there

exists no job k with k j A( , ) p1 and =e sk
µ

j
µ( ) ( )
1
. Then =s uj

µ( )
1

must hold
for some . But then, by definition, = >f e( )j j j

µ( )
1

, and neither the
precedence constraints (by the choice of j1), nor resource availability
(since <a B u{ | } ( )j J j j 1 by assumption) blocks j1, which
contradicts the assumption that j1 starts at the earliest start time per-
mitted by the resource and the precedence constraints.
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