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ABSTRACT
The paper presents a novel decoupling method, based on blending the input and output signals of linear
dynamical systems. For this purpose, blend vectors are introduced and calculated such that the mini-
mum sensitivity of the controlled mode is maximised, while the worst case gain of the other subsystems is
minimised from the blended input to the blended output. The problem is transformed to a standard opti-
misation program subject to Linear Matrix Inequality constraints. An arising rank constraint is resolved by
an alternating projection scheme. Themethod is presented based on the decoupling of a singlemode, but
the extension to decouple multiple modes is also discussed. Numerical examples are given to validate the
method and to illustrate how the proposed approach can be applied for control engineering problems.
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1. Introduction

In the control of multivariable complex systems, it is often
desirable to ease the complexity of the underlying analysis or
synthesis problem. In the vast field of large-scale dynamical
systems, many approaches have been developed in the past
decades. These methods can be categorised into three main
groups (Bakule, 2008). Decentralisation aims for separate con-
trol design processes and their independent implementation.
Decomposition aims for reducing the computational complex-
ity by breaking the system into subsystems. Model reduction
seeks for an approximate dynamical description, with lowered
complexity.

The paper focuses on the decoupling (or decomposition) of
dynamical systems, where our general aim is to control a cer-
tain fraction of the system, without affecting other parts. This
objective is in line with the recent trends of systems- and con-
trol engineering aiming for the design of structured controllers
for complex systems (Apkarian et al., 2015).

The decoupling control design has an extensive literature,
andmost of the papers are focusing on the input–output decou-
pling of a system. Stoyle and Vardulakis (1979) design a suitable
state feedback, while Marinescu (2009) achieves decoupling
through a model-matching problem. According to the work of
Lin andWu (2001), a decoupling controller can also be designed
by first diagonalising the plant by means of a precompensator
and by synthesising a controller for the diagonalised plant.
A further approach has been developed for linear parameter
varying systems in Mohammadpour et al. (2011).

In recent years, various approaches were introduced in
order to assure decoupled control of selected dynamical modes
of a system. The common point of many of these methods
is that they introduce input and output blending vectors to
decouple modes and reduce the control design into a Single
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Input Single Output (SISO) problem accordingly. Danowsky
et al. (2013) determine an optimal blend for the measurements
which assures the isolation of the selected mode. Simultane-
ously they compute an optimal blend formultiple control inputs
to suppress the targeted mode via a negative optimal feed-
back, while minimising the control’s effect on other modes.
Pusch (2018) and Pusch and Ossmann (2019) introduce a joint
H2 norm-based input and output blend calculation method
which assures the controllability, observability and the indepen-
dent control of selected modes. Pusch et al. (2019) takes this
approach further and applies the method to the design of a
gust load alleviation system on an experimental flexible wing.
TheH2 norm-based blend calculation technique is extended to
undamped and unstable modes, where a structured controller
is designed to suppress unstable wing oscillations on a flexible
wing flutter demonstrator aircraft (Pusch et al., 2019).

The current paper presents a novel sensor and actuator
blending approach for linear time invariant (LTI) systems, in
order to assure decoupled control of individualmodeswith sim-
ple SISO controllers. Our approach is based on the H− index
and the H∞ norm of dynamical systems. The H− index is a
sensitivity measure widely used in fault detection, based on
the smallest singular value of a transfer function matrix over
a given frequency range (Liu et al., 2005). By its maximisation
between given inputs and outputs, the system’s sensitivity can be
increased. Oppositely, the H∞ norm defines the maximal sin-
gular value of a transfer functionmatrix and it is mainly used in
robust analysis and synthesis problems (Skogestad & Postleth-
waite, 2007). By minimising theH∞ norm, the maximum sen-
sitivity of the transfer function matrix is reduced. The present
approach seeks input and output blend vectors which are max-
imising the sensitivity for a given mode, while minimising it for
another one. This way, decoupling can be achieved and conse-
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quently a suitably designed control law will affect one mode,
while leaving unattained the other one(s).

A previous, preliminary version of the paper has appeared
in Baár and Luspay (2019). This paper takes one step further
and offers some remedies for the shortcomings found previ-
ously. More specifically, a novel formulation of the decoupling
through input–output blending is given by using the generalised
Kalman–Yakubovich–Popov (GKYP) lemma. This offers amore
systematic (less heuristic) framework to investigate and solve
the problem. The previous approach was relying on the use of
certain weighting filters, introduced in order to convert the sys-
tem into a proper one. The application of the GKYP lemma
allows the calculation of the H− index over a finite frequency
range for strictly proper systems also. In addition, an alternat-
ing projection scheme is incorporated to handle the arising rank
constraints.

The outline of the paper is as follows. Section 2 provides
the necessary mathematical formulations, followed by Section 3
with the formal problem statement. The mode decoupling
algorithm for single and multiple modes is presented entirely
in Section 4. Numerical examples are reported in Section 5,
followed by the concluding remarks.

2. Mathematical background

Basic mathematical notions and the required definitions are
given in the section, which are used throughout the construc-
tion of the decoupling algorithm.

2.1 State space representation

As a starting point, we consider continuous time LTI dynamics
given in the following generic state space form

Pny×nu :

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

with the standard notations: x ∈ R
nx is the state vector, u ∈ R

nu

is the input vector and y ∈ R
ny is the output vector of the system.

The systemmatrices are of appropriate dimensions. In addition,
we assume that the system is given in the following subsystem
form:

A =
[
Ac 0
0 Ad

]
, B =

[
Bc
Bd

]
,

C = [
Cc Cd

]
, D = [

D
]
.

(2)

Under the assumption of diagonalisableA, such a representation
is always achievable with the respective similarity transforma-
tion, which is generally referred as modal form (Kailath, 1980).
In modal form, the A matrix has a block diagonal structure,
where each block corresponds to a dynamical mode of the sys-
tem. These dynamical modes can be represented by either real
(R) or complex (with imaginary part I) eigenvalues λ, which
determine the structure of the corresponding block of matrix
A = diag(A1, . . . ,An) as

Ai =
⎧⎨
⎩

λi if I (λi) = 0[
R (λi) I (λi)
−I (λi) R (λi)

]
if I(λi) �= 0. (3)

Representation (2) can be considered as a special modal form,
without loss of generality, where themodes are grouped together
into two subsystems: one that we wish to control and another
one that we wish to decouple (leave unaffected). This is a very
rough formulation of the problem, which will be followed by
a more precise one in the forthcoming Section 3. The subsys-
tems are denoted by indexes {·}c and {·}d, respectively. Note also
that such a representation might be obtained differently. Dur-
ing the presentation of the proposed algorithm, we assume that
the {·}c subsystem contains only one mode, while the {·}d sub-
system might contain multiple modes. The possible extension
when {·}c contains multiple modes is discussed in Section 4.3.
Finally, note that, the given representation is not decoupled,
as (2) shows couplings between the subsystems through the B,
C and Dmatrices.

In addition, the transfer function matrix representation is
given by

G(s) =
∑
i∈{c,d}

{
Ci(sI − Ai)

−1Bi + D/2
} = Gc(s) + Gd(s), (4)

where Gc(s) and Gd(s) are the transfer functions of the sub-
systems to be controlled and decoupled, respectively, with the
standard notation of s being the Laplace variable and I being
the identity matrix.

2.2 Dual system

Assume that the system Pny×nu is given in state space form
by (1). According to Kwakernaak and Sivan (1972), the state
space matrices of the dual system P̃nu×ny are

Ã = AT, B̃ = CT, C̃ = BT, D̃ = DT. (5)

This dual representation has a favourable property, which will
be used throughout the paper. Namely, the input–output norm
of the system is preserved, while the input and output dimen-
sions are interchanged. In the paper, we will make extensive use
of this fact.

Furthermore, one can introduce the tall, square and wide
notations for the Pny×nu system (Li & Liu, 2010). A system is
called tall when the number of outputs is higher than the num-
ber of inputs, and oppositely, it is called wide when nu > ny. We
say that the system is square if nu = ny. It follows immediately
that if Pny×nu is wide, then P̃nu×ny is tall.

2.3 Minimum sensitivity

In the paper, we will adopt a notion from the Fault Detec-
tion Filtering (FDI) literature to characterise the minimum
sensitivity of a system (see i.e. Wang et al. (2007) and Glover
and Varga (2011)). More precisely, we will use the so calledH−
index, defined as

||Gc(s)||[0,ω̄]− := inf
ω∈[0,ω̄]

σ [Gc(jω)], (6)

with σ denoting the minimum singular value and ω̄ being the
maximal frequency value of the frequency band [0, ω̄]. The
computation of the H− index over an infinite frequency range
can be written as a semi-definite problem.



INTERNATIONAL JOURNAL OF CONTROL 3

Lemma 2.1: Minimum sensitivity over infinite frequency range
(Liu et al., 2005). Let β > 0 be a positive constant scalar. Then
||Gc(s)||[0,∞]

− > β , if and only if there exists a Pc such that Pc =
PTc and

[
AT
c Pc + PcAc + CT

c Cc PcBc + CT
c D

BTc Pc + DTCc DTD − β2I

]
� 0. (7)

Proof: The proof can be found in Liu et al. (2005). �

Note that (7) is a linear matrix inequality (LMI), where �
0 refers to positive definiteness, therefore Lemma 2.1 can be
seen either as a feasibility test (fixed value of β) or as a semi-
definite optimisation problem (β is a variable) subject to LMI
constraints.

It is obvious, that for strictly proper systems (i.e. D = 0) the
above definition and formulation yields zero. In order to over-
come this problem and compute the minimum sensitivity over
a limited frequency interval, Liu et al. (2005) proposed the use
of specific frequency filters to augment the plant. Then an esti-
mation can be given on the frequency limited H− index of the
strictly proper system. This approach has been also used by the
authors in their previous work (Baár & Luspay, 2019)1.

In order to avoid the introduction of frequency filters, a finite
frequency extension from the work of Wang and Yang (2008) is
used through the paper. This formulation is based on the Gen-
eralised GKYP lemma (introduced by Iwasaki et al. (2000)) and
states that over a finite frequency range, the minimum sensitiv-
ity can be calculated for strictly proper systems by the following
lemma.

Lemma 2.2: Minimum sensitivity over finite frequency range
(Wang & Yang, 2008). Consider the system given in (1) with
transfer function matrix (4). Let � =

[ −I 0
0 β2I

]
∈

R
(nx+ny)×(nx+ny) and ω, ω̄ denote the minimum and maximum

frequencies, respectively, in the interested frequency range, with
ω̃ = ω+ω̄

2 . Then ||Gc(s)||[ω,ω̄]− > β if and only if there exists
hermitian Pc and Qc, with Qc � 0 satisfying

[
Ac Bc
I 0

]T
�

[
Ac Bc
I 0

]
+

[
Cc D
0 I

]T
�

[
Cc D
0 I

]
≺ 0, (8)

where � =
[

−Qc Pc+j ω̃2 Qc

Pc−j ω̃2 Qc −ωω̄Qc

]
.

Proof: The proof is available in Wang and Yang (2008) and
omitted here. �

Note that (7) is a special case of (8), and with the selection
of Qc = 0, (8) reduces to (7). Since the H− index denotes the
smallest singular value, the above-mentioned formulations are
also applicable to unstable systems without any modifications.
However, there is a restriction for the application of the concept
ofH− index. Li and Liu (2010) has already raised that this index
can only be calculated for tall and square systems. Nevertheless,
involving the dual representation, the following lemma can be
stated.

Lemma 2.3: Calculation constraints of the minimum sensitivity
index. TheH− index with the LMI formulations given in (7) and
(8) can only be calculated for tall and square systems. Forwide sys-
tems, the dual representation provides the appropriateH− index
value.

Proof: No formal proof of this property was found by the
authors, however, we believe that it is useful and helpful for
understanding the developed results, therefore the derivation is
reported in Appendix 1. �

2.4 Maximum sensitivity

The well-known H∞ norm is used in the paper for
characterising the maximum sensitivity of the Gd(s) transfer
function, corresponding to the subsystem to be decoupled. The
worst case gain of the system is defined as

||Gd(s)||∞ := sup
ω

σ̄ [Gd(jω)], (9)

where σ̄ denotes the maximum singular value. Again we are
using an LMI-based computation of the H∞ norm over the
[0,∞) frequency range given by the Bounded Real Lemma,
which is summarised in Lemma 2.4.

Lemma 2.4: The Bounded Real Lemma (Scherer & Wei-
land, 2000). Let γ ≥ 0 be a positive constant scalar. Then
||Gd(s)||[0,∞)

∞ < γ if and only if there exists a positive definite
symmetric Pd = PTd � 0, such that

[
AT
dPd + PdAd + CT

dCd PdBd + CT
dD

BTdPd + DTCd DTD − γ 2I

]
� 0. (10)

Proof: The proof can be found in most of the robust control
textbooks, see e.g. Scherer and Weiland (2000). �

The H∞ norm is defined only for stable systems (i.e. poles
having negative real part). At the same time, unstable systems
that have no poles on the imaginary axis have an L∞ norm
(also known as the peak gain). This peak gain can be computed
using (10) after mirroring the unstable poles over the imagi-
nary axis (Zhou & Doyle, 1998). This modification is used in
the decoupling algorithm for the case of unstable modes.

3. Problem formulation

With having defined the minimum and maximum sensitivities,
we are in the position to formalise the underlying problem.

Based on Figure 1, the problem can be stated as follows. Cre-
ate the environment denoted by the dashed frame, whichmakes
possible the control of the subsystem Gc(s) by a corresponding
controller Cc(s), without having the least effect on subsystem
Gd(s). This is formalised in the paper as the minimum sensitiv-
ity from ū to ȳ through Gc(s) is maximised, while the maximum
sensitivity through Gd(s) is minimised.

This is achieved by appropriately blending the input and out-
put vectors of the system. For this purpose, we introduce ku ∈
R
nu×1 and ky ∈ R

ny×1: the normalised (i.e. ‖ku‖ = ‖ky‖ = 1)
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Figure 1. Closed loop control scheme with input and output blending.

input and output blending vectors, respectively. These blend-
ing vectors transform the signal vectors u and y onto a single
dimension, consequently reducing the control problem into a
SISO one. In Figure 1, the control input ū ∈ R is distributed
between the plant’s inputs (u = kuū) in a way that they only
excite the subsystem which one wishes to control. Similarly the
controller’s input ȳ = kTy y ∈ R is calculated such that the infor-
mation content from the subsystem which has to be decoupled,
is minimised. We summarise the blending problem as follows.

Problem 3.1: The decoupling problem. Find normalised vectors
ku and ky such that

||kTy Gc(s)ku||[ω,ω̄]− > β (11)

is maximised, while

||kTy Gd(s)ku||∞ < γ (12)

is minimised over the selected frequency range [ω, ω̄]. Here β and
γ are two positive constants referring to the minimal sensitivity
and peak norm, respectively.

4. The proposed decoupling algorithm

The decoupling approach presented in the paper is carried out
in two consecutive steps. First an optimal input blend is found
and applied to the system, next a corresponding output blend is
calculated.

4.1 Input blend calculation

The aim of the section is to find an input blend vector ku, which
maximises the excitation of the selected mode, while minimises
the impact on the one(s) to be decoupled. In this step, only the
state dynamics are considered, and the measurement equations
are removed from the model equations.

The concept is shown in Figure 2. Here ū is the scalar input
from the SISO controller Cc(s) (see Figure 1), ku is an nu dimen-
sional column vector distributing the blended input to the real
input channels. Using our terminology the decoupling is formu-
lated as: the sensitivity (H− index) from u to the performance
output yc is to be maximised, while the worst case gain (H∞
norm) from u to yd is minimised.

Before going into the details, wemention that the input blend
calculation uses the dual representation (see Section 2.2). This

Figure 2. Problem layout for input blend calculation.

is a necessary step to keep the optimisation problem linear in
the variables, as explained later. At the same time, we refer to
Lemma 2.3: the H− index can only be calculated for tall or
square systems. Therefore, in case the inputs are blended into
a scalar signal ū, then the dual representation would be a wide
system. The problem is then converted to a square system, by
defining the performance output as the sum of the states as it is
shown in Figure 2.

Accordingly, if one writes the LMIs (8) and (10) for the dual
system and then expresses the formulas in terms of the original
representation, one gets the following2[

AT
c CT

c
I 0

]T
�

[
AT
c CT

c
I 0

]
+

[
BTc DT

0 I

]T
�

[
BTc DT

0 I

]
≺ 0,

(13)
and[

PdAT
d + AdPd + BdKuBTd PdCd

T + BdKuDT

CdPd + DKuBTd DKuDT − γ 2I

]
� 0, (14)

where� =
[ −Ku 0

0 β2I

]
. Herewe have introduced the newmatrix

variable Ku = kukTu ∈ R
nu×nu , as the dyadic product of the

input blend vector.
It should be clear that the terms involvingKu are appearing in

the LMIs only because of the dual representation, otherwise we
would be facing a bilinear (and quadratic) matrix problem, i.e.
the dual form ensures linearity. Nevertheless, the newly intro-
duced variable Ku is a rank 1 matrix, which has to be taken
into consideration in the solution. The input blend calculation
is summarised in Proposition 4.1.

Proposition 4.1: The input blend design. The optimal input
blend ku for the system given in the form of (1) can be calculated
as the left singular vector corresponding to the largest singular
value of the blend matrix Ku, where Ku satisfies the following
optimisation problem

minimise
Pd , Ku, Pc, Q, β2, γ 2

− β2 + γ 2

subject to (13), (14), Pd = PTd , Pd 
 0,

Pc = PTc , Q = QT, Q 
 0,

0 � Ku � I, and rank (Ku) = 1,

(15)

with I being the identity matrix with appropriate dimensions.

Proposition 4.1 is a multi-objective optimisation problem,
which is frequent in mixed H−/H∞ fault detection observer
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Figure 3. Alternating projections.

design (see e.g. Wang et al., 2007). However, concerning
the rank constraint, some further remarks are required. The
rank(Ku) = 1 constraint in an earlier version of the algorithm
has been satisfied by a rank minimisation heuristic. In prac-
tice, this means the incorporation of the term trace(Ku) in the
objective function of (15). For further details see Baár and Lus-
pay (2019). However, this approach does not guarantee the sat-
isfaction of the rank constraint and was found to be numerically
sensitive.

Therefore, in the present paper, we wish to take one step fur-
ther and apply a more systematic approach for the solution of
Proposition 4.1.More precisely, we use an alternating projection
scheme to ensure the rank-1 constraint of the blending matrix
Ku.

The main idea was taken and tailored from Grigoriadis
and Beran (2000), where the authors used an alternating pro-
jection technique for satisfying a coupling rank constraint in a
fixed-orderH∞ control design problem. For the solution of the
present problem, the basic idea is the following. Introduce the
convex set 	convex which is described by the LMIs (13) and (14)
without the rank constraint on the blendmatrixKu. Denote this
non-convex rank constraint on Ku by the set 	rank. Suppose
that the sets have a nonempty intersection, and one wishes to
solve the problem by finding a matrix in the intersection. The
alternating projection scheme tells us that this problem can be
solved by a sequence of orthogonal projections from one set to
the other. Each step assures that the projected matrix in the cor-
responding set has the smallest distance from the onewhichwas
projected. The orthogonal projection theorem also assures that
each projection is unique (Luenberger, 1997). However, even if
the intersection exists, global convergence cannot be guaranteed
in our case, due to the non-convex set 	rank. Nevertheless local
convergence of the proposed algorithm to a matrix which sat-
isfies the above constraints is guaranteed (Grigoriadis & Beran,
2000).

The approach consists of various sequences of alternating
projections. In each sequence the dimension of the set 	rank
is reduced by one (starting from nu, until rank(K


u) = 1 is
achieved. The process of a single projection sequence is illus-
trated in Figure 3. Next the solution of Proposition 4.1 based on
an alternating projection algorithm is presented in details. For
this we apply the following two lemmas.

Lemma 4.2: Orthogonal projection to a lower dimensional set
(Grigoriadis & Beran, 2000). Let Z ∈ 	n×n

rank and let Z = USVT

be a singular value decomposition of Z. The orthogonal projection,
Z
 = P

	n−k
rank

Z, of Z onto the	n−k×n−k
rank dimensional set is given by

Z
 = USn−kVT, (16)

where the Sn−k diagonal matrix is obtained by replacing the
smallest k singular values by zeros.

Lemma4.3: Projection to a general LMI constraint set	 (Grigo-
riadis & Beran, 2000). Let	 be a convex set, described by an LMI.
Then the projection X
 = P	X can be computed as the unique
solution Y to the semi-definite programing problem

minimise trace(S)

subject to
[

S Y − X
Y − X I

]

 0,

Y ∈ 	, S,Y ,X ∈ Rn×n,

(17)

with S = ST.

Proof: For further details about the alternating projection
method, the reader is invited to consult with Grigoriadis
and Beran (2000). �

Now we are in the position to present the proposed solution
to Proposition 4.1. The process is summarised in Algorithm 1,
which can be found in Appendix 2. Each of its steps are dis-
cussed next.

The solution process starts with defining the subsystem one
wishes to control and the subsystem one wishes to decouple
from it, where the systems are transformed to the form as shown
in Figure 2. This is the starting point of Algorithm 1, in line 1.

Next the optimisation problem presented in Proposition 4.1
is solved, without the arising rank constraint. The blend matrix
is constrained to be symmetric and 0 � Ku � I. According to
Grigoriadis and Beran (2000), a term trace(Ku) is added to the
objective function for forcing the blend matrix Ku towards a
lower rank solution. This provides Ku0 which is the initial value
in the following alternating projection sequences. The corre-
sponding step is given in line 2 of Algorithm 1 and provides the
achievable values for β and γ .

The alternating projection scheme starts at line 3, where
the computed β and γ are kept constant. In each of the outer
loops the dimension of the rank constraint set is reduced by
one, while the inner loop contains the alternating projection to
obtain the corresponding reduced rank solution. Once the solu-
tion is obtained by fulfilling the stopping criteria, the outer loop
reduces the rank further, until 1 is achieved.

The blend vector ku can be found from the singular value
decomposition of the blend matrix K


u, upon the convergence:
it is the left singular vector corresponding to the largest singular
value of K


u. Once ku is found, it is applied to the subsystems to
give

ẋ{c,d}(t) = A{c,d}x{c,d}(t) + B{c,d}kuū(t),

y{c,d}(t) = C{c,d}x{c,d}(t) + Dkuū(t).
(18)

In the following we use the notation Ā{c,d} = A{c,d}, B̄{c,d} =
B{c,d}ku, C̄{c,d} = C{c,d}, D̄ = Dku for the input-blended rep-
resentation and discuss the corresponding output blend
computation.
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Figure 4. Problem layout for output blend calculation.

Figure 5. Closed loop control scheme with input and output blending.

4.2 Output blend calculation

The aim of this section is to find a linear combination of the
available outputs such that the desired subsystem is observed as
much as possible, while the other one appears as less as possi-
ble in the blended measurement. Using the introduced terms,
kTy should create a single blended output, with having maximal
sensitivity on the performance output of the subsystem to be
controlled, and minimal transfer on the one to be decoupled.
The approach is similar to the input blend calculation. The pro-
cess is summarised in Figure 4. The direct feedthrough term
from the given inputs to the outputs is the same for bothmodes,
and it was already neglected at the input blend calculation. For
this reason, we propose to remove the term D from both of the
systems and calculate the output blend without it. In the closed
loop control, the effect of the direct feedthrough can be taken
into account as shown in Figure 5. Only for the completeness
of the inequalities, the terms D are retained in the following
equations.

The necessary LMI constraints for the optimisation problem
concerning the subsystem to be controlled and to be decoupled
are given by[

Āc B̄c
I 0

]T
�

[
Āc B̄c
I 0

]
+

[
C̄c D̄c
0 I

]T
�

[
C̄c D̄c
0 I

]
≺ 0,

(19)
and[

ĀT
dPd + PdĀd + C̄T

dKyC̄d PdB̄d + C̄TKyD̄d
B̄TdPd + D̄T

dKyC̄d D̄T
dKyD̄d − γ 2I

]
� 0, (20)

respectively, where � =
[ −Ky 0

0 β2I

]
. Here we introduced the

output blend matrix Ky = kykTy . The optimisation problem to

be solved is given in Proposition 4.4 with variables Pc, Q, Pd,
Ky, β2, γ 2.

Proposition 4.4: The output blend design. The optimal output
blend vector ky for the system given in (18) can be calculated as the
left singular vector corresponding to the largest singular value of
the blend matrix Ky,where Ky satisfies the following optimisation
problem

minimise
Pd , Ky , Pc, Q, β2, γ 2

− β2 + γ 2

subject to (19), (20), Pd = PTd , Pd 
 0,

Pc = PTc Q = QT, Q 
 0,

Ky = KT
y , 0 � Ky � I, and rank

(
Ky

) = 1.

(21)

The rank one solution for the blend matrix Ky can be
achieved by a similar alternating projection algorithm as in the
case of the input blend. This is summarised in Algorithm 2,
which can be found in Appendix 3.

By applying the output blend to each of the subsystems, they
will have the from

ẋ{c,d}(t) = A{c,d}x{c,d}(t) + B{c,d}kuū(t),

ȳ{c,d}(t) = kTy C{c,d}x{c,d}(t) + kTy Dkuū(t).
(22)

Note that the direct feedthrough term was not involved into the
optimisation process which means that the optimal transfor-
mation of D by the blend vectors ku and kTy is not guaranteed.
However, since theD term is the same for each modes, it is pos-
sible tomodify the overall control scheme presented in Figure 1,
by introducing a feedforward term kTy Dku, as shown in Figure 5.

Remark 4.1: It might be desirable to identify some metrics
which provide information about whether the decoupling is
possible before calculating the actual blend vectors. Accord-
ing to Hamdan and Nayfeh (1989), the magnitude of |qTi bj| =
|qi||bj|cos(θij) is an indication of controllability of the ith mode
from the jth input, where qi is the left eigenvector correspond-
ing to the ith mode, bj is the input vector corresponding to the
jth input, and cos(θij) is the angle between the two vectors. In
the applied modal form, this reduces to the following criteria
for the ith mode. In order to be controllable from the jth input,
the input vector bj should contain non-zero elements in the
rows corresponding to the ith mode. The magnitude of these
elements are measures of controllability. In case of the blend
calculation problem, this means that the blended input matrix
Bku should contain non-zero values at the locations correspond-
ing to the targeted mode, while it’s other elements should be
small, possibly zero. This is clearly achievable if the row vectors
of Bd are far from the subspace spanned by the rows of Bc. Sim-
ilar reasoning corresponds to the output decoupling, based on
observability and the columns ofC. However the detailed inves-
tigation of these decoupling criteria are out of the paper’s scope
and will be investigated in the future.

Remark 4.2: Based on our experience, the order of the blend
calculation can be changed. It is possible to calculate an output
blending vector first and then find a corresponding input blend.
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The resulting vector elements can slightly differ for the two
sequences, however, the directions are the same in both cases.
The similar can be said about the comparison of the results with
other blending approaches (such as Pusch, 2018): although the
formulations and the obtained blend vectors are numerically
different, the directions are nearly the same.

4.3 The decoupling ofmultiplemodes

Throughout the paper, we have supposed that the {·}c subsys-
tem consists of only one mode. In the following, we show that
this limitation can be relaxed with some minor modifications.
Accordingly, we present two possible extension of the algorithm,
which can assure the decoupling of multiple modes.

4.3.1 SISO decoupling
We call this method SISO decoupling because all the targeted
modes are controlled with the same SISO controller. Necessary
requirements towards the blend vectors are that they decouple
the subsystems {·}c and {·}d, while preserving controllability and
observability of the targetedmodes. For the ease of presentation
we assume that the subsystem {·}c consists of two subsystems
and has the form

Ac =
[
Ac1 0
0 Ac2

]
, Bc =

[
Bc1
Bc2

]
,

Cc = [
Cc1 Cc2

]
, D = [

D
]
.

(23)

In case of input decoupling the first issue that one has to tackle
is to assure that both of the blended subsystems remain con-
trollable separately. According to Remark 4.1, the measure of
controllability of each of the modes from the jth input is pro-
portional to the magnitude of the jth column vectors in Bc1
and Bc2 respectively. From this it follows that in order to keep
both of the modes controllable a necessary requirement is that
the blended inputs Bc1ku and Bc2ku, respectively, should not be
zero vectors. It can be assured by adding further constraints to
Proposition 4.1 as

trace(Bc1KuBTc1) ≥ b1min and trace(Bc2KuBTc2) ≥ b2min.
(24)

The terms b1min and b2min are tuneable parameters, reflecting
the level of controllability of each of the modes. Once they are
set to a low value, the algorithm may find a blend vector which
assures higher suppression of the undesired dynamics, on the
expense of larger control input energy to control the targeted
subsystem.

Once the subsystems are separately controllable, one has to
show that they can be controlled by the sameblended input. This
can be done by the Popov–Belevitch–Hautus (PBH) controlla-
bility test (Kailath, 1980). It states that the system is controllable
when

rank
([

sI − Ac1 0 Bc1ku
0 sI − Ac2 Bc2ku

])
= dim (Ac) , (25)

where s ∈ C. It is obvious that rank deficiency can only arise
when s equals to one of the eigenvalues of the subblocks Aci ,
otherwise full rank is guaranteed. At the same time, condi-
tion (24) ensures full rank of the extended matrix at the poles

Figure 6. Closed loop control scheme for the MIMO decoupling approach.

of the subsystems, except to the particular case of Ac1 = Ac2 .
This is not surprising, since two identical subsystems cannot
be controlled by a single input. Consequently, this condition is
the main limitation of the proposed blending approach, when
applied for higher dimensional subsystems, instead of single
modes. Observability properties can be shown in a similar way.

4.3.2 MIMO decoupling
When the subsystem to be controlled consists of multiple
modes, it is also possible to convert the problem into a MIMO
one, and control each of the modes with a corresponding SISO
controller. This case is shown in Figure 6, where we have sup-
posed that the subsystem to be controlled consists of twomodes.
The dashed frame denotes the interface between the blended
system and the SISO controllers. The blend vectors ku1 and kTy1
are designed in a way that they suppress the effects of Gc2(s) and
Gd(s). The same method applies to ku2 and kTy2 . Note that the
diagonalisation of the two input two output system is only pos-
sible, when the input and output null spaces ofG1(s) = Gc1(s) +
Gd(s) andG2(s) = Gc2(s) + Gd(s) exists. Otherwise the resulting
transfer functionmatrix is not guaranteed to be diagonally dom-
inant. Additional approaches to suppress the offdiagonal ele-
ments should be investigated in the future, such as the method
of decoupling by feedback (Wang, 2002).

5. Numerical examples

Before turning our attention towards the numerical evaluation
of the proposed decoupling algorithm, it is worth to examine
the theoretically achievable best solutions.

First consider the maximisation of the minimal sensitivity
for the transfer corresponding to the controlled subsystem. The
decoupling is carried out by one-norm blend vectors ku and
kTy . By applying matrix norm identities on an arbitrary transfer
function matrix Gny×nu , one gets:

1√
nu

||G||i∞ ≤ σ̄ (G), (26)

where || · ||i∞ is the maximal row sum. This shows that with a
normalised blending, the maximum achievable singular value
is bounded from above. Consequently by applying one-norm
input and output blends, no higher H− index can be achieved
than the maximum singular value of the given subsystem.
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Concerning the suppression of the subsystem to be decou-
pled, the highest suppression rate can be achieved if the blended
inputs or outputs are as close as possible to the corresponding
null spaces. A blending approach proposed by Pusch (2018) car-
ries out decoupling based on a null space transformation. This
approach is certainly valid, however, the existence of null space
and its sensitivity for model parameters and changes might
hinder its application for real problems.

All the following examples were created by using YALMIP
(see Löfberg, 2004) in the Matlab environment, with the
SeDuMi solver (Sturm, 1999).

5.1 Academic example

First we evaluate the proposed method based on a simple aca-
demic example, in order tomake the results reproducible for the
reader. The example is given by

A =
[
Ac 0
0 Ad

]
=

⎡
⎣−0.4 1.6 0

−1.6 −0.4 0
0 0 −1.4

⎤
⎦ ,

B =
[
Bc
Bd

]
=

⎡
⎣ 0.7 −0.1 0.3

−0.4 −0.2 0.1
−0.6 −0.2 0.8

⎤
⎦ ,

C = [
Cc Cd

] =
[

0 0.8 −0.8
−0.8 −0.7 −0.9

]
, D = 0.

(27)

The system consists of two stable modes, where we wish to con-
trol the first complex one, and decouple from it the real one. The
controllability and observability properties of the modes can be
quantified by the eigenvalues of their controllability and observ-
ability Gramians. The controllability Gramian denoted by W
is calculated as the positive definite solution of the following
Lyapunov equation:

AW + WAT + BBT = 0. (28)

The needed control energy by the system is proportional by
the inverse of the Gramian. In the present example, the Grami-
ans corresponding to the subsystems {·}c and {·}d, have the
eigenvalues

λc(Wc) = [0.4096 0.5904], and λd(Wd) = 0.3714. (29)

The observability GramianV is similarly defined as the positive
definite solution of

ATV + VA + CTC = 0. (30)

Its eigenvalues are proportional to the observation energy of the
system. For the given subsystems the observability Gramians
have eigenvalues as

λc(V) = [0.9209 1.2916], λd(V) = 0.5179. (31)

The blend vectors ku and ky are calculated based on Section 4.
The frequency interval where the decoupling should be
achieved was selected to be between 0 and ωn

rad
s , where

the latter stands for the natural frequency of the mode to
be controlled, i.e. in (8) ω = 0 and ω̄ = ωn. The blend

vectors are kTu = [−0.7979 − 0.0167 − 0.6026]T and kTy =
[−0.6956 0.7185]T respectively. Figure 7 shows the maximum
singular values of the subsystems, which are corresponding to
the highest achievable sensitivity by suitable blends according
to (26). Note that the subsystem corresponding to the undesired
dynamics has higher steady state gain than the one to be con-
trolled. As the lower subfigure shows after applying the input
and output blends, this theoretically maximal sensitivity was
retained, while the transfer through the other (undesired)mode
was significantly reduced.

Of course the decoupling has its own price, which can be
revealed by calculating the eigenvalues of the controllability and
observability Gramians corresponding to the blended subsys-
tems. These are found to be

λc(W̃c) = [
0.2901 0.4759

]
, and λd(W̃d) = 3.58 · 10−14,

λc(Ṽc) = [
0.6877 1.1281

]
, and λd(Ṽd) = 0.0029,

(32)
where {·̃} denotes that they are the Gramians corresponding
to the blended subsystems. They show that an applied control
action will not excite the undesired dynamical part of the sys-
tem, however for this one has to sacrifice a certain amount of
controllability of the mode that should be controlled. Similarly,
the undesired dynamics are made unobservable, and so their
effects are suppressed in the blended measurements. This can
be achieved on the expense of reducing the observability of the
controlled mode also.

5.2 Flexible aircraft

In the following two numerical examples from the aerospace
engineering field are presented in order to validate the pro-
posed approach. The models are taken from the FLEXOP
project (2015), which aims to design and demonstrate flutter
suppression techniques on a flexible winged demonstrator UAV.
The demonstrator aircraft is equipped with eight ailerons (four
on the left and four on the right wings) and two rudderva-
tors on each side. Measurements are given at the 90% spanwise
location on the left and right trailing edge, providing informa-
tion about the vertical acceleration (az) and the angular rates
(ωx, ωy) around the lateral and longitudinal axis of the aircraft
respectively.

The dynamical model has the five standard aircraft rigid
body modes with the additional two flutter modes arising from
the coupling of aerodynamic and structural forces. The non-
linear dynamics have been trimmed and linearised over a range
of admissible airspeed values, Figure 8 then shows the pole
migration map of the aircraft for a simplified illustration of the
dynamic modes. It can be seen that at a certain airspeed the
fluttermodes become unstable. Formore details about themod-
elling and control, we refer to Luspay et al. (2018). The obtained
family of linear models is then transformed into a parame-
ter varying modal form and a parameter varying model order
reductionwas performed (Luspay et al., 2018). The obtained low
order model is given in its modal form and used for illustrating
the proposed decoupling methodology.
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Figure 7. Above: The maximum singular values of the subsystems before blending. Below: The singular values of the blended SISO subsystems.

Figure 8. The pole-zero map of the flexible aircraft model.

5.2.1 Decoupling of symmetric and asymmetric flutter
modes
The first example involves the decoupled control of the two
unstable flutter modes at the 64 m

s airspeed. The aim is to con-
trol the symmetric mode, while leaving the asymmetric one
unaffected. By doing so, two separate SISO controllers can be
designed for the corresponding flutter modes (Pusch et al.,
2019). The frequency interval where the decoupling should be
achieved was selected to be between 0 and the natural frequency
of themode to be controlled. Since the asymmetric flutter mode
is unstable at the investigated airspeed, its poles were mirrored
to the imaginary axis, according to the discussion in Section 2.4.
The upper subfigure of Figure 9 shows themaximal singular val-
ues of the selected two flutter modes. The asymmetric mode,

which should be suppressed has higher amplifications in the
[0, 100] rad

s range. After applying the optimisationmethod sum-
marised in Algorithms 1 and 2, the Bode magnitude plot of
the resulting SISO subsystems without the direct feedthrough
term is shown in the lower subfigure of Figure 9. Note that
the sensitivity level of the mode to be controlled is slightly
reduced, which is according to (26) almost the theoretical upper
bound of the sensitivity. On the contrary the amplification of the
asymmetric flutter mode is reduced by almost 80 dB.

5.2.2 Decoupling asymmetric flutter mode from the
remaining dynamics
By the application of the proposed method, it is also possible to
decouple a selected mode from the rest of the dynamics. The



10 T. BAÁR AND T. LUSPAY

Figure 9. Above: The maximum singular values of the unstable flutter modes before blending. Below: The singular values of the blended SISO subsystems.

next example investigates this scenario for the aircraft model
taken at the 47 m

s airspeed, where all the modes are stable. The
aim is to effect the asymmetric flutter mode, while suppressing
the rest of the dynamics including all the rigid body modes and
the symmetric flutter mode.

Figure 10 shows the maximum singular values of the modes
to be controlled and to be decoupled, respectively. Note that, in
this example the dynamic part which should be unaffected has
higher steady state gain. By applying the suitable blend vectors,
the subsystems can be decoupled, in a way that almost the whole
sensitivity of the controlled subsystem is retained as it is shown
in the lower subfigure of Figure 10.

5.2.3 Decoupling the two flutter modes from the remaining
dynamics
In this example, we investigate the case when the symmet-
ric and asymmetric flutter modes should be controlled by a
corresponding SISO controller, while the rest of the dynam-
ics is left unattained, as described in Section 4.3.1. The air-
craft model is taken at the 47 m

s airspeed. We selected bimin =
trace(BciKuBTci)/10 where i represents the symmetric and asym-
metric flutter modes. The controllability Gramians W had the
eigenvalues for the original subsystems ({·}c, and {·}d)

λc(Wc) = [1.5748 1.6232 2.3507 2.6695] · 105,
λd(Wd) = [0.0072 0.0101 0.0102 0.0136 0.0192

0.1177 0.5659 1.9648] · 104,
(33)

while after the blend calculations, the Gramians for the SISO
subsystems had eigenvalues

λc(W̃c) = [0.4331 0.4956 6.8686 7.1346] · 104,
λd(W̃d) = [0.0011 0.0016 0.0053 0.0077 0.0118

0.0364 0.2856 0.3193] · 10−3.

(34)

The singular values of the corresponding subsystems are
shown in Figure 11. It was possible to decouple the two subsys-
tems, on the expense of losing from the transfer of the targeted
modes.

5.3 Batch test

In order to further evaluate the numerical properties of the
decoupling methodology, a batch test was also performed.

Stable LTImodels with various input (2 ≤ nu ≤ 12) and out-
put (2 ≤ ny ≤ 12) dimensions were created randomly. For each
IO pair 12 systems were generated with various random seeds,
where each model has 4 states for the sake of simplicity. This
resulted in a total number of 1452 random systems. All the
LTI systems were transformed then to modal forms, and the
respective first modes were selected to be controlled, and the
second ones to be suppressed. Then the proposed IO blending
algorithms have been run to decouple the selected modes.

We defined a suppression rate, which measures the mini-
mumdistance between the blended subsystems. The decoupling
was considered successful if the suppression rate is more than
20 dB on the Bode magnitude plot, and the steady state gain for
the controlled mode is higher than −20 dB. The 20 dB criteria
corresponds to a minimum of ten times higher amplification
of the controlled mode. Based on these criteria, the proposed
algorithm achieved decoupling in 86% of the investigated test
cases.

Figure 12 shows the distribution of the achieved suppres-
sion rates. Observe the two peaks in the histogram: one around
20 dB and another one around 120 dB, respectively. The first one
belongs to systems which can be hardly decoupled (if at all),
while the latter one to systems where higher level of decoupling
was possible.

In order to further visualise the results, consider the ratio of
the H− index and the H∞ norm as ||Gc(s)||−

||Gd(s)||∞ . In Figure 13 this
ratio is shown for each of the systems before and after of the
application of the blend vectors. Red line denotes the average of
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Figure 10. Above: The maximum singular values of the subsystems before blending. Below: The singular values of the blended SISO subsystems.

Figure 11. Above: The maximum singular values of the subsystems before blending. Below: The singular values of the blended SISO subsystems.

Figure 12. The distribution of the achieved suppression rates.
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Figure 13. The ||Gc(s)||−
||Gd(s)||∞ ratio before and after blending for the systems in the batch test

the ratios, which is increased from 10−1 to 107. Black dashed
line represents the minimal suppression rate which has to be
achieved in order to consider the decoupling successful. Only
about 7% of the test cases result in a ratio below it. Due to the
decoupling criteria and the 86% success rate, it also means that
in 7% of the test cases the steady state gain of the controlled
modes was reduced below −20 dB.

6. Conclusion

We have presented a modal decoupling approach that allows
independent control of selected modes. To achieve this goal,
input and output blend vectors are calculated based on a convex
optimisation approach from the Robust Control literature. The
proposed method has been validated based on various exam-
ples. Based on a simple academic example, it has been shown
that the obtained blend vectors are maximising the controlla-
bility and observability of the targeted mode, while minimising
them to the remaining subsystems. Three aerospace examples
have been also reported to illustrate the decoupling in real life
problems. The proposed algorithms allowed the control of the
flexible motion of the wing, without having significant interac-
tion with the rigid body dynamics. An exhausting evaluation
campaign carried out over 1452 systems proved that reliable

decoupling performance is achievable by the proposed blend
vectors.

The authors believe that by the use of integral quadratic
constraints, the method can be extended to consider uncertain
systems also. Furthermore, since the approach is based on the
LMI formulation of the H− index and the H∞ norm, it is eas-
ily extendable to Linear Parameter Varying (LPV) systems. In
this case the blending vector functions ku(ρ) and ky(ρ) are the
results of the convex optimisation process.

Notes

1. On the other hand, our aim is to avoid the use of additional frequency
filters, due to their explicit appearance and effect in the computation of
the blending vectors (see Section 4).

2. The D terms are retained in the equations only for completeness;
however, their value is zero during the optimisation process.
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Appendix 1. Proof of Lemma 2.3
First we consider the case of (7) where the proof is relatively easy. If a sym-
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M12 = −AT
c QcBc + PcBc − j

ω̃

2
QcBc − CTD,

M22 = −BTc QcBc − DTD + β2I, (A1)

whereM ∈ C(nx+nu)×(nx+nu) andM is partitioned as
[ nx×nx nx×nu
nu×nx nu×nu

]
.

Also carry out the multiplications in (8) for the dual representation of
the system given by (5) to obtain

M̃ =
[
M̃11 M̃12
M̃T

12 M̃22

]
≺ 0, with

M̃11 = −AcQcAT
c + AcPc + jAc

ω̄

2
Qc + PcAT

c

− j
ω̄

2
QcAT

c − ωω̄Qc − BcBTc ,

M̃12 = −AcQcCT
c + PcCT

c − j
ω̄

2
QcCT

c − BDT,

M̃22 = −CcQcCT
c − DDT + β2I,

(A2)

where M̃ ∈ C(nx+ny)×(nx+ny), and M̃ is partitioned as
[
nx×nx nx×ny
ny×nx ny×ny

]
.

Take the case when D = 0. Note again the fact that if a symmetric
matrix is positive definite, than its diagonal terms are also positive defi-
nite. From (A1) and (A2), we haveM22 = −BTc QcBc + β2I ≺ 0 and M̃22 =
−CcQcCT

c + β2I ≺ 0. SinceQc ∈ C(nx)×(nx), these inequalities can only be
satisfied if nu ≤ nx and ny ≤ nx, respectively.

Next we continuewith themore general case, whenD �= 0. Suppose that
ny > nu. The proof is based on the following two rank identities

rank(X + Y) ≤ rank(X) + rank(Y), (A3)

rank(XY) ≤ min(rank(X), rank(Y)). (A4)

The input–output norm equality implies that the term β2 is the same for
both (A1) and (A2), i.e.M22 and M̃22 have to satisfy

β2I ≺ BTc QcBc + DTD, (A5)

β2I ≺ CcQcCT
c + DDT. (A6)

The left hand side of (A5) and (A6) are full rank, with ranks nu and ny,
respectively. According to (A4) and the fact that Qc ∈ Cnx×nx :

rank(BTc QcBc) ≤ nx, rank(CcQcCT
c ) ≤ nx. (A7)

At the same time, we supposed that ny ≥ nu, which implies:

rank(DTD) = rank(DDT) ≤ nu. (A8)

So according to (A3)maximal rank of the right hand sides of (A5) and (A6)
is nx + nu.

We can further conclude that the right hand sides of (A5) and (A6) have
to be full rank, in order to satisfy the inequalities. However, since they have
the same upper bound, it means only the smaller dimensional can hold and
the other one on the right hand side will have zero eigenvalues. If ny ≥
nu than the nu dimensional equation (A5) is solvable, and so LMI (A1)
provides theH− index.

It can be easily seen that if ny < nu then based on the same rea-
soning (A6) becomes solvable, and the LMI (A2) corresponding to the
dual representation becomes solvable, which is tall. If ny = nu than (A1)
and (A2) yields the sameH− index. Therefore, we concluded that theH−
index can only be calculated for tall or square systems.

Appendix 2. The input blend algorithm

Algorithm1 Input blend calculationwith alternating projection

1: Given: The subsystems Gc and Gd are given in a form as
shown in Figure 2.

2: Initialisation: Solve the following optimisation problem,
for β2, γ 2, Pd, Pc, Q, Ku:

minimise
Pd , Ku, Pc, Q, β2, γ 2

− β2 + γ 2 + trace(Ku)

s.t.:

[
PdAT

d + AdPd + BdKuBTd
CdPd + DKuBTd

PdCT
d + BdKuDT

DKuDT − γ 2I

]
� 0,

[
AT
c CT

c

I 0

]T

�

[
AT
c CT

c
I 0

]

+
[
BTc DT

c

0 I

]T

�

[
BTc DT

0 I

]
≺ 0,

0 � Ku � I, Q 
 0.

3: for k = 1 to nu − 1 do
4: j = 0
5: K


u = P
	n−k
rank

Ku

6: while
|K


uj+1−K

uj |

|K

uj |

> threshold do

7: Solve the following optimisation problem, for Pc,
Q, Pd, S, Ku:

minimise
Pd , Ku, Pc, Q, S

trace (S)

s.t.:
[
PdAT

d + AdPd + BdKuBTd
CdPd + DKuBTd

PdCT
d + BdKuDT

DKuDT − γ 2I

]
� 0,

[
AT
c CT

c
I 0

]T
�

[
AT
c CT

c
I 0

]

+
[
BTc DT

0 I

]T
�

[
BTc DT

0 I

]
≺ 0,

0 � Ku � I, Q 
 0,[
S Ku − K


u
Ku − K


u I

]

 0.

8: K

uj+1

= P
	n−k
rank

Kuj
9: j = j + 1
10: end while
11: end for
12: Find ku as the left singular vector corresponding to the

largest singular value, from the singular value decomposi-
tion K


u = USVT.
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Appendix 3. The output blend algorithm

Algorithm 2 Output blend calculation with alternating
projection
1: Given: The subsystems Gc and Gd are given in the form of

(18), and remove the direct feedthrough.
2: Initialisation: Solve the following optimisation problem,

for β2, γ 2, Pd,Pc, Q, Ky:

minimise
Pd , Ky , Pc, Q, β2, γ 2

− β2 + γ 2 + trace(Ky)

s.t.
[
ĀT
dPd + PdĀd + C̄T

dKyC̄d
B̄TdPd + D̄T

dKyC̄d

PdB̄d + C̄T
dKyD̄d

D̄T
dKyD̄d − γ 2I

]
� 0

[
Āc B̄c
I 0

]T
�

[
Āc B̄c
I 0

]

+
[
C̄c D̄c
0 I

]T
�

[
C̄c D̄c
0 I

]
≺ 0,

0 � Ky � I, Q 
 0.

3: for k = 1 to ny − 1 do
4: j = 0
5: K


y = P
	n−k
rank

Ky

6: while
|K


yj+1−K

yj |

|K

yj |

do

7: Solve the following optimisation problem, for Pd,
Pc, Q, S, Ky:

minimise
Pd , Ky , Pc, Q, S

trace (S)

s.t.:
[
ĀT
dPd + PdĀd + C̄T

dKyC̄d
B̄TdPd + D̄T

dKyC̄d

PdB̄d + C̄T
dKyD̄d

D̄T
dKyD̄d − γ 2I

]
� 0

[
Āc B̄c
I 0

]T
�

[
Āc B̄c
I 0

]

+
[
C̄c D̄c
0 I

]T
�

[
C̄c D̄c
0 I

]
≺ 0,

0 � Ky � I, Q 
 0,[
S Ky − K


y
Ky − K


y I

]

 0.

8: K

yj+1

= P
	n−k
rank

Kyj
9: j = j + 1
10: end while
11: end for
12: Find ky as the left singular vector corresponding to the

largest singular value, from the singular value decomposi-
tion K


y = USVT.
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