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Abstract
In this paper, we describe new complexity results and approximation algorithms for single-machine scheduling problems
with non-renewable resource constraints and the total weighted completion time objective. This problem is hardly studied
in the literature. Beyond some complexity results, only a fully polynomial-time approximation scheme (FPTAS) is known
for a special case. In this paper, we discuss some polynomially solvable special cases and also show that under very strong
assumptions, such as the processing time, the resource consumption and the weight is the same for each job; minimizing the
total weighted completion time is still NP-hard. In addition, we also propose a 2-approximation algorithm for this variant
and a polynomial-time approximation scheme (PTAS) for the case when the processing time equals the weight for each job,
while the resource consumptions are arbitrary.

Keywords Single-machine scheduling · Non-renewable resources · Approximation algorithms

1 Introduction

Non-renewable resources, such as raw material, energy or
money, are used in all sectors of production, and depend-
ing on the stocking policy, they have varying impact on the
preparation of daily and weekly production schedules. Con-
sider for instance the preparation of the weekly schedule of a
production line,where someof the rawmaterials built into the
products arrive over theweek, and the supplies constrainwhat
can be produced and when. Of course, if all the purchased
items were in stock right at the beginning of the week, then
the supply arriving during the week would not influence the
scheduling decisions, but the drawback is that larger stocks
should be kept, which incurs additional costs.

In this paper, we consider single-machine scheduling
problems with one additional non-renewable resource. The
non-renewable resource has an initial stock and some addi-
tional supplies in the future with known supply dates and
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quantities. A job can only be started if the inventory level
of the resource is at least as much as the quantity required
by the job. When the job is started, the inventory level is
decreased by the required quantity. Therefore, when deter-
mining the schedule, one must take into account not only
the initial stock level, but also the future supplies. This is
an extra constraint in addition to, e.g., job release dates, or
sequence-dependent setup times.

More formally, in all problems studied in this paper, there
are a single machine, a non-renewable resource, and a finite
set of jobs J . Each job j ∈ J has a processing time p j > 0,
a weight w j ≥ 0, and a resource requirement a j ≥ 0. The
resource has an initial supply b̃1 available at time u1 = 0, and
additional supplies b̃� at supply dates u� for � = 2, . . . , q.
For convenience, we also define uq+1 = +∞. We assume
that the supplies are indexed in increasing u� order, i.e.,
u� < u�+1 for � = 1, . . . , q − 1. Let S be a schedule spec-
ifying a start time S j for each job j . It is feasible if (i) the
jobs do not overlap in time, and (ii) for each � = 1, . . . , q,
∑

j :S j<u�+1
a j ≤ ∑�

�′=1 b̃�′ , i.e., the supply arriving up to
u� covers the demands of those jobs starting before u�+1.
The objective function is the weighted sum of job comple-
tion times, i.e., a feasible schedule of minimum

∑
j∈J w jC j

value is sought, whereC j = S j + p j . We mention that a fea-
sible schedule exists only if

∑
j∈J a j ≤ ∑q

�=1 b̃�, and more
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Table 1 New complexity and
approximability results

#Supp. q Restriction Objective function Result

∗ p j = p̄, a j = ā
∑

w jC j Polynomial time (decr. w j ord.) Thm. 1

∗ p j = p̄, w j = w̄
∑

w̄C j Polynomial time (incr. a j ord.) Thm. 1

∗ a j = ā, w j = λp j
∑

w jC j Polynomial time (decr. p j ord.) Thm. 1

2 p j = 1, w j = λa j
∑

w jC j Weakly NP-hard Thm. 2

2 w j = p j = a j
∑

p jC j Weakly NP-hard Thm. 3

∗ w j = p j = a j
∑

p jC j Strongly NP-hard Thm. 3

∗ w j = p j = a j
∑

p jC j 2-approx algorithm (LPT rule) Thm. 4

Const . w j = p j
∑

p jC j PTAS Thm. 5

“∗” stands for “arbitrary”
“decr. w j ord.” means decreasing (non-increasing) w j order
“incr. a j ord.” means increasing (non-decreasing) a j order
“decr. p j ord.” is equivalent to LPT rule
“2-approx algorithm” means “polynomial time approximation algorithm with relative error 2”
“λ” is an arbitrary positive number
“PTAS” stands for “polynomial time approximation scheme”

resources are not needed. In fact, without loss of generality
we may assume that

(i)
∑

j∈J a j = ∑q
�=1 b̃�, and

(ii) b̃q > 0, i.e., at least one job must start not before uq .

In the standard α|β|γ notation of Graham et al. (1979), we
will indicate in the β field by nr = 1 that the number of
non-renewable resources is 1. In addition, we will constrain
the number of supply dates to a constant by q = const . We
will use a number of other constraints, which are standard in
the scheduling literature.

In this paper, we establish new complexity and approx-
imability results for special cases of 1|nr = 1|∑ w jC j .
The special cases are obtained by imposing constraints on the
parameters of the jobs. For instance, the constraint w j = p j

means that for each job j , its weight equals its processing
time, while w j = λp j indicates that w j is proportional to
p j , λ > 0 which is a common ratio. Furthermore, p j = 1
or p j = p̄ restricts the processing time of each job to 1 or
to some other common constant value p̄. The new results
are summarized in Table 1. As we can see, three special
cases can be solved in polynomial time by list scheduling;
we identify three new NP-hard variants and propose approx-
imation algorithms in two cases. We emphasize that the
2-approximation algorithm is merely list scheduling using
the LPT order, but the analysis of the algorithm is tricky. On
the other hand, the polynomial time approximation scheme
for 1|nr = 1, w j = p j , q = const .|∑ p jC j is rather
involved, and the underlying analysis needs new ideas, which
may be used in the analysis of other problems as well.

In Sect. 2, we overview the related literature. In Sect. 3,
we generalize list scheduling to our problem and discuss spe-
cial cases that can be solved optimally with this method. In
Sect. 4, we establish the NP-hardness of 1|nr = 1, p j =

1, a j = w j | ∑w jC j . In Sect. 5, we present complexity
results and a 2-approximation algorithm for the special case
with p j = a j = w j . Finally, in Sect. 6 we devise a PTAS
for 1|nr = 1, p j = w j , q = const .|∑ w jC j .

2 Literature review

Machine scheduling problemswith non-renewable resources
have been introduced by Carlier (1984) and Slowinski
(1984). In Carlier (1984), the computational complexity of
several variants with a single machine is established. In par-
ticular, it is shown that 1|nr = 1|∑ w jC j is NP-hard in the
strong sense, which is also proved in Gafarov et al. (2011).
However, the problem remains NP-hard in the weak sense
if q = 2 (two supplies), see Kis (2015). In Kis (2015),
an FPTAS is devised for the special case 1|nr = 1, q =
2| ∑w jC j . Moreover, Gafarov et al. (2011) study a variant
of this problem, where each job has processing time 1, and
there are n supplies such that u� = �M , and b̃� = M for
� = 1, . . . , n, where M = ∑

j∈J a j/n is an integer number,
and n = |J |.Without the non-renewable resource constraint,
the problem 1||∑ w jC j can be solved optimally in polyno-
mial time by scheduling the jobs in non-increasing w j/p j

order, a classical result of Smith (1956).
There are several results about the complexity and

approximability of machine scheduling problems with non-
renewable resources and the makespan and the maximum
lateness objective, see e.g., Slowinski (1984), Toker et al.
(1991), Xie (1997), Grigoriev et al. (2005), Györgyi and Kis
(2014, 2015a, b) and Györgyi (2017). For an overview, see
Györgyi and Kis (2017). In particular, Slowinski (1984) con-
siders a parallel machine problem with preemptive jobs, and
with a single non-renewable resource, which has an initial
stock and some additional supplies. It is assumed that the
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Fig. 1 The case C∗
j1

< S∗
j2
of Theorem 1 (c). The schedule S∗ is depicted in part (a), where the dashed line indicates two options for the length of

j2. The form of the schedule S′ if C ′
j2

≥ u� and if C ′
j2

< u� is depicted in part (b) and (c), respectively

rate of consuming the non-renewable resource is constant
during the execution of the jobs. These assumptions led to
a polynomial time algorithm for minimizing the makespan.
Toker et al. (1991) prove that the single-machine schedul-
ing problem with a single non-renewable resource and the
makespan objective reduces to the 2-machineflowshopprob-
lem provided that the single non-renewable resource has a
unit supply in every time period. In Grigoriev et al. (2005),
2-approximation algorithms are devised for the makespan
and the maximum lateness objective (under some additional
conditions). In a series of papers Györgyi and Kis (2014,
2015a, b, 2017) andGyörgyi (2017),Györgyi andKis present
approximation schemes and inapproximability results for
various special cases of single and parallelmachine problems
with the makespan and the maximum lateness objectives. In
Györgyi andKis (2018), a branch-and-cut algorithm formin-
imizing the maximum lateness is devised and evaluated.

3 List scheduling

In this section, we discuss polynomially solvable special
cases of 1|nr = 1|∑ w jC j . All the algorithms presented
beloware basedon the following extensionof thewell-known
list scheduling method:

1. Sort the jobs according to some total ordering relation.
Let L = ( j1, . . . , jn) be the sequence obtained. Let t :=
0, � := 1, and r := b̃1.

2. For i = 1 to n do
3. While a ji > r repeat let � := �+1, t := max{t, u�}, and

r := r + b̃�. End-while.
4. Schedule ji at time t . That is, set S ji := t , and then

t := t + p ji , r := r − a ji .
5. End-for
6. Output S.

In the above algorithm, t represents the time when the
next job may be scheduled, and r the resource level before
scheduling it. In Step 3, t and r are reset if the resource

available after scheduling the previous jobs is not enough to
schedule ji .Notice that in such a case, the supply ofmore than
one period may be needed to increase the available quantity
of the resource sufficiently.

The above simple algorithm is a generalization of thewell-
known algorithm that schedules the jobs in some given order
without interruptions.

Theorem 1 All of the following special cases can be solved
optimally by list scheduling:

(a) Scheduling the jobs in non-increasing w j order is opti-
mal for 1|nr = 1, p j = p̄, a j = ā| ∑ w jC j .

(b) Scheduling the jobs in non-decreasing a j order is opti-
mal for 1|nr = 1, p j = p̄, w j = w̄| ∑w jC j .

(c) For any λ > 0, the LPT1 schedule is optimal for 1|nr =
1, a j = ā, w j = λp j | ∑w jC j .

Proof The proof of optimality is left to the reader, except
in the last case, that we can verify as follows. Consider any
instance of 1|nr = 1, a j = ā, w j = λp j | ∑w jC j , and let
S∗ be an optimal schedule in which the number of job pairs
violating the LPT order is the smallest. DefineC∗

j := S∗
j + p j

for each job j . Suppose that there are at least two jobs that
are not in LPT order. Consider the first two such consecutive
jobs, say j1 and j2, where j1 is scheduled before j2, and
p j1 + K = p j2 for some K > 0. Let S′ be the schedule
where we swap the order of j1 and j2. We distinguish two
cases.

IfC∗
j1

= S∗
j2
, then S′

j1
= S∗

j1
+p j2 , S

′
j2

= S∗
j1
, and S′

j = S∗
j

for all j /∈ { j1, j2}. It is easy to verify that w j1(S
∗
j1

+ p j1) +
w j2(S

∗
j2

+ p j2) = w j2(S
′
j2

+ p j2) + w j1(S
′
j1

+ p j1), and the
objective function does not change. Since S′ is feasible, as
each job has the same resource requirement, we reached a
contradiction with the choice of S∗.

Now suppose C∗
j1

< S∗
j2
. Hence, there is an � such that

S∗
j2

= u�. Note that we have S′
j2

= S∗
j1
, S′

j1
= max{C ′

j2
, u�}.

Further on we have S′
j = S∗

j for each job j with S∗
j < S∗

j1
,

and S′
j ≤ S∗

j for each job j with S∗
j ≥ S∗

j2
, see Fig. 1. Notice

1 Non-increasing p j order.
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that only the start time of job j1 increases after swapping job
j1 and job j2. To reach a contradictionwith the choice of S∗, it
is enough to prove thatw j1C

∗
j1
+w j2C

∗
j2

≥ w j1C
′
j1

+w j2C
′
j2
.

Suppose that we have u� = S∗
j1

+ p j1 + L where L > 0. We
have

w j1C
∗
j1 + w j2C

∗
j2 = λp j1(S

∗
j1 + p j1)

+ λp j2((S
∗
j1 + p j1 + L) + p j2)

= λ(p j1S
∗
j1 + p2j1 + (p j1 + K )S∗

j1

+ (p j1 + K )(p j1 + L) + (p j1 + K )2),

and

w j1C
′
j1 + w j2C

′
j2 = λp j1(S

′
j1 + p j1)

+ λ(p j1 + K )(S∗
j1 + p j1 + K )

= λ(p j1 max{C ′
j2 , u�}

+ p2j1 + (p j1 + K )S∗
j1 + (p j1 + K )2).

Thus, w j1C
∗
j1

+ w j2C
∗
j2

− (w j1C
′
j1

+ w j2C
′
j2
) = λ(p j1S

∗
j1

+
(p j1+K )·(p j1+L)−p j1 max{C ′

j2
, u�}). Sincemax{C ′

j2
, u�}

= max{S∗
j1
+p j1+K , S∗

j1
+p j1+L}, thusw j1C

∗
j1
+w j2C

∗
j2

>

w j1C
′
j1

+ w j2C
′
j2
follows. �	

4 Problem 1|nr = 1,pj = 1,wj = �aj|∑wjCj

Theorem 2 For any λ > 0, the problem 1|nr = 1, p j =
1, w j = λa j | ∑w jC j is weakly NP-hard even for q = 2.

Proof We reduce the NP-hard PARTITION problem to our
scheduling problem. An instance of the former problem is
given by a natural number n, and the sizes of n items,
s1, . . . , sn , which are nonnegative integer numbers. One has
to decide whether the items can be partitioned into two sub-
sets, Q1 and Q2, such that

∑
i∈Q1

si = ∑
i∈Q2

si . Since all
item sizes are integer numbers, the answer is “NO”, unless
∑n

i=1 si = 2A for some integer A. Therefore, we assume
that

∑n
i=1 si is an even integer, and let A := ∑n

i=1 si/2. Let
I be an instance of PARTITION, the corresponding instance
I ′ of 1|nr = 1, p j = 1, w j = λa j | ∑w jC j consists of n
jobs, and for each item j , the corresponding job has a pro-
cessing time p j = 1, a j := s j and w j := λs j , where λ > 0
is fixed arbitrarily. In addition, there is a single resource with
an initial stock of b̃1 := A, available at time u1 := 0, and
with one more supply b̃2 := A at time u2 := n2A2.

We claim that I has a “YES” answer if and only if I ′
has a feasible schedule of objective function value at most
λ(n2A3 + 2nA). First suppose that I has a partitioning of
the items Q1, Q2 of equal size. Schedule the jobs corre-
sponding to the items in Q1 from time 0 on consecutively

in decreasing w j order, and those in Q2 from u2 consec-
utively in decreasing w j order. This schedule is clearly
feasible. Suppose Q1 = { j1, . . . , jk}, and w ji ≥ w ji+1 for
i = 1, . . . , k−1, and Q2 = { jk+1, . . . , jn}, andw ji ≥ w ji+1

for i = k + 1, . . . , n − 1. Then, we compute

∑

j

w jC j = λ

(
k∑

i=1

ia ji +
n∑

i=k+1

(n2A2 + i − k)a ji

)

< λ(n2A3 + 2nA).

Conversely, suppose the scheduling problem admits a feasi-
ble schedule S of objective function value at most λ(n2A3 +
2nA). Let C j := S j + 1 for each job j . Let Q1 = { j | S j <

u2} and Q2 = { j | S j ≥ u2}. Since S is feasible, the total
resource consumption of those jobs in Q1 is at most A. Indi-
rectly, suppose it is less than A. Then, the total weight of
those jobs in Q2 is at least λ(A + 1). But then we have

∑

j

w jC j ≥ λ
∑

j∈Q2

n2A2a j ≥ λ(n2A3 + n2A2)

> λ(n2A3 + 2nA),

which is a contradiction.
Finally, notice that the transformation is of polynomial

time complexity, which shows that there is a polynomial
reduction from PARTITION to a decision version of the
scheduling problem 1|nr = 1, p j = 1, w j = λa j | ∑w jC j .

�	

5 Problem 1|nr = 1,pj = aj = wj|∑wjCj

We start this section by providing a non-trivial expression for
the objective function value of an optimal schedule under the
condition p j = w j for every job j .

Let S be any feasible schedule for the problem, and let
C j = S j + p j be the completion time of job j in S. Let
H� denote the length of the idle period, if any, in schedule
S in the interval [u�, u�+1] and let G� = ∑�

ν=1 Hν be the
total idle time until u�+1. Let P� denote the total working
time (when the machine is not idle) in [u�, u�+1], noting that
u� = ∑�−1

ν=1 Pν +G�−1. See Fig. 2a for an illustration. Using
the new notation, we can express the objective function value
of S as follows:
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Fig. 2 a The new notations (G�,
H� and P�); b Proof of
Lemma 1

S

timeu1 u2 u3 u4 u5

H1 = 0

H2 H3 H4

G1 = H1 G2 =
2

ν=1
Hν G3 =

3

ν=1
Hν G4 =

4

ν=1
Hν

P1 P2

P3 = 0

P4 P5

(a)

S

timeu u u +1Ck t

k

B
Total gap until
u is G −1

(b)

Lemma 1 If p j = w j for each job j , then the objective func-
tion value of any feasible schedule S can be expressed as

∑

j

p jC j =
∑

j≤k

p j pk +
q∑

�=2

G�−1P�

=
∑

j≤k

p j pk+
q∑

�=2

H�−1(P� + P�+1+ · · · + Pq).

(1)

Proof Consider anyworking period B = [u�, t] in the sched-
ule S, that is, themachine is idle right before u� and right after
t , and is working contiguously throughout B. Suppose t ∈
(u�′ , u�′+1], where �′ ≥ �. Let k be an arbitrary job that is pro-
cessed in B, see Fig. 2b. We have Ck = ∑

C j≤Ck
p j +G�−1;

thus, the totalweighted completion time of the jobs processed
in B is

∑

k:Ck∈B
pk

⎛

⎝
∑

C j≤Ck

p j + G�−1

⎞

⎠

=
∑

k:Ck∈B
pk

∑

C j≤Ck

p j + G�−1

�′
∑

ν=�

Pν

=
∑

k:Ck∈B
pk

∑

C j≤Ck

p j +
�′

∑

ν=�

Gν−1Pν,

where the first equation follows from
∑

k:Ck∈B pk =
∑�′

ν=� Pμ, and the second from Gν = G�−1 for each � ≤
μ < �′, since the machine is not idle in the interval B. Since
the schedule can be partitioned intoworking and idle periods,
we derive

∑

j

w jC j =
∑

j≤k

p j pk +
q∑

�=2

G�−1P�.

Finally, the second equation of the statement of the lemma
can be derived by using the definition of G� and by rearrang-
ing terms. �	
Theorem 3 The problem 1|nr = 1, q = 2, p j = a j =
w j | ∑w jC j is weakly NP-hard, and 1|nr = 1, p j = a j =
w j | ∑w jC j is strongly NP-hard.

Proof Recall the definition of the PARTITION problem from
the proof of Theorem 2. For proving the weak NP-hardness
of 1|nr = 1, q = 2, p j = a j = w j | ∑ w jC j , we reduce
the PARTITION problem to this scheduling problem. For
any instance of PARTITION, the corresponding instance of
1|nr = 1, q = 2, p j = a j = w j | ∑w jC j consists of n
jobs, one job for each item, and pi = ai = wi = si for each
item i = 1, . . . , n. There are two supplies, one at u1 = 0
and the supplied quantity from the single resource is A, and
another at u2 = A with supplied quantity A. We claim that
the PARTITIONproblem instance has a solution if and only if
the corresponding scheduling problem instance has a feasible
solution of value at most

∑
j≤k p j pk . Using Lemma 1, the

latter holds if and only if the schedule has no idle time. So,
it suffices to prove that the PARTITION problem instance
has a solution if and only if the corresponding scheduling
problem instance admits a feasible schedule without any idle
time. First suppose that the PARTITION problem instance
has a “yes” answer, i.e., there is a subset Q of items with∑

i∈Q si = A. Schedule the corresponding jobs contiguously
in any order in the interval [0, A]. Since p j = a j , and the
supply at u1 = 0 is A, this is feasible. Now, schedule the
remaining jobs without idle times from u2 = A. The result is
a feasible schedule without idle times. Conversely, suppose
there is a feasible schedule without idle times. Then, the
machine is working throughout the interval [0, A]. Since the
supply at u1 = 0 is A, the total processing time of the jobs
starting before u2 = A is A. Let the set Q consist of the items
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Fig. 3 Notations for the LPT
schedule
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corresponding to these jobs. This yields a feasible solution
for the PARTITION problem instance.

For proving the strong NP-hardness of 1|nr = 1, p j =
a j = w j | ∑w jC j , we reduce the 3-PARTITION problem
to this scheduling problem. Recall that an instance of 3-
PARTITION consists of an positive integer t , and 3t items,
each having a size si , i ∈ {1, . . . , 3t}, where the item sizes
are bounded by polynomial in the input length. It is assumed
that

∑3t
i=1 si is divisible by t , and B/4 < si < B/2 for

each i , where B = ∑3t
i=1 si/t . The question is whether the

set of items can be partitioned into t groups Q1, . . . , Qt

such that
∑

i∈Q�
si = B for � = 1, . . . , t . The correspond-

ing instance of the scheduling problem 1|nr = 1, p j =
a j = w j | ∑w jC j has 3t jobs corresponding to the 3t items
with pi = ai = wi = si , and q = t supplies at supply
dates u� = (� − 1)B with supplied quantities b� = B for
� = 1, . . . , q. The rest of the proof goes along the same lines
as in the first part, i.e., we argue that 3-PARTITION has a
feasible solution if and only if the corresponding scheduling
problem instance has a solution of objective function value∑

j≤k p j pk if and only if there is a feasible schedule without
any idle times. �	
Theorem 4 Scheduling the jobs in LPT order is a 2-
approximation algorithm for 1|nr = 1, p j = a j =
w j | ∑w jC j .

Proof The main idea of the following proof is that first we
transform the problem data such that the resource supplies
are deferred until they are used in a selected optimal sched-
ule, and then we bound the approximation ratio of the LPT
schedule. Finally, we observe that the LPT order yields at
least as good a schedule with the original problem data as
the same job order for the modified problem data.

Let I be any instance of the scheduling problem and fix
an optimal schedule S∗ for I . Let J ∗

� be the set of jobs that
start in [u�, u�+1) in S∗. Let I ′ be a new problem instance
derived from I by modifying the supplied quantities (the
other problem data do not change): b′

1 := ∑
j∈J ∗

1
a j and for

each � ≥ 2, b′
� := ∑�

ν=1
∑

j∈J ∗
ν
a j − ∑�−1

ν=1 b
′
ν . �	

Claim 1 I ′ has the following properties:

(i) b′
� ≥ 0 for each � = 1, . . . , q,

(ii)
∑q

�=1 b
′
� = ∑n

j=1 a j ,
(iii) S∗ is optimal for I ′,
(iv) any ordering of the jobs yields at least as good a sched-

ule for I as for I ′.

Proof The first two claims are straightforward consequences
of the definitions, while (iii) and (iv) both follow from the
fact that in I ′ the resource supplies are deferred with respect
to I . �	
From now on we consider I ′.

Let SLPT denote the schedule obtained from the LPT
order for problem instance I ′, and let CLPT

j denote the com-

pletion time of job j in this schedule. Let GLPT
� denote the

total idle time in SLPT in [0, u�+1] and PLPT
� the total work-

ing time (when the machine processes a job) in [u�, u�+1].
We have u� = ∑�−1

ν=1 Pν + GLPT
�−1 .

Let us define P̃ L PT
� as follows. If the machine is working

just before u�, or idle just after u� in SLPT , then P̃ L PT
� = 0;

otherwise, P̃ L PT
� equals the length of the working period

starting at u� until the first idle period in SLPT , see Fig. 3.
Notice that if the machine is working right before and also
right after u�, then P̃ L PT

� = 0 by definition.
According to Lemma 1, we can express the total weighted

processing time of the LPT schedule as follows:

∑

j∈J
p jC

LPT
j =

∑

j≤k

p j pk +
q∑

�=2

GLPT
�−1 PLPT

�

=
∑

j≤k

p j pk +
q∑

�=2

GLPT
�−1 P̃ L PT

� .

(2)

Note that the second equation follows from the fact that if
P̃ L PT

� = 0, then GLPT
�−1 = GLPT

�′−1 for the largest �′ < � with

P̃ L PT
�′ > 0.
In the next claim, we relate (2) to (1). The notations P∗

� ,
G∗

� and H∗
� refer to P�, G� and H� in case of S∗. Note that

u� = ∑�−1
ν=1 P

∗
ν + G∗

�−1.

Claim 2 If P̃ L PT
� > 0, i.e., the machine is idle just before u�,

and a job j(�) is started at u� in SLPT , then

(i)
∑�−1

ν=1 P̃
L PT
ν + p j(�) >

∑�−1
ν=1 P

∗
ν and

∑q
ν=� P̃

L PT
ν <

∑q
ν=� P

∗
ν + p j(�),
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u1 = 0

b̃1 = n− 1
u2 = n2

b̃2 = n

LPT

t

OPT

t

jn j1 j2 . . . jn−1

jnj1 j2 . . . jn−1

Fig. 4 Tight example: the optimal schedule (above) and the LPT schedule (below) for the same instance

(ii) GLPT
�−1 < G∗

�−1 + p j(�).

Proof If
∑�−1

ν=1 P̃
L PT
ν + p j(�) ≤ ∑�−1

ν=1 bν were true, then
j(�) could be scheduled earlier in SLPT . Thus, we have
∑�−1

ν=1 P̃
L PT
ν +p j(�) >

∑�−1
ν=1 bν . Sincewe have

∑�−1
ν=1 P

∗
ν ≤

∑�−1
ν=1 bν , (i) follows. The second inequality of (i) follows

from
∑q

ν=1 P̃
L PT
ν = ∑q

ν=1 P
∗
ν . Finally, (ii) follows from

∑�−1
ν=1 P̃

L PT
ν + GLPT

�−1 = u� = ∑�−1
ν=1 P

∗
ν + G∗

�−1. �	
Using (2) and Claim 2 (ii), we derive

∑

j∈J
p jC

LPT
j ≤

∑

j≤k

p j pk +
q∑

�=2

(G∗
�−1 + p j(�)) · P̃ L PT

�

≤ 2 ·
∑

j≤k

p j pk +
q∑

�=2

G∗
�−1 P̃

L PT
�

= 2 ·
∑

j≤k

p j pk +
q∑

�=2

(
�−1∑

ν=1

H∗
ν

)

P̃ L PT
�

= 2 ·
∑

j≤k

p j pk +
q∑

�=2

H∗
�−1

⎛

⎝
q∑

μ=�

P̃ L PT
μ

⎞

⎠ ,

where the first inequality follows from Claim 2 (ii), the sec-
ond from the observation that p j(�) is multiplied by the total
processing time of job j(�) and all those jobs following j(�)
in the LPT order, and the rest is obtained by rearranging
terms.

Since
∑

j p jC∗
j = ∑

j≤k p j pk + ∑q
�=2 H

∗
�−1

( ∑q
μ=�

P∗
μ

)
(from Lemma 1), it is enough to prove

Claim 3

q∑

μ=�

P̃ L PT
μ ≤ 2 ·

q∑

μ=�

P∗
μ ∀� ≥ 2 : H∗

�−1 �= 0.

Note that H∗
�−1 �= 0means themachine is notworking before

u� in S∗,
∑q

μ=� P̃
L PT
μ equals the total amount of work after

u� in SLPT , while
∑q

μ=� P
∗
μ is the same in the optimal sched-

ule S∗.

Proof (of Claim 3) First we prove the claim for each � such
that P̃ L PT

� �= 0. Consider such an �. If
∑q

μ=� P
∗
μ were less

than p j(�), then each job with a processing time at least p j(�)

would be scheduled before u� in S∗; thus,
∑�−1

ν=1 b
′
ν would be

at least the total processing time of these jobs. However, this
would mean that j(�) could be scheduled earlier (recall that
the machine is idle just before u� in SLPT ); thus, we have
∑q

μ=� P
∗
μ ≥ p j(�). Since P̃ L PT

� �= 0, we can use Claim 2 (i)
and we have

q∑

μ=�

P̃ L PT
μ ≤

q∑

μ=�

P∗
μ + p j(�) ≤ 2 ·

q∑

μ=�

P∗
μ

Now suppose that P̃ L PT
� = 0. If

∑q
μ=� P̃

L PT
μ = 0, then

the claim is trivial. Otherwise, let �′ > � be the smallest index
such that P̃ L PT

�′ �= 0. Since we know that the claim is true
for �′, we have

q∑

μ=�

P̃ L PT
μ =

q∑

μ=�′
P̃ L PT

μ ≤ 2 ·
q∑

μ=�′
P∗

μ ≤ 2 ·
q∑

μ=�

P∗
μ

and we are ready. �	
Finally, as we have already noted, the LPT ordering of the
jobs yields at least as good a schedule for I as the same job
order for I ′, and the theorem is proved. �	
Tight example For any integer n ≥ 3 consider the scheduling
problemwith n jobs, the first n−1 jobs are of unit processing
time, while the last job has processing time n. That is, p j =
a j = w j = 1 for j = 1, . . . , n − 1, and pn = an = wn = n
for job n. There are two supplies, one at u1 = 0with supplied
quantity n−1, and another at u2 = n2 with supplied quantity
n. In the optimal schedule, the first n − 1 jobs are scheduled
from time 0, and the last job is scheduled at time n2 (at
u2), see Fig. 4. That is, C∗

j = j for j = 1, . . . , n − 1, and

C∗
n = n2 + n. The optimal objective function value is

n∑

j=1

p jC
∗
j = n(n − 1)/2 + (n3 + n2).

In contrast, in the LPT schedule job n comes first, but it
can be scheduled only at time u2 = n2, since its demand is
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u1 u2 uq
t

t

j1 j2 j3 j4 j5 j6

j1 j2 j3 j4 j5 j6 Sq S2 S1

Fig. 5 Step 4 of the PTAS

n. Hence, CLPT
n = n2 + n, and CLPT

j = n2 + n + j for
j = 1, . . . , n − 1. Consequently,

n∑

j=1

p jC
LPT
j = (n3 + n2) +

n−1∑

j=1

(n2 + n + j)

= (n3 + n2) + (n2 + n)(n − 1)+n(n − 1)/2.

Therefore, the relative error of LPT on these instances is

(n3 + n2) + (n2 + n)(n − 1) + n(n − 1)/2

n(n − 1)/2 + (n3 + n2)

= 2n3 + O(n2)

n3 + O(n2)
,

which tends to 2 as n goes to infinity.

6 PTAS for 1|nr = 1,pj = wj,

q = const|∑wjCj

Nowwe consider the special case when the number of supply
dates is a constant (not part of the input), and at least 3 (for
q = 2, there is an FPTAS for the general problem 1|nr =
1, q = 2| ∑w jC j Kis 2015), and p j = w j for each job j .
Theorem3 implies that this version is still NP-hard.However,
below we describe a PTAS for it.

Let Psum := ∑
j p j be the total processing time of the

jobs. LetΔ := 1+(ε/q2). Wewill guess the total processing
time of those jobs starting after u� for � = 2, . . . , q, where a
guess is aq−1dimensional vector of non-increasingnumbers
Pg
2 , . . . , Pg

q , i.e., P
g
� ≥ Pg

�+1 ≥ 1 for � = 2, . . . , q − 1, and
each Pg

� is of the form Δt for some integer t ≥ 0 with
Δt ≤ Psum. Also, fix Pg

1 := Psum. For any guess, define
the set of large size jobs M� := { j | p j ≥ (Δ − 1)Pg

� }.
Note that Mq ⊇ Mq−1 ⊇ · · · ⊇ M1, since Pg

q ≤ Pg
q−1 ≤

· · · ≤ Pg
1 . Let S� be the complement of M�, i.e., S� :=

{ j | p j < (Δ − 1)Pg
� }. Clearly, Sq ⊆ Sq−1 ⊆ · · · ⊆ S1.

After these preliminaries, the PTAS for 1|nr = 1, p j =
w j , q = const |∑ w jC j consists of the following steps:

1. Consider each possible guess (Pg
2 , . . . , Pg

q ) of the total
processing time of those jobs starting after the supply
dates u2, . . . , uq , respectively. For each possible guess,

define the sets of jobs M� and S� (see above), and per-
form the steps 2–5. After processing all the guesses, go
to Step 6.

2. For each � = 1, . . . , q, choose at most 1/(Δ − 1) large
size jobs from M� (since the sets M� are not disjoint,
care must be taken to choose each job at most once). For
each possible choice (T1, . . . , Tq) of the large size jobs
(where T� ⊆ M�), perform steps 3–5. After evaluating
all choices, continue with the next guess in Step 1.

3. Determine a schedule of the large jobs. That is, for
� = 1, . . . , q, schedule the jobs in T� in any order con-
tiguously after u�, and after all the previously scheduled
jobs.

4. Let J u
0 be the set of unscheduled jobs. For � = q, q −

1, . . . , 1, repeat the following. In a general step with � ≥
2, pick jobs fromJ u

q−�∩S� in non-increasinga j/p j order
until the selected subset K� satisfies p(K�) + p(T�) ≥
Pg

� − (1/Δ)Pg
�+1, or no more jobs are left, i.e., K� =

J u
q−� ∩ S�. In either case, insert the jobs of K� in any

order after u� and after all the jobs in T1∪· · ·∪T�−1, and
before all the jobs in T� ∪ ⋃q

�′=�+1(K�′ ∪ T�′) (pushing
some of them to the right if necessary). Let J u

q−�+1 :=
J u
q−�\K� and continue with �−1 until � = 1 or no more

unscheduled jobs are left. For � = 1, just schedule all the
remaining jobs from time u1 = 0 on (pushing the already
scheduled jobs to the right, if necessary). If the complete
schedule obtained satisfies the resource constraints, then
continue with Step 5, otherwise with the next choice of
large size jobs in Step 2. See Fig. 5 for illustration.

5. Compute the objective function value of the complete
schedule obtained in step (4) and store this schedule as
the best schedule if it is the first feasible schedule or if
it is better than the best feasible schedule found so far.
Continue with next choice of large size jobs in Step 2.

6. Output the best schedule found in the previous steps.

Theorem 5 The above algorithm is a PTAS for 1|nr =
1, p j = w j , q = const |∑ w jC j .

Proof Let I be any instance of the scheduling problem and
S∗ an optimal solution for I . Let P̂∗

� be the total processing

time of those jobs starting after u� in S∗. Clearly, P̂∗
� ≥ P̂∗

�+1
for � = 1, . . . , q − 1. Consider the guess Pg

2 , . . . , Pg
q in

Step 1 of our algorithm such that P̂∗
� ≤ Pg

� < ΔP̂∗
� for each
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� = 2, . . . , q. Such a guess must exist by the definition of
guesses.

For each � = 1, . . . , q, let us partition the set of jobs that
start in the interval [u�, u�+1) in the schedule S∗ into subsets
T ∗

� ⊆ M� and K ∗
� ⊆ S�. Clearly, the sets T ∗

� are disjoint, and
the cardinality of each T ∗

� is at most 1/(Δ − 1), since Pg
� ≥

P∗
� , and thus each job in T ∗

� is of size at least (Δ − 1)Pg
� ≥

(Δ − 1)P̂∗
� , while the total size of all the jobs starting after

u� in S∗ is P̂∗
� by definition. Therefore, the algorithm will

enumerate and process the choice (T ∗
1 , . . . , T ∗

q ) in Step 2. In
the rest of the proof, we fix this choice of large jobs. After
scheduling them in Step 3, the resulting schedule is like S∗,
except that some jobs may be yet unscheduled. Thus, we
performStep4, and let SA be the resulting schedule. InStep 4,
the algorithm will find sets of jobs K1, . . . , Kq , and it may
well be the case that K ∗

� �= K� for some �, but we know that
⋃q

�=1 K� = ⋃q
�=1 K

∗
� , since in S∗ and SA, for each �, the

same subset T ∗
� of M� is chosen. We will prove that SA is

a feasible schedule and that its objective function value is at
most 1 + O(ε) times the optimum.

Claim 4 The total processing time of those jobs that start
after u� in S∗ and in SA, respectively, satisfies the inequalities

P̂∗
� ≤

q∑

�′=�

∑

j∈T ∗
�′∪K�′

p j ≤ (1 + 6(ε/q))P̂∗
� , � = 2, . . . , q.

(3)

Proof First notice that for each � = 2, . . . , q, we have

∪q
�′=�

K ∗
�′ ⊆ S�\

(⋃q
�′=�+1 T

∗
�′
)
, since K ∗

�′ ⊆ S�′ ⊆ S�

and T ∗
�′ ∩ K ∗

�′ = ∅ for �′ ≥ �, and similarly, ∪q
�′=�

K�′ ⊆
S�\

(⋃q
�′=�+1 T

∗
�′
)
. We prove (3) by induction. Along with

(3), we will also prove

p(T ∗
� ) + p(K�) ≤ ΔPg

� − (1/Δ)Pg
�+1, � = 2, . . . , q,

(4)

where we define Pg
q+1 := 0. The base case is for � = q + 1,

when all the inequalities trivially hold (we define P̂∗
q+1 := 0).

Now suppose that (3) and (4) hold for � + 1 for some � ≥ 2,
and we verify them for �.

First suppose that p(K�) + p(T ∗
� ) ≥ Pg

� − (1/Δ)Pg
�+1.

Since P̂∗
� − P̂∗

�+1 equals the total processing time of those

jobs that start in the interval [u�, u�+1) in S∗, and P̂∗
� ≤

Pg
� < ΔP̂∗

� , we have

p(T ∗
� ) + p(K ∗

� ) = P̂∗
� − P̂∗

�+1 ≤ Pg
� − (1/Δ)Pg

�+1

≤ p(T ∗
� ) + p(K�).

(5)

So, the induction hypothesis implies the first inequality in (3).
To verify the second one, recall that in Step 4 we stop select-

ing jobs as soon as p(T ∗
� )+ p(K�) exceeds P

g
� −(1/Δ)Pg

�+1,
and the processing time of all jobs in S� is bounded by
(Δ − 1)Pg

� , which implies (4) for �, since

p(T ∗
� ) + p(K�) < Pg

� − (1/Δ)Pg
�+1 + (Δ − 1)Pg

�

= ΔPg
� − (1/Δ)Pg

�+1.

Using the induction hypothesis, we obtain

q∑

�′=�

(p(T ∗
�′ ) + p(K�′)) ≤

q∑

�′=�

(ΔPg
�′ − (1/Δ)Pg

�′+1)

< Δ2Pg
� +

q∑

�′=�+1

(Δ2 − 1)Pg
�′ .

(6)

A simple calculation shows that Δ2 < 1 + 3(ε/q2) <

1 + (ε/q) (since q ≥ 3 by assumption); therefore, the
right-hand side of (6) is less than (1 + (ε/q))Pg

� +
3(ε/q2)

∑q
�′=�+1 P

g
�′ ≤ (1+ 4(ε/q))Pg

� . Since Pg
� < ΔP̂∗

� ,
and (1 + 4(ε/q))Δ < 1 + 6(ε/q) (since q ≥ 3 by assump-
tion), the second inequality in (3) follows.

Now suppose K� = J u
q−� ∩ S� and p(K�) + p(T ∗

� ) <

Pg
� − (1/Δ)Pg

�+1 in Step 4 of the algorithm at iteration
�. Then, we deduce that in SA, all the small jobs in

S�\
(⋃q

�′=�+1 T
∗
�′
)
are scheduled after u� in the iterations

�, . . . , q, while in S∗, some jobs of S�\
(⋃q

�′=�+1 T
∗
�′
)
may

be started before u�. Therefore, the first inequality in (3)
holds in this case as well. To verify the second inequality in
(3), note that since p(K�) + p(T ∗

� ) < Pg
� − (1/Δ)Pg

�+1 by
assumption, (4) follows immediately. Then, using the induc-
tion hypothesis, we obtain (6), and then the same argument
applies as above. �	

In order to prove (resource) feasibility, we need some
further technical results. To simplify notation, suppose
S1\⋃q

�=2 T
∗
� = {1, . . . , n1} and a j/p j ≥ a j+1/p j+1 for

1 ≤ j < n1, i.e., job j is the j th job in the ordered sequence.
Let Xt := {1, . . . , t} be the index set of the first t ≤ n1 jobs
with the largest a j/p j ratio.

Claim 5 There exists a unique t ∈ {0, . . . , n1} such that

q⋃

�′=�

K�′ = Xt ∩
(

S�\
q⋃

�′=�

T ∗
�′

)

(7)

Proof If
⋃q

�′=�
K�′ is the empty set, then t = 0will do.Other-

wise, let t be the maximum element in
⋃q

�′=�
K�′ . Indirectly,

suppose there exists some t ′ < t such that t ′ /∈ ⋃q
�′=�

K�′ ,
but t ′ ∈ S�\⋃q

�′=�
T ∗

�′ . Then, at some iteration in Step 4 of
the algorithm, t would be chosen in place of t ′ < t , which is
a contradiction. �	
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Corollary 1 For the job index t defined in Claim 5,

( q⋃

�′=�

K ∗
�′

)

∩
( q⋃

�′=�

K�′

)

= Xt ∩
( q⋃

�′=�

K ∗
�′

)

.

Claim 6 For each t = 1, . . . , n1, and 2 ≤ � ≤ q, we have

∑

j∈Xt∩(∪q
�′=�

K�′ )

p j ≥
∑

j∈Xt∩(∪q
�′=�

K ∗
�′ )

p j (8)

Proof We proceed by induction, the base case being for � =
q. Then, Kq , K ∗

q ⊆ Sq . If Kq is a proper subset ofSq , thenwe
have p(K ∗

q ) ≤ p(Kq) by (5). Otherwise, Kq = Sq ⊇ K ∗
q ,

and we have p(K ∗
q ) ≤ p(Kq) in this case, too. For the sake

of a contradiction, suppose there exists 1 ≤ t ≤ n1 such that
(8) does not hold. Let t be the smallest such job index. Then,
job t ∈ K ∗

q \Kq ; otherwise, t could be decreased. Then, Kq

does not contain any job v with v > t ; otherwise, before
picking v, the algorithm would have picked t . But then

∑

j∈Kq∩Xt

p j =
∑

j∈Kq

p j ≥
∑

j∈K ∗
q

p j ≥
∑

j∈K ∗
q∩Xt

p j ,

which is a contradiction.
Now assume by induction that (8) holds for � = k + 1,

with k ≥ 2, and for all 1 ≤ t ≤ n1, and we check it for � = k.
We distinguish two cases.

– K� ⊂ S�\⋃q
�′=�+1(T

∗
�′ ∪ K�′). Then, we have p(K ∗

� ) ≤
p(K�) by (5). For the sake of a contradiction, suppose
there exists 1 ≤ t ≤ n1 such that (8) does not hold. Let t
be the smallest such job index. Then, it must be the case
that t ∈ (K ∗

� ∪ · · · ∪ K ∗
q )\(K� ∪ · · · ∪ Kq); otherwise,

t could be decreased. So suppose t ∈ K ∗
�′ for some � ≤

�′ ≤ q. Then, {t, . . . , n1}∩ K� = ∅, because if not, then,
since t ∈ K ∗

�′ ⊆ S�′ ⊆ S�, the algorithm would have
chosen t before picking some v ∈ {t + 1, . . . , n1} ∩ K�.
Consequently, K� ⊆ Xt−1. Now we use the induction
hypothesis:

∑

j∈Xt∩(K�∪···∪Kq )

p j =
∑

j∈K�

p j +
∑

j∈Xt∩(K�+1∪···∪Kq )

p j

≥
∑

j∈K�

p j +
∑

j∈Xt∩(K ∗
�+1∪···∪K ∗

q )

p j

≥
∑

j∈K ∗
� ∩Xt

p j +
∑

j∈Xt∩(K ∗
�+1∪···∪K ∗

q )

p j ,

where the first equation follows from K� ⊆ Xt−1 ⊂ Xt ,
the first inequality from the induction hypothesis, and
the last inequality from the fact that p(K�) ≥ p(K ∗

� ).

However, the derived inequality is just (8) for � and t , a
contradiction.

– K� = S�\⋃q
�′=�+1(T

∗
�′ ∪ K�′). Since

⋃q
�′=�

K ∗
�′ ⊆ S�\⋃q

�′=�+1 T
∗
�′ , we can observe that each t ∈ S�\⋃q

�′=�+1
T ∗

�′ belongs to one of the sets K�′ with � ≤ �′ ≤ q, but
may not belong to any of the sets K ∗

�′ with � ≤ �′ ≤ q.
Hence, the claim follows in this case, too. �	

Corollary 2 For each � = 2, . . . , q, we have

∑

j∈⋃q
�′=�

K�′

p j ≥
∑

j∈⋃q
�′=�

K ∗
�′

p j .

Now we verify resource feasibility by showing that for
each � = 2, . . . , q,

∑

j∈⋃q
�′=�

K�′

a j ≥
∑

j∈⋃q
�′=�

K ∗
�′

a j . (9)

This suffices to prove the feasibility of SA, because then for
each � = 2, . . . , q, the total resource consumption of those
jobs that start after u� in SA is at least as much as that in
S∗. Therefore, the total resource consumption of those jobs
that start not later than u� in SA cannot be more than that in
S∗. Hence, SA is a feasible schedule. Let t be the job index
defined in Claim 5. Now we compute

∑

j∈⋃q
�′=�

K ∗
�′

a j =
(a)

∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
)
a j

+
∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
)

(
a j

p j

)

· a j

≤
(b)

∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
)
a j

+ max
j∈Xt∩

(⋃q
�′=�

K ∗
�′

)
a j

p j

⎛

⎜
⎜
⎝

∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
)
p j

⎞

⎟
⎟
⎠

≤
(c)

∑

j∈
(⋃q

�′=�
K ∗

�′
)
∩

(⋃q
�′=�

K�′
)
a j

+ min
j∈

(⋃q
�′=�

K�′
)
\
(⋃q

�′=�
K ∗

�′
)
a j

p j

×

⎛

⎜
⎜
⎝

∑

j∈
(⋃q

�′=�
K�′

)
\
(⋃q

�′=�
K ∗

�′
)
p j

⎞

⎟
⎟
⎠

≤
(d)

∑

j∈⋃q
�′=�

K�′

a j ,
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where (a), (b) and (d) are obvious, and (c) follows from three
observations:

(i) the first terms of the two expressions are the same by
Corollary 1,

(ii) the inequality between the second terms follows from

max
j∈Xt∩

(⋃q
�′=�

K ∗
�′

)
a j

p j
≤ min

j∈
(⋃q

�′=�
K�′

)
\
(⋃q

�′=�
K ∗

�′
)
a j

p j
,

since the jobs are indexed in non-increasing a j/p j

order, and
⋃q

�′=�
K�′ ⊆ Xt , and from

(iii)

∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
)
p j ≤

∑

j∈
(⋃q

�′=�
K�′

)
\
(⋃q

�′=�
K ∗

�′
)
p j ,

which can be derived from the inequality of Corollary 2
by subtracting the equation

∑

j∈Xt∩
(⋃q

�′=�
K ∗

�′
) p j =

∑

j∈
(⋃q

�′=�
K ∗

�′
)
∩

(⋃q
�′=�

K�′
) p j (Corollary 1) from it.

Now we bound the objective function value of SA. Again,
we need a technical result. Let H A

� denote the idle time in
[u�, u�+1) in the schedule SA, and GA

� the total idle time
before u�+1.

Claim 7 H A
� ≤ H∗

� + (6ε/q)P̂∗
�+1.

Proof Observe that in SA at most (6ε/q)P̂∗
�+1 more work is

scheduled after u�+1 than in S∗ by inequality (3). Therefore,
the total gap in SA before u�+1 is at most (6ε/q)P̂∗

�+1 more
than in S∗, i.e.,

GA
� ≤ G∗

� + (6ε/q)P̂∗
�+1.

On the other hand,G∗
�−1 ≤ GA

�−1, since in S
A,

∑q
�′=�

(p(T ∗
�′ )

+ p(K�′)) ≥ P̂∗
� by (3). Now, using the fact that GA

� =
GA

�−1 + H A
� , we obtain

H A
� = GA

� − GA
�−1 ≤ G∗

� + (6ε/q)P̂∗
� − G∗

�−1

= H∗
� + (6ε/q)P̂∗

�+1.

�	
Now we compute:

∑

j∈J
p jC

A
j =

∑

j≤k

p j pk +
q∑

�=2

H A
�−1 ·

q∑

�′=�

p(T ∗
�′ ∪ K�′)

≤
∑

j≤k

p j pk +
q∑

�=2

(H∗
�−1 + (6ε/q)P̂∗

� )(1 + (6ε/q))P̂∗
�

≤
∑

j≤k

p j pk + (1 + (6ε/q))

q∑

�=2

H∗
�−1 P̂

∗
� + O(ε)(Psum)2

≤
∑

j≤k

p j pk+(1 + (6ε/q))

q∑

�=2

H∗
�−1 P̂

∗
� +O(ε)

∑

j≤k

p j pk

≤ (1 + O(ε))
∑

j∈J
p jC

∗
j .

It remains to verify the running time of the algorithm.
The number of guesses in Step 1 is O((logΔ Psum)q) which
is bounded by O(((q2/ε) ln Psum)q), which is polynomial
in the size of the input. The number of choices in Step 2 is
bounded by O(nq

3/ε). The rest can be done in O(n2) time for
every guess (Pg

2 , . . . , Pg
q ) and choice of jobs (T1, . . . , Tq).

Hence, the total time complexity is polynomial bounded in
the size of the input. �	

7 Final remarks

In this paper, we have established new complexity and
approximability results for single-machine scheduling prob-
lems with non-renewable resource constraints and the total
weighted completion time objective. As it has turned out,
list scheduling is a useful tool in solving a number of special
cases, and it can also be the basis of designing approximation
algorithms.

There are a number of open problems. For instance,
what is the complexity of 1|nr = 1, a j = 1| ∑C j? Is
there a polynomial time approximation algorithm of constant
approximation ratio for the problem 1|nr = 1|∑ w jC j?
What is the approximability status of the special case 1|nr =
1, p j = 1, w j = a j | ∑ w jC j?
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