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Abstract

In this paper, we illustrate how tracing in distributed data processing systems can be applied to improve system efficiency. By the
tracing of individual input records, we may (1) identify outliers in a web crawling and document processing system and use the
insights to define URL filtering rules; (2) identify heavy keys such as NULL that should be filtered before processing; (3) give hints
to improve the key-based partitioning mechanisms; and (4) measure the limits of overpartitioning if heavy thread unsafe libraries
are imported.

We achieve optimizations in data stream processing by our implementation of a distributed tracing engine for Apache Spark. We
describe and qualitatively compare two different designs, one based on reporting to a distributed database and another based on trace
piggybacking. Our prototype implementation consists of wrappers suitable in general for JVM environments, with minimal impact
on the source code of the core system. Our tracing framework is the first to solve tracing in multiple systems across boundaries and

to provide detailed performance measurements suitable for optimization not just debugging.
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1. Introduction

Monitoring cloud computing platforms is a complex task of
high practical relevance [1]. In a cloud environment, one of
the main challenges lies in understanding, troubleshooting dis-
tributed data processing systems (DDPS), and detecting causes
of performance degradation.

In this paper, we propose and evaluate a tracing framework
for DDPS, in which user programs are executed in numerous
parallel tasks that process certain partition of the data. The user
program consists of user defined functions (UDFs), first order
functions plugged into second order functions such as map and
reduce. For batch processing, data splitting is usually done in
advance during storage, while for data stream processing, when
partitioned data is sent to the first operators. In all cases, at
the moment of the partitioning decision, the system is unaware
of possible bottlenecks or skew distributions. Furthermore, the
forthcoming, potentially dynamic execution graph is also un-
known, which often leads to suboptimal decisions.

Traces are per-record information that we collect at runtime
to capture causality relations between past, present and future
records at specific points of the topology. From the traces, we
may reconstruct a lineage, which is another name of data prove-
nance [2] to describe the origins and the processing history of
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an output record. After recording the traces, we build and an-
alyze the lineages of individual records by an external service
separate from the DDPS.

We describe and measure DDPS applications where we use
lineage analysis to identify application or platform-wide prob-
lems such as outliers, load imbalance, or sub-optimal co-
location between services. For example, we use our system
to identify outliers such as very large or misformed Web docu-
ments in a streaming Web crawler, which we may then handle
in additional preprocessing and filtering steps. Or we may mea-
sure the skewness in key-based partitioned processing and pro-
pose new partitioning heuristics to speed up computations. For
overpartitioned load balancing solutions, we may also identify
where heavy thread-unsafe libraries are included in each execu-
tor and find the best balance in the number of partitions.

Tracing is especially difficult for a streaming DDPS. Stream
processing systems preserve no data and temporary steps dur-
ing execution unlike batch computing, where stages of work-
loads are replayable [3]. Recording causality at the record-level
might add an undesirable overhead both in runtime and in tail
latency, the latter measured for a possible computational path
accidentally overloaded with trace recording operations.

In order to efficiently trace individual records in both batch
and streaming data processing systems, in this paper we pro-
pose and compare two alternatives. In the first solution, we
directly report fine-grained events for a sample of records into
an external distributed key-value store. And in the second so-
lution, we piggyback sample records by the execution trace. In
our experiments, both solutions are capable of implementing
tracing in Apache Spark with low impact on the system and
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the application code base. In addition, direct reporting has de-
sirable low computational overhead, while piggybacking turns
out computationally expensive in practice for most use cases.

Previous works solely focus on single batch DDPS or pro-
vide debugging capabilities offline. Although several solutions
have been proposed on top of existing frameworks, low-level
metrics of User Defined Functions (UDFs) and low overhead
can not be provided without intrusionistic modification of data
processing engines [3]. Moreover, efficient design to achieve
platform-wide tracing in multi-system scenarios has not been
studied previously.

We consider holistic tracing of record lineages [4]. Our goal
is to detect inefficiencies to increase performance of the com-
pute topology, reduce tail-latency and better utilize the under-
lying platform. In this paper we focus on the tracing design and
practical problems that can be solved using our framework. Our
contribution is the following:

1. We present a generic tracing framework design for batch
and streaming DDPS.

2. We provide two different prototype implementations, both
built by a minimal code impact for Apache Spark [5].

3. We experiment with traced Spark appications to obtain
low-level UDF metrics and detailed representation of
causality of individual records.

4. We measure and compare the overhead of our tracing
frameworks. We identify direct reporting as a low-impact
solution for monitoring system efficiency.

5. Using the tracing framework, we show that common com-
plex, inter- or intra-system data pipelines can be optimized
by identifying issues which are hard to detect otherwise.

The rest of the paper is organized as follows. In Section 2, we
describe sample use cases that can be simultaneously identified
by visualizing and analyzing the traces of the streaming system.
Then, we outline our tracing mechanism and functional API in
Section 3, while Section 4 contains the details of the implemen-
tation in Apache Spark. We measure the overhead of the tracing
framework in Section 5 and demonstrate the performance gains
that can be achieved by tracing, in three use cases, in Section 6.
We conclude the paper with an overview of the related works in
Section 7.

2. Applications

In this section, we describe several distributed data process-
ing applications, where we may deploy tracing for performance
optimization. In a DDPS, user programs compiled into a Di-
rected Acyclic Graph (DAG) of computation, which represents
a logical execution plan. The computation consists of parallel
operations, where data is first split and partitioned to operator
instances. After partitioning, the prescribed user defined func-
tion (UDF) is executed in parallel.

Typically, the first parallel operation is flatmap and map,
where records shuffled, processed independently, and one out-
put record is produced by map and multiple output records by
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Figure 1: Key grouping operations may produce imbalanced partition sizes on
the reducer side. In this example, the heaviest key, us, results in a straggler task
with additional random keys (represented by empty areas) also mapped there.
Since Spark synchronizes operations, a straggler task affects the runtime of the
whole stage. Explicitly assigning us records to a partition alone and reassigning
other keys reduces job completion time.

flatmap. Shuffling mechanisms for map and flatmap can, for ex-
ample, be round robin or random hashing, which usually result
in even load balance.

Other parallel functions such as reduce, groupBy or join
typically consume the output of map or other operations by
key grouping: data is represented by key-value pairs, and the
records with the same key are assigned to the same instance.
Key grouping may however be strongly affected by key imbal-
ance and lead to straggler operator instances.

As we will illustrate in this section, the main reason for sys-
tem inefficiency is suboptimal workload partitioning for oper-
ator instances. Through five different examples, we show why
certain partitions may hinder execution either by containing too
many records, containing certain records that require excessive
computational time, overuse of resources such as exceeding
memory limits, incur data errors that result in exceptions, or
slow down due to suboptimal co-location with other resources
such as external key-value stores. Given the motivating exam-
ples, our main goal in the rest of the paper will be to devise,
illustrate and measure a tracking system that identify the cause
of system inefficiency.

2.1. Data skew

Real world data usually follows power-law distribution. In a
distributed processing step that groups records by keys, a key
with high frequency will often end up in an overloaded par-
tition. The task processing this partition will be identified as
a straggler, and the synchronous DDPS can not progress with
the next stage of computation, until all tasks finish. The prob-
lem exists in asynchronous DDPS as well. Wide array of spe-
cialized solutions (for example [6, 7]) have been developed in
the past to capture key distribution during shuffle phase, which
is necessary to provide uniform partitioning over all compute
nodes.



Data skew may result in straggler operator instances in re-
duce, groupBy or join operations. The output of the preced-
ing operation, typically map, is grouped by key. Without prior
knowledge to data distribution, a hash-partitioner is used, which
distributes keys uniformly among partitions and heavy keys
may end up in excessively large partitions, as illustrated in
Fig. 1.

The typical solution to mitigate the effect of heavy keys to
include a map side combiner, an optional second order func-
tion that pre-aggregates records into key-groups before they are
shuffled over the network. In certain cases, however, no map-
side combiner can be applied. In the following code snippet
builds an inverted index using groupBy operation, the entire
sequence of word, file, count triplets have to be processed by
the same operator instance to produce the search index.

countOfWordsPerFiles
.groupBy { case (word, (file, count)) => word }
.map {
case (word, sequence) =>
word -> sequence.map(
case (_, (f, c)) => (£, ¢)
) .mkString(¢‘, )
}

.saveAsTextFile(...)

By tracing, we may identify “elephant keys” or keys with in-
creased computational cost, that overload certain nodes in the
topology (for example in a skewed join). With a tracing frame-
work, key distributions at all intermediate steps can be approx-
imated, which may enable heuristics for online and balanced
data partitioning.

2.2. Operator fission

When higher level programming language is used, for ex-
ample SQL, the DDPS might use an SQL optimizer to further
improve the logical plan. Several levels of internal optimiza-
tion engines usually pipeline many UDFs into a single oper-
ator instance physically, which may then overuse memory or
other resources, while not providing the necessary granularity
of tasks for the cluster manager to make beneficial scheduling
decisions. Instead of eager pipelining, several UDFs should be
refactored into a separate parallel region (stage) in the physi-
cal execution plan. Moreover, the weight of certain UDFs can
change over time, which calls for a dynamic, online fission [8].
Fig. 2 shows an example of useful operator split and fission.

We illustrate complex execution pipelines by a telecommuni-
cation analytic use case, where we fetch and aggregate contex-
tual information for user, communication tower, region, radio
cell, gateway, session, device and operator, in order to compute
user specific business KPIs such as network stability, download
speed and latency. On Apache Spark, we split heavy flattener
operators during the enrichment phase of an analytic workload.
From the communication packet log stream, we compute user
KPIs periodically by enriching with contextual data. During
this phase, Apache Spark pipelined the whole operation into a
single mapper, where multiple database connections and buffers
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Figure 2: On the left hand side, we detect two heavy UDFs, f and g by ex-
amining their average runtime per record. Instead of naively scaling the region
horizontally, two optimizations are detected. First, split the operators by refac-
toring f and g into separate containers. Second, increase the parallelism of the
operator that includes the heaviest UDF, f.

caused frequent out-of-memory errors and resulted in ineffi-
cient resource utilization.

Each UDF called an external data store and performed a sim-
ple lookup for each record to retrieve contextual information,
for example user or tower record. Retrieved data are then at-
tached to the records, as seen on the following code snippet:

packetStream
.map (toKeyValue)
.mapPartitions (userLookupPartition) // £
.mapPartitions(towerLookupPartition) // g
.values

Using distributed tracing, processing times of sample records
can be provided for each operator (and for all of their pipelined
UDFgs), so that the logical execution plan can be optimized.

2.3. Records with latent properties

Certain key partitions may grow exceptionally large by ag-
gregations and external joins, causing problems at later stages
of computation. Common scenarios include null items, which
can only be detected by excessive manual data investigation.
For example in a bank transactional analytic database, inter-
nal or so called proxy bank accounts are considered to be null
items, which overload partitions and should be discarded from
further computation. These outliers can be traced back, filtered
out or partitioned efficiently in advance. In the code snippet be-
low, the third line was added after, by tracing, we identified null
account IDs as the reason for groupBy running out of memory
regardless of the cluster configuration.

data = spark.read.load("transactions", format="parquet")
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Figure 3: A typical aggregation workload, where a pipeline could be freed from
a bottleneck by detecting the problematic UDF, then using the record’s linage.
Records that contribute to bottlenecks or failures could be filtered out.

data = data.join(supID_table,’acc_id’ ,how=’left_outer’)
data = data.dropna(subset=[’sup_id’])
data = data.groupBy([’sup_id’,’out_sup_id’]) .aggr (amount)

2.4. Records that lead to temporal deadlocks or exceptions

In a web crawling or unstructured text processing task, cer-
tain records may incur high-effort parsing or lead to inconsis-
tent record state at later stages of the computation, which may
lead to exceptions in user code. Programs including natural
language processing are sensitive to misformed records. By
collecting the lineage of such records, we can redirect them to
another processor pipeline right at the entry point of the traced
topology.

As an example when problematic input can only be identi-
fied via its lineage, consider incoming TCP packet logs from a
mobile network operator’s monitoring system (Fig. 3). In order
to compute KPIs of user communication, first, each record is
enriched with session, user, cell, region and application infor-
mation during several stages, by joining records with data from
different external sources as in Subsection 2.2. Then data is
filtered, transformed and produced to other applications for fur-
ther use. Afterwards, complex aggregations are applied on mul-
tiple dimensions and in multiple sliding windows. The charac-
teristics of the TCP packet data received for a certain mobile
network cell can heavily influence the computational complex-
ity of a UDF, which is hard to recognize. Further, problematic
records are shuffled into the same partition during windowed
aggregations due to key-grouping.

Because of these aggregations, properties that otherwise
would characterize outliers will already be eliminated by then.
In such scenarios, we lose the ability to trace back problematic
records, but it is achievable by exploiting a distributed tracing
framework.

2.5. Sub-optimal co-location

Interconnected DDPS and other systems (for example dis-
tributed database systems) require their corresponding data par-
titions to be co-located onto the same machine in order to re-
duce unnecessary communication over the network. When a
processing pipeline access several external database systems at
once, we may align all of the corresponding partitions onto the
same machines. Using distributed tracing, inefficient commu-
nication patterns (hotspots) can be recognized across the plat-
form, and an optimal placement can be provided.

3. The Tracing Framework

In this section, we describe our tracing framework that traces
individual records in a DDPS. We build record lineage by a
generic wrapper mechanism that encapsulates the record and
exposes it to a functional API. We incorporate three key re-
quirements into our design:

1. We model how bottlenecks propagate between intercon-
nected systems, therefore, we let records be traced across
several systems, probably implemented in different lan-
guages.

2. We ensure that existing user programs can run under the
modified DDPS with no user code change required.

3. We trace the execution of real time data streaming frame-
works, hence we allow fast and online analytics of lineage
graphs to identify bottlenecks in the shortest time possible.
To this end, we report and collect traces with low latency
unlike in state-of-the-art solutions for batch systems.

It is already known that without certain level of invasive modi-
fication in the DDPS, we cannot provide low-level runtime in-
formation and maintain low system overhead [9]. Our goal is
to minimize the level of invasiveness and in particular require
absolutely no modification over the user code. Our system for
Apache Spark is implemented in 1,200 lines of patch over the
base system so that any Spark user code can be traced under our
modified framework.

Some of the pivotal points where records are traced outside
user code is shown in Figure 4. The event in which record
causality is observed is called a checkpoint. Our framework
captures record-by-record causality, measures important UDF
characteristics (runtime, callsite, etc.) and collects other use-
ful information from the underlying DDPS. In addition to UDF
metrics, we collect valuable information from the internals of
the DDPS’ engine, for example, serialization overhead or time
spent by a record in intermediate buffers or on network. Due
to the flexible design of our checkpointing, detailed profiling of
the DDPS internals become possible: checkpoints can be called
at arbitrary points in the DDPS code path.

When a record d of type T enters a DDPS with tracing ca-
pabilities, it is automatically wrapped into a lightweight wrap-
per object w(d) of type W[T']. To reduce tracing overhead, in-
coming records are sampled randomly as candidates to build
lineages. We either sample probabilistically from incoming
records, or pick one in fixed time-intervals.

In order to apply a UDF f on a record (the wrapper payload),
it must interact with the wrapper through a functional API. This
is further detailed in Subsection 3.3. We enforce immutability
by returning a new wrapped record w(f(d)) on each function
apply.

In the rest of the paper, we consider and evaluate two fun-
damental ways of tracing, direct reporting and piggybacking
that we describe in detail in the following subsections. In di-
rect reporting, lineage information is pushed down to a report-
ing service in each wrapper invocation and the lineage is re-
constructed by an external tool. For piggybacking, the lineage
information is carried along with the record packaged into the
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Figure 4: Records are traced through tasks, each consisting of a shuffle read,
a UDF pipeline and a shuffle write phase. Traces are recorded at the pivotal
points numbered 1-7. Each dot represents a checkpoint. For one checkpoint at
UDF g, we show how the reporting service is invoked over the wrapped record.

Table 1: Possible combinations of different tracing approaches.

Direct reporting Piggybacking

Forward yes no
Backward

only partial only partial

wrapper object. Both methods share the same wrapper mecha-
nism and the underlying, low level tracking structure.

As another, orthogonal distinction, tracing can be forward
or backward. Forward tracing tracks causality by connecting a
record to its descendants, thus, it observes the DDPS from the
perspective of its entry points. In contrast, backward tracing
links records to their ascendants, thus views the topology from
the perspective of its exit points. This is the right approach if
we want to reconstruct the web of records that contributed to
an output entry. With sampling turned on, only partial back-
ward tracing can be achieved: the backward lineages of out-
put records will be incomplete because the contribution of un-
tracked records will be inevitably lost.

The possible combinations of the tracing approaches and
their main applicability and limitation is summarized in Table 1.

3.1. Direct reporting

In this section, we describe our first tracing solution, which
produces reports directly by continuously pushing down the lin-
eage information of tracked records to a reporting service. The
service stores traces for later use by external analytic tools. Di-
rect reporting supports both forward and partial backward trac-
ing.

We internally identify each record by a unique trace ID that
is stored by the reporting service. It generates a new trace
ID whenever it encounters a new record. Our tracing frame-
work communicates with the reporting service by sending trace

reports asynchronously at the predefined pivotal points of the
DDPS.

To trigger checkpointing in the tracing-enabled DDPS, a
checkpoint() function is called from the reporting API, either
without arguments or with a sequence of trace IDs and a report.

In the general case, when checkpoint() is called with a list of
parent trace IDs and a report r, the reporting service saves r in
a key-value store, where the corresponding key will be a newly
generated trace ID. The framework measures different metrics
of the UDF (runtime, callsite, etc.), appends it to the report,
then returns the trace ID supplied by the external service.

If checkpoint() is called without arguments, which usually
happens at the entry points of the compute topology, then the
reporting service decides whether the record should be tracked
at all. Records are marked for tracking by a user-specified sam-
pling strategy. If the record is selected, then the same process
happens as above, with the exception that the report correspond-
ing to the newly generated trace ID will be empty.

The reporting library is utilized in a DDPS to track record
lineages as follows. When a record enters the DDPS for the
first time, it is wrapped and registered to the reporting library
by calling checkpoint(). If a trace ID is returned, it is set in
the wrapper object. Wrappers without a trace ID will be treated
as “untracked” and flow silently through the compute topology,
without triggering any further reporting.

Next, suppose that there is an operator in the compute topol-
ogy that applies a general UDF f that takes n records as in-
put and produces a list of m records as output. Figure 4 il-
lustrates the reporting process with n = 1 and m = 2. When
f is called on the wrappers w(d;), w(dz), ..., w(d,), then first
the result f(d,d>,...,d,) = [c1,c2,...,Cn] is calculated, as
would happen normally in the DDPS. Then, a report r is pre-
pared and each ¢; is wrapped with the trace ID returned by
one call of checkpoint((q1,q2,---,qn), ), Where g; is the trace
ID of the wrapper w(d;). Finally, the whole UDF call re-
turns [w(cy), w(cp), . .., w(ci)], and the wrapped records are for-
warded to the next operators.

3.2. Piggybacking

Next we describe our second tracing approach, piggyback-
ing. As opposed to direct reporting, now the lineage of a tracked
record is piggybacked into its wrapper for the whole course of
processing, until the record is served to other systems where
traces are not relevant. The lineage is represented in the form
of a trace graph, with metrics and additional metadata stored on
the nodes and edges as node and edge weights. These weights
support pre-aggregation, which is needed when trace graphs are
merged.

The trace graph API consists of two methods:

e append(v: Vertex, vw: VertexWeight, ew: EdgeWeight):
TraceGraph creates a new trace graph by appending vertex
v with vertex weight vw to the head of the trace graph. The
edge weight ew will be attached to the newly created edge.
Finally, the appended vertex is set to be the new head.

o merge(other: TraceGraph): TraceGraph merges other
with the present trace graph. Identical nodes are merged



and weights of merged vertices and edges are added. The
heads of the two trace graphs are required to be identical,
so that they can be merged together to form the new head.
Merge can happen, for example, when records with over-
lapping lineages are combined together.

Traces are not reported at checkpoints, but instead a new
node with the appropriate metrics is appended to the trace
graph. More precisely, when a general UDF f (as above) is
called we do the following for each output record c;. First, the
trace graphs of input records are retrieved from their wrappers
and a new node is appended to each of them with the collected
metrics and metadata. After that, they are merged into a single
trace graph G (if there are more then one of them), which is
then placed in the emitted wrapper w(c;).

The advantage of the piggyback approach is that tracing
metrics can be aggregated continuously, which allows embed-
ded optimization engines to acquire record lineage information
more quickly. Further, there is no need for an extra service to
handle tracing reports. On the other hand, piggybacking is not
suitable for forward tracing and it may add a considerable over-
head in latency. Due to the fact that piggybacking mechanism
is easier to adapt in existing systems, it is more suitable for of-
fline debugging tasks rather than in a real-time feed to provide
optimization heuristics.

3.3. The functional wrapper interface

Below, we outline the functional interface that is used by
UDF:s to interact with wrappers. Let T and U be two data types,
and suppose that a UDF f : T — U is called on a wrapper of
type W[T]. Because this cannot be done directly, f is instead
handed to the wrapper, whose interface defines several lift()
methods to handle the most common types of UDFs as follows:

o lift(f : T — U) : W[T] —» W[U] makes a unary UDF
applicable on a wrapped record;

o lift(f: T — U™): W[T] —» W[U]™ makes a multi-valued
unary UDF applicable on a wrapped record;

o lift(f : T — {true, false}) : W[T] — W[T] U {0} makes
a filtering criterion applicable on a wrapped record; the
returned object is either a wrapper or an empty collection;

o lift(f : T — 0) : W[T] — 0 makes a side-effecting func-
tion applicable on a wrapped record;

o lift(f : (T,T) — T) : (WIT],W[T]) — WI[T] makes
a binary UDF applicable on two wrapped records of the
same type;

o lift(f: (T,U) = T) : (W[T], W[U]) —» WI[T] makes a bi-
nary UDF applicable on two wrapped records of different
types,

Note that filtering must return the actual result of the operation
not just a boolean, in order to keep track of records being fil-
tered out. The two lift() methods for binary UDFs are added
to support folding operators, e.g. reduce in Spark (Section 4).

Any mutation of the tracked records are captured by the wrap-
per, and if tracing mechanism is used, we call the wrappers and
the records as Traceables. Traceables implement and extend
the default wrapper interface.

To observe the characteristics of the underlying system on
which the record is passing through, and to identify system-
specific bottlenecks, the wrapper can be poked on which event
no mutation is going to occur:

e poke(w(d) : W[T], e : Event) : W[U] applies a DDPS
specific transformation on the wrapped record w(d).

For example, when data is streaming through a map-reduce ar-
chitecture, tracked records are poked immediately before be-
ing written onto the shuffle system, or read back. In this way,
we may measure throughput and latency on arbitrary phases of
data-passing (with no UDF involved), which helps to identify
problems that are hard to diagnose otherwise.

4. Implementation for Apache Spark

We integrated the tracing framework described in the previ-
ous section into Apache Spark in order to provide a prototype
implementation' on top of an open-source data processing en-
gine. As we have pointed out earlier, no code change in existing
Spark applications is required for our distributed tracing system
to work.

We wrapped all operators in Spark’s rich functional API of
second order functions such as map (one-to-one), flatMap (one-
to-many), reduce (many-to-one), filter, foreach (side-effecting)
and also key-grouping operators (e.g. groupByKey, reduce-
ByKey, coGroup, etc.) that group records by key and then ap-
plies the UDF to the values only.

The core of our Spark implementation consists of a thin func-
tional layer for the wrapper API and two wrapper implementa-
tions, Traceable for direct reporting and PiggybackTraceable
for piggybacking.

4.1. Direct Reporting

First, we discuss the direct reporting approach. We give
schematic Scala codes for the wrapped Map operation below.

def map(f: T => U): RDD[U] = {
new MapPartitionsRDD[U, T](this,
(self, iterator: Iterator[Wrapper[T]]) =>
// wrapper.apply is called instead of f
iter.map(wrapped => wrapped.apply(f,
// attaching metadata to report
new Attachment() + (callSite))))
}

override def apply(f: T => U,
attachment: Attachment): Traceable[U] = {
new Traceable[U] (f(this.payload),
// report returns a new tracelD
report(attachment + ("operator" -> f.toString)))

'Implementation is available at https://github.com/zzvara/spark/
tree/tracing



UDF lifting in the wrapper API has been implemented by
Scala apply() methods. All of these methods can receive an at-
tachment in addition to the UDF. The attachment is a general
purpose key-value map, which transmits additional UDF meta-
data to the reporting system.

The wrapper mechanism works the same as described in Sec-
tion 3 with the addition of some trace-specific side effects. For
example, Spark’s aggregation based operators and their keyed
counterparts work in a folding manner, processing their input
in a series of intermediate steps, each merging two consecu-
tive records. Implementing tracing for such functions was a
challenging task, because reporting must be suspended during
the intermediate processing steps of such operators and enabled
again only when the final result of the aggregation is known.
We solved this problem by designing a set of Spark-specific
poke events.

Finally, the direct reporting mechanism relies on a closed
source reporting library implemented in C++. This design
helps to achieve high performance and minimum overhead. Na-
tive bindings to this library have been developed for certain run-
times, for example for JVM and Python.

4.2. Piggyback Tracing

The piggyback tracing mechanism is integrated into Spark in
a similar way as direct reporting, thus, we will only highlight
the differences. In the place of Traceable, a custom wrapper
implementation, PiggybackTraceable is used, which wraps the
payload with a TraceGraph object, that stores metrics and addi-
tional metadata on its nodes such as creation time, cpu usage or
record count, while the edge weights contain the deltas of these
metrics.

The wrapping of major Spark operators and UDF lifting
works as described in Section 4.1. The only major difference
is that the traceable is poked before folding operators and not
after them. Poking is also necessary before co-grouping, where
data-mutation happens without a UDF call. The following code
sample shows the implementation of a map UDF lifting from
PiggybackTraceable.

override def apply(f: T => U,
attach: Attachment): PiggybackTraceable[U] = {
val newPayload = f(this.payload)
val newTrace = this.trace.map( gr =>
// appending new node to trace graph
val vw = new TracingVertexWeight()
gr.append(
new TracingVertex(attach("id"), attach),
vw, new TracingEdgeWeight(gr, vw)))
new PiggybackTraceable [U] (newPayload, newTrace)

5. Experiments I: tracing overhead

The performance overhead introduced by our tracing frame-
work is negligible in practice, but depends among others on the
cluster environment, the complexity of the jobs, as well as the
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Figure 5: Number of records per partition in the RV experiment, for uniform
and zipf key distributions.

sampling rate. For most use cases, we have measured an over-
head of 5% or lower using direct reporting. The piggyback-
ing approach, however, incurs in higher overhead for most use
cases. Piggybacking can dramatically increase memory con-
sumption as well as the serialization overhead for sending the
trace graph to the next operator. Aggregating trace graphs also
increases the computation complexity on-the-fly.

We measured the runtime overhead of the direct reporting
and piggyback approach under varying sampling rates. We gen-
erated a random vector (RV) dataset with distribution shown in
Fig. 6. The RV dataset consists of 100,000 randomly generated
double vectors of dimension 10. We ran a Spark batch job of
10 partitions on a single container with 8 GB RAM and 4 CPU
cores. The job consisted of two stages, both containing heavy
mapper tasks: first, we apply a geometric transformation on the
vectors, then label them, group them by label as key and finally,
sort each key group by vector norm. Labels were picked from
a set of size 100 such that they follow a specific distribution,
which was uniform distribution in the first experiment (Fig. 6a)
and zipf distribution of exponent 1 in the second experiment
(Fig. 6b). Figure 5 shows the number of records in each par-
tition after the shuffle phase. Observe that there is a notable
partition skew in the zipf case, where the heaviest partition is
roughly 2.5 times larger than it is in the uniform case.

The overhead was measured with sampling rates r €
{0%,0.01%,0.1%, 1%}, which covers the corner cases as well
as the most frequently recommended sampling rates from dif-
ferent papers. Note that 0% sampling means no tracing at all,
hence we measure the overhead of the code modification with
no effect. In the experiments, we averaged ten consecutive runs
of the Spark job. The minimum, the maximum and the average
overhead is shown in Figure 6, relative to the average runtime
of the same job with tracing turned off.

It can be seen that the piggyback tracing architecture with
0% sampling rate added an 5% and 1% overhead for uniform
and zipf key distribution, but it surpassed 100% in both cases
if the sampling rate was close to 100%. Using direct reporting
occurs in substantially less overhead for low sampling rates.
Interestingly, we measured that for impractical sampling rates
(for example 10% or 50%) direct reporting resulted in 3 times
more overhead than piggyback tracing. Moreover, the overhead



20

runtime overhead (%)

0.0 0.01 0.1 1.0
sampling rate (%)
- m = Direct reporting —e— Piggyback

(a) Uniform key distribution

20

runtime overhead (%)

0.0 0.01 0.1 1.0
sampling rate (%)
- m - Direct reporting —e— Piggyback

(b) Zipf key distribution

Figure 6: Runtime overhead of direct-reporting and piggyback tracing in the RV experiment, with varying sampling rates.

was generally 6-14% larger for uniform keys than for zipf keys
(depending on the sampling rate) in case of piggyback tracing.
A sampling rate of 0.01% caused 9% and 4% overhead, respec-
tively, which is affordable in many use cases, where high accu-
racy lineage tracking can solve serious performance problems.
For example, the reference value (the average runtime with trac-
ing switched off) was 21117 ms for uniform and 23622 ms for
zipf distribution, which means that the data skew in the latter
case was responsible for approximately 12% runtime overhead.
Under these conditions, using our piggyback tracing framework
to detect and handle data-skew adaptively would be the more
efficient solution even with a sampling rate of 0.1%, where the
average runtime was 23105 ms.

Figure 6 also shows that for small sampling rates (r < 1%),
the overhead grows in an exponential manner, while for higher
sampling rates, the growth becomes linear. This is caused by
the fact that the ratio of traced records can jump up significantly
in a combiner operation: if even one traced record gets into a
key group in the combiner phase, than the result of the operation
will be traced as well. Hence, when we increase the sampling
rate r starting from 0%, the overhead added by the transfor-
mations after the grouping step increases steeply. Then, when
r is increased further, the key-groups gets saturated by traced
records, and the rapid growth of the overhead stops, changing
to a moderate linear tendency as was expected.

Another consequence of this phenomenon is the problem of
low cardinality: the number of distinct keys and the reduction
rate of any operator instance affects the tracing overhead con-
siderably. Our solution to the problem is the following: we
approximate the cardinality using traces and input metrics gath-
ered from the DDPS. If high reduction rate and substantial over-
head is detected, we reduce the sampling rate adaptively.

6. Experiments II: performance gains in use cases

In this section, we describe three use cases where we applied
our tracing system to identify bottlenecks. We show optimiza-
tion options and compare the performance of the unoptimized
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Figure 7: Web crawler and NLP pipeline.

and optimized systems to show the gains that we achieved by
the insights of the tracing system.

Our experiments were conducted on four Intel HPC nodes,
each with E5-2650v4 (22 thread) CPUs and 128 GB RAM on
board, in a single rack.

6.1. Outlier filtering

In the first use case, we process Web content, a prominent
source of unexpected, skewly distributed, and malformed in-
put. We apply natural language processing (NLP) tools over
Web crawl data. Using NLP targeted for a specific language,
textual content not suitable for analysis can significantly affect
the performance of the whole processing pipeline. Distributed
tracing can help to debug these applications and to identify new
corner-cases that lead to slowdowns or exceptions. Using web
crawl, content from a site of a foreign language or content with
remaining HTML tags all affect processing time considerably in
NLP models (such as morphology). We used tracing to adap-
tively update URL filter rules by identifying the documents that
slow down NLP pipelines in advanced stages of the computa-
tion.

In our experiments, we used two data sources: we process
Hungarian language content from the public Twitter stream,
and use the Apache Nutch Web crawler to download content
from Hungarian websites into Couchbase, a NoSQL database.



We measured Apache Spark while reading over a million doc-
ument updates from Couchbase nodes using cross datacenter
replication protocol. The Spark pipeline then supplied these
documents to several NLP models, as in Fig. 7), including lan-
guage detection and morphology libraries as seen in the follow-
ing code snippet.

couchbaseStream[Long, Document] ("crawl")
.transform { microBatch =>
if (!microBatch.isEmpty())
Morphology.batchMorphed {
contentFiltered(microBatch)

}

def contentMorphed[I, D <: Unique[I]](
mb: RDD[(I, E)]): RDD[(I, E, Option[Morphl)] = {
mb.mapPartition {
partition =>
val model = Morphology.borrow()
partition.map(model.predict)
Morphology.return(model)

The Morphology.contentMorphed assigns free model in-
stances dynamically to running tasks using a pooling technique.
The average time needed to predict a document in our mod-
els is 126 ms, whereas outliers can take more than 3 seconds -
where a timeout is reached or exception is thrown. In our rep-
resentative crawl dataset of 13.5 million records, roughly every
500th document is considered to be an outlier. Adaptively up-
dating Nutch URL filter rules, we can increase throughput by
an average of 6% in contrast to using the naive URL-filters.
For example, we adaptively update filter rules for domains,
where a sub-domain of foreign language version would be in-
cluded for fetching: if we see that records with ancestors of
de.domain.hu cause models to throw exceptions, we add a rule
-"http://de.domain.hu.

6.2. Handling data skew

In our next use case, we applied distributed tracing to iden-
tify elephant keys at parallel regions where key-grouping is
used without a map-side combine. We experimented with data
stream and batch processing of 3 GB LastFM data of (user,
artist, tags, timestamp) triplets. As seen in the following code
snippet, the job consists of two stages: parsing on the mapper
side, then grouping by tags and building an index within the re-
ducers. In this task, map side combiners cannot reduce the data
for the reduce operator instances, since every record is enriched
by tags that makes the records unique.

driver.textFile("/timeseries.idm")
.map (parse)
.flatMap(r => r.tags.map(t => t -> r))
.groupByKey ()
.mapPartition(index)
// We allow users to use wrappers
from application code
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Figure 8: Runtime (in seconds) of map and reduce functions for default hash-
partitioning (denoted by S) and adaptive repartitioning (denoted by D) on dif-
ferent number of partitions. Total number of available compute slots were set
to 20.

LastFM 30M size of maximal partition

0
2

10 12 14 15 16 17 18 19 20

millions

4 200 400

m adaptive static

Figure 9: Maximal number of records that are shuffled into a single partition
for static hash-partitioning (denoted by S) and adaptive partitioning (denoted
by D).

.foreachPartition(ds =>
dumpPartition(ds.collectWithWrappers))

Figure 8 shows runtimes for map and reduce stages for the
default hash partitioning as well as for the adaptive partition-
ing mechanism with tracing enabled. Mapper runtimes include
the overhead of our tracing framework in case of adaptive parti-
tioning. In Spark, the performance of a parallel region is deter-
mined by the slowest task (partition). The most benefit has been
observed while computing with 14 partitions, the size of the
maximum partition has been reduced from 14.99M to 9.78M
records at the reducer side, as shown in Figure 9. Gain slightly
demolishes if number of partitions decreased: the contribution
of the heaviest key is reduced in the biggest partition. For 10
partitions, the gain is 23.42%, and for 14 partitions 37.04%.
A naive idea to mitigate data skew is overpartitioning, which
however increases reducer time to more than 378 seconds.

We used our tracing system to detect imbalance by exam-
ining the traces at stage boundaries. Using the key-histograms,
we constructed hybrid hash functions introduced by Gedik [10].
The new hash function is supplied to the shuffle writer module
of the operator. Apache Spark is capable of changing hash func-
tions, and in a streaming scenario, due to the micro-batch nature
of Spark Streaming, operators may migrate their state automat-
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Figure 11: Processing time per micro-batch in the 4 scenarios of non-thread
safe NLP model parallelism.

ically. State migration can result in unexpected downtime or
increased latency and decreased throughput, therefore we use
the cost model introduced by [10] in decision making.

6.3. Overpartitioning in the presence of heavy libraries

Overpartitioning is a general solution for data skew miti-
gation in streams where the key distribution is unknown or
changes in time. However, in the natural language processing
use case of Section 6.1, we ran into memory overuse when com-
bining NLP tools with a high number of partitions. By tracing,
we identified loading the NLP tools as the main reason for high
memory consumption: these tools are not thread safe and hence
have to upload their model data for each operator instance, even
if ran in shared memory.

By tracing, we measured that each NLP processing object
consumed 4.28 GB of RAM and took 5.6 seconds to load on av-
erage. These models store a state that we update for each record
based on its source, i.e. the domain name in case of websites.
We use the groupBy operator to shuffle and collect websites
from the same source into a partition, then we supply the data
to the model, as shown previously in Subsection 6.1. We set the
batch interval for Spark Streaming to 1.5 seconds. The average
processing time for each micro batch is expected to be below
1.5 seconds, so that backpressure is not required at the sources.

Figure 10 shows throughput and Figure 11 shows processing
times of micro batches in multiple scenarios, when using:

¢ A single model in each executor, that is served to one task
at a time (total memory consumption of 46 GB);
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e Multiple models in each executor, so that each executor
can run multiple tasks in parallel (total memory consump-
tion of 102 GB);

e A single model, but we overpartition to mitigate data skew
(total memory consumption of 47 GB).

o A single model and using tracing to capture data character-
istics and construct an optimal hash function (total mem-
ory consumption of 46 GB).

Having multiple models in each executor clearly wins in
terms of throughput and latency, but wastes memory, thus we
do not consider it as an efficient workaround. Our starting point
however, is the single slot and model scenario, from which in-
creasing the number of partitions to mitigate data skew will in-
crease processing time per micro batch: this is because tasks
launched in multiple rounds introduce undesirable scheduling
overhead. The scenario in which tracing is enabled (tracing)
can reduce processing time needed per micro batch signifi-
cantly, so that the 1.5 seconds SLA can be met without wasting
memory in a multiple model scenario.

7. Related work

The starting point of our work is [11, 4] where heterogeneous
distributed computing workflows are monitored by attaching
monitoring tags to sample records. In order to tag and monitor
data, access points are necessary, which consist of connectors
between different systems in [4] and low-level I/O operations
and external RPC calls in [11]. In our work, we complement
monitoring by enabling all Spark execution steps to serve as
monitoring access points.

IDRA [12] provides adaptive breakpoints to distributed, long
running and data intensive applications. In addition, with
IDRA, the developer is able to change the code of the appli-
cation in three phases: handling exceptions and breakpoints;
reconstruct these breakpoints on remote virtual machines; fix-
ing bugs and committing.

As another solution for Apache Spark, Titian [13, 14] adds
data provenance extension to Spark’s dataset API abstraction
(RDD) to ease debugging. Such a data lineage could be useful
for offline reasoning, but it is unsuitable for identifying bottle-
necks, sub-optimal processing pipelines in production environ-
ments. We argue that the most time is spent on optimizing and
reasoning about online data processing systems. However, our
solution provides the same debugging capabilities on a lower
level, if required.

BigDebug [3, 15] provides real-time debugging primitives
for batch jobs with deep modifications of Apache Spark’s
RDD primitive. BigDebug supports several distributed debug-
ging features such as simulated breakpoints, fine-grained trac-
ing and latency monitoring, and real-time quick fixes to run-
ning jobs. These features are proved to be useful for batch
jobs [16, 17]. However, their techniques are not feasible for
production streaming jobs, because they rely on the capability
to replay stages of computation.



X-Trace [18] is a framework for inter-system tracing. It pro-
vides a holistic view on the data movement on the network be-
tween different applications. However, it cannot trace records
inside the same DDPS that does not involve network transfer.

Magpie [9] provides end-to-end tracing of request-response
systems. It supports only non-intrusive monitoring without
modifying the monitored system. However, this non-intrusive
approach does not allow low-level monitoring. Also, due to fo-
cusing on request-response systems, Magpie cannot trace more
complex data transformations like joins. Pinpoint [19] takes a
similar non-intrusive approach for monitoring request-response
systems. Dapper [20] extends the ideas in X-Trace and Magpie
with sampling and additional monitoring. However, the analy-
sis of monitoring data has a larger (10 minutes) latency, which
is impractical for streaming scenarios.

Several systems provide tracing for various batch systems
that is not suitable for streaming applications. Arthur [21]
selectively replays parts of the computation on map-reduce
dataflow systems. While this enables debugging with mini-
mal overhead, leaves a wide variety of bottlenecks undetected
and optimizations harder to employ. RAMP [22] wraps map
and reduce functions in Hadoop to achieve backward and for-
ward tracing. Newt [23] aids batch jobs with a generic lineage
instrumentation that allows the replay of captured lineage and
support offline analytics on captured traces. We havenot consid-
ered about replays in our streaming setting, and we have found
offline analytics impractical. Finally, Facebook’s The Mystery
Machine [24] and lprof [25] target batch systems with offline
analysis of monitoring data.

8. Conclusions

Our distributed tracing framework for interconnected DDPS
simplifies monitoring and aids confident reasoning on perfor-
mance issues. Compared to existing tracing and debugging
solutions, the key features of our framework design and im-
plementation is that it is suitable for both batch and stream-
ing workloads in any DDPS. In addition, compared to previous
work, by capturing record lineage with low level UDF met-
rics across all connected systems, most bottlenecks of com-
plex compute topologies become tractable. We also demon-
strated our system design by providing Apache Spark batch
and streaming integration with real world use cases, where we
showed how to identify and mitigate bottlenecks. In contrast to
specialized frameworks designed to solve one bottleneck at a
time, we showed that distributed and holistic tracing of records
can solve many critical issues in complex user-facing applica-
tions, under one framework.
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