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Abstract: Conventional robust control design algorithms generate only one solution that 

fulfils the suboptimal ℋ∞ norm criterion and thus, leaves no room for further controller 

tuning. Often, the designed controller is not suitable, because it is either unstable or some 

structural properties needs to be also satisfied. Then, the designer has to modify the 

original control problem and to perform the entire synthesis again. This paper proposes a 

method for improving the ℋ∞ control synthesis, by introducing extra flexibility into the 

design process. Based on the formulation of all controllers belonging to a given 

performance level and Lyapunov function candidate, the paper reveals the group structure, 

corresponding to performance problem. Based on this group structure, efficient systematic 

algorithms can be developed for ℋ∞ controller tuning. 
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1 Introduction 

The most typical robust performance problem, can be cast as a suboptimal 

normalized ℋ∞ design, where for a fix (given) generalized plant description 𝑃 we 

seek all controllers 𝐾 that internally stabilize the loop and achievesthe 

performance guarantee ∥ 𝔉𝑙(𝑃, 𝐾) ∥< 1. Through a practical design problem often 

it would be desirable to perform a search on a set of controllers that guarantee a 

given performance level in order to select a suitable one for a specific 

implementation goal. A typical example is to find a stable controller, or a stable 

controller that achieves a closed loop performance that was included in the ℋ∞ 

design specification. This problem leads to an iterative design process. In order to 

implement such an iterative algorithm, a controller blending method is needed 

which keeps invariant the stability of the loop and the prescribed ℋ∞ performance 

level. 

It is a fact, that by applying the Youla parametrization, the closed-loop will be an 

affine expression 𝔉𝑙(�̅�, 𝑄), defined by the stable parameter 𝑄 and the stable 

matrix �̅� = (
𝑛𝑧𝑤 𝑛𝑧𝑢

�̃�𝑦𝑤 0 ). Recall that the Youla parametrization, provided as 

𝒦𝑠𝑡𝑎𝑏 = {𝐾 = 𝔐Σ𝑃
(𝑄)  |  𝑄 ∈ ℚ, (𝑉 + 𝑁𝑄)−1exists}, where ℚ = {𝑄 |𝑄 stable} 
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and 𝔐Σ𝑃
(𝑄) = (𝑈 + 𝑀𝑄)(𝑉 + 𝑁𝑄)−1, is induced by a double coprime 

factorization of the plant, i.e., we have stable matrices such that 

(�̃� −𝑈
−𝑁 �̃�

) (
𝑀 𝑈
𝑁 𝑉

) = Σ̃𝑃Σ𝑃 = (
𝐼 0
0 𝐼

)                   (1) 

with 𝑃 = 𝑁𝑀−1 = �̃�−1𝑁 and a stabilizing controller 𝐾0 = 𝑈𝑉−1 = �̃�−1𝑈. For a 

recent work that covers most of the known control system methodologies using a 

unified approach based on the Youla parameterization, see [7]. 

With a further simplification, i.e., an inner(co-inner)-outer factorization we can 

consider a parametrization where 𝑛𝑧𝑢 and 𝑛𝑦𝑤 are isometries. Then we have the 

invariance relation ∥ 𝔉𝑙(�̅�, 𝑄1) − 𝔉𝑙(�̅�, 𝑄2) ∥=∥ 𝑄1 − 𝑄2 ∥ of the Euclidean 

distance. However, this is not the invariance we are interested in. 

The starting point of this paper is the fact that solutions of the suboptimal ℋ∞ 

design are parametrized by the elements of the unit ball. One of the most well-

known approach to arrive to this conclusion assumes either left or right 

invertibility of 𝑃 and uses the scattering framework by augmenting the plant, if 

necessary, to obtain a well defined Potapov-Ginsburg transform �̂�, see [1, 9] for 

details. Then, a 𝐽-inner outer factorization �̂� = Θ̂𝑎�̂�, with a block tridiagonal 

structure of the outer factor that corresponds to the structure of the augmentation, 

solves the problem. The controllers are given by 𝔐�̂�−1(𝐻𝑎) with  𝐻𝑎 =

(
0 0
0 𝐻

) ,    ∥ 𝐻 ∥< 1, while the closed loop is given by 𝔐Θ̂𝑎
(𝐻𝑎). Recall that Θ𝑎 

is an inner function, thus 

∥ 𝔉𝑙(𝑃, 𝐾) ∥=∥ 𝔐Θ̂𝑎
(𝐻𝑎) ∥=∥ 𝔉𝑙(Θ𝑎 , 𝐻𝑎) ∥< 1    (2) 

For the details on 𝐽-inner and 𝐽-lossless functions see [2] and [9]. 

These facts motivate our interest in the unit corresponding ball: if we would like 

to blend controllers and guarantee a prescribed performance level, we should 

blend elements of the unit ball. One possible approach is to consider the action of 

the 𝐽-unitary operators on this ball – they obviously form a group considering the 

composition of operators– and to express the desired operation as a group 

homomorphism. This is the same idea (the indirect approach) that we follow with 

the addition of the Youla parameters to blend stable controllers: 

𝐾 = 𝔐Σ𝑃
((𝔐Σ̃𝑃

(𝐾1) + 𝔐Σ̃𝑃
(𝐾2)))       (3) 

We can formulate this process in more technical terms as follows: considering the 

parameter space ℚ, the group of automorphisms associated to this space is formed 

by simple translations 𝑄 ↦ 𝜏𝑄, with 𝜏𝑄 = (
𝐼 𝑄
0 𝐼

),    𝜏𝑄1
𝜏𝑄2

= 𝜏𝑄1+𝑄2
. 

In this particular case, the group homomorphism between the composition of 

translations and the addition of parameters is trivially combined with the Möbius 

transform that defines the Youla parametrization. The only obstruction might 
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appear for non-strictly proper plants, where some of the non-strictly proper 

parameters, are out-ruled. While this approach does not provide an exhaustive 

characterization of the topic, one can define a blending, that preserves stability 

and it is defined directly in terms of the plant and controller, without the necessity 

to use any factorization, see [17, 18]. 

The group actions that correspond to the addition of stable plants seen for the 

Youla parametrization are the hyperbolic motions of the unit ball, determined by 

the 𝐽-unitary operators. Therefore, to fulfil our program for the ℋ∞ problem, a 

suitable parametrization is needed that relates the 𝐽-unitary operators to the 

elements of the unit ball. Moreover, due to the increase in the plant order, we 

might encounter serious difficulties. While most of the results presented in this 

paper remain valid in a more general, operator valued, setting, here we restrict our 

attention to the state space solutions and blending of full order ℋ∞ controllers. 

We cannot define directly, an operation on the unit ball, in a trivial way, that bears 

a nice algebraic structure. The map 

𝜑𝑎(𝑧) = 𝑎 + √1 − |𝑎∗|2𝑧(1 + 𝑎∗𝑧)−1√1 − |𝑎|2 

is called a translation in the unit disc 𝔻. It can be shown that 𝜑𝑎 is an analytic 

automorphism of 𝔻. Moreover, 𝜑𝑎
−1 = 𝜑−𝑎. In the general case, the analytic 

automorphisms 𝜑𝑎(𝑧) are called Möbius-Potapov-Harris transformations, see [11, 

3, 5, 6]. The elementary Blaschke transformation defines the hyperbolic 

translations, the Möbius addition 𝑎 ⊕ 𝑧 = 𝜑𝑎(𝑧), like the translation group on the 

Euclidean plane. However, elementary translations of the hyperbolic plane do not 

form a group. Moreover, Möbius addition in the disc is neither commutative nor 

associative. 

One can introduce the concept of "gyrator" gyr: 𝔻 × 𝔻 → Aut(𝔻,⊕), that 

measures the extent to which Möbius addition, deviates from associativity and 

commutativity: 

gyr[𝑎, 𝑏]𝑧 =⊖ (𝑎 ⊕ 𝑏) ⊕ {𝑎 ⊕ (𝑏 ⊕ 𝑧)}, 

𝑎 ⊕ 𝑏 = gyr[𝑎, 𝑏](𝑏 ⊕ 𝑎),        (gyro − commutative  law), 

i.e., gyrations represent rotations of the disc 𝔻 about its center. Thus, in terms of 

elementary translations and rotations the group structure of the hyperbolic 

transformations can be characterized by using the concept of the gyrogroups, that 

was introduced and applied mainly in the context of Einstein’s special relativity, 

see, e.g., [20, 19] and the references cited therein. The group operation, the 

Blaschke group, can be expressed as (𝑎, 𝛼) ⊙ (𝑏, 𝛽) = (𝑎 ⊕
𝛼𝑏, gyr[𝑎, 𝛼𝑏]𝛼𝛽).  Elements of the set 𝔻 × Aut(𝔻,⊕) are called motions of the 

gyrogroup in the sense that each element (𝑎, 𝜙) ∈ 𝔻 × Aut(𝔻,⊕) gives rise to the 

motion (𝑙𝑎, 𝜙)𝑧 ↦ 𝑧 ⊕ 𝜙𝑎. Moreover, every biholomorphic mapping ℎ is of the 

form ℎ = 𝜑ℎ(0)(𝑢𝑥𝑣) = 𝑢𝜑ℎ−1(0)(𝑥)𝑣, where 𝑢 and 𝑣 are unitary operators. The 

metric defined as 
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𝜌(𝑎, 𝑏) = ln
1+∥𝜑𝑎(𝑏)∥

1−∥𝜑𝑎(𝑏)∥
= arctanh(∥ 𝜑𝑎(𝑏) ∥) 

is invariant with respect to biholomorphic automorphisms and provides an 

extension of the Poincaré disk model of the hyperbolic geometry to the operator 

ball [8]. 

It turns out that when we consider the solution of different quadratic performance 

problems by using a state space description and LMI techniques, the solution sets 

are parametrized by elements of a matrix unit ball, see [14, 15, 16]. This paper 

presents in details an explicit parametrization of these suboptimal ℋ∞ controllers 

and the corresponding induced operation on the parameter space. In contrast to the 

operator valued case, in this context one can implement the necessary operations 

easily. 

Concerning the structure of the presentation: for the sake of completeness in 

Section 2 we summarize the basic results related to the LMI-based suboptimal ℋ∞ 

controller synthesis problem, while Section 3 presents the result that provides all 

the solutions of the problem that correspond to a fixed Lyapunov matrix. 

Additional standard facts and notations are summarized in the Appendix. As a 

counterpart of the indirect approach for the controller blending based on the Youla 

parameters for stability, Section 4 presents the main result of the paper for 

performance problems by providing a parametrization of the 𝐽-unitary matrices 

and the group operation of this parameter space that corresponds to the hyperbolic 

motions defined by these 𝐽-unitary matrices. 

2 LMI-based 𝓗∞ Synthesis for LTI Systems 

In this section we recall the main steps of LMI-based robust control synthesis. The 

synthesis starts from the state-space model of the augmented plant comprising the 

nominal plant model and all necessary weighting functions: 

(
�̇�
𝑧
𝑦

) = ( 

𝐴 𝐵𝑝 𝐵

𝐶𝑝 𝐷𝑝 𝐸𝑝

𝐶 𝐹𝑝 0
 ) (

𝑥
𝑤
𝑢

)                                                                 (4) 

Here 𝑢 is the control input, 𝑦 is the measured output, 𝑧 is the performance output 

and 𝑤 collects the external (performance) inputs, such as noises, disturbances, 

reference signals, etc. The controller is a finite dimensional, linear time invariant 

system described as 

(
�̇�𝑐

𝑢
) = (

𝐴𝑐 𝐵𝑐

𝐶𝑐 𝐷𝑐
) (

𝑥𝑐

𝑦 )      (5) 

With this controller, the closed loop system admits the following description: 
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 (𝜉̇

𝑧
) = (

𝒜 ℬ
𝒞 𝒟

) (
𝜉
𝑤

)          where  

 ( 
𝒜 ℬ
𝒞 𝒟

 ) = ( 

𝐴 + 𝐵𝐷𝑐𝐶 𝐵𝐶𝑐 𝐵𝑝 + 𝐵𝐷𝑐𝐹𝑝

𝐵𝑐𝐶 𝐴𝑐 𝐵𝑐𝐹𝑝

𝐶𝑝 + 𝐸𝑝𝐷𝑐𝐶 𝐸𝑝𝐶𝑐 𝐷𝑝 + 𝐸𝑝𝐷𝑐𝐹𝑝

 ) 

 = ( 

𝐴 0 𝐵𝑝

0 0 0
𝐶𝑝 0 𝐷𝑝

 ) +(

0 𝐵
𝐼 0
0 𝐸𝑝

) (
𝐴𝑐 𝐵𝑐

𝐶𝑐 𝐷𝑐
) ( 

0 𝐼 0
𝐶 0 𝐹𝑝

 )             (6) 

The aim of the control design is to minimize the induced ℒ2 norm between 𝑤 and 

𝑧 of 𝑇𝑧𝑤 = 𝒟 + 𝒞(𝑠𝐼 − 𝒜)−1ℬ of, i.e., to find a stable controller (5) so that the 

closed loop (6) satisfies the performance relation 

 ∫  
∞

0
(

𝑤(𝑡)
𝑧(𝑡)

)
𝑇

(−𝛾2𝐼 0
0 𝐼

) (
𝑤(𝑡)
𝑧(𝑡)

) 𝑑𝑡≤ −𝜀 ∫  
∞

0
𝑤(𝑡)𝑇𝑤(𝑡)𝑑𝑡, 𝜀 > 0                   (7) 

where the performance bound 𝛾 > 0 is minimized to be as small as possible. If 𝒳 

defines a quadratic storage function 𝑉(𝑥) = 𝑥𝑇𝒳𝑥 the dissipativity relation 

𝑑𝑉(𝑥)

𝑑𝑡
+ (

𝑤
𝑧

)
𝑇

(−𝛾2𝐼 0
0 𝐼

) (
𝑤
𝑧

) < 0 leads to the matrix inequality  𝒳 > 0, 

(

𝐼 0
0 𝐼
𝒜 ℬ
𝒞 𝒟

)

𝑇

( 

0 0 𝒳 0
0 −𝛾2𝐼 0 0
𝒳 0 0 0
0 0 0 𝐼

 ) (

𝐼 0
0 𝐼
𝒜 ℬ
𝒞 𝒟

) < 0                 (8) 

which is nonlinear (quadratic) in the unknown variables. To render it linear, 𝒳 is 

partitioned as 𝒳 = (
𝑋 𝑈
𝑈𝑇 ∗

)  𝑎𝑛𝑑 𝒳−1 = (
𝑌 𝑉
𝑉𝑇 ∗

), where dim𝑋 = dim𝐴 and 

dim ∗= dim𝐴𝑐. 

If we consider ker ( 
0 𝐼 0
𝐵𝑇 0 𝐸𝑝

𝑇 ) = (
Φ1

0
Φ2

) and ker ( 
𝐼 0 0
0 𝐶 𝐹𝑝

 ) = (
0
Ψ1

Ψ2
), then, 

by an application of the elimination lemma, (8) is equivalent to the following set 

of LMIs: 

(
𝑌 𝐼
𝐼 𝑋

) > 0                 (9) 

(∗)𝑇 ( 

0 𝑋 0 0
𝑋 0 0 0
0 0 −𝛾2𝐼 0
0 0 0 𝐼

 ) (

𝐼 0
𝐴 𝐵𝑝

0 𝐼
𝐶𝑝 𝐷𝑝

) Ψ < 0                                     (10) 
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(∗)𝑇 ( 

0 𝑌𝛾 0 0

𝑌𝛾 0 0 0

0 0 −𝐼 0
0 0 0 𝛾2𝐼

 ) (

−𝐾𝑇 −𝐶𝑝
𝑇

𝐼 0
−𝐵𝑝

𝑇 −𝐷𝑝
𝑇

0 𝐼

) Φ > 0               (11) 

where Φ = (Φ1

Φ2) = ker(𝐵𝑇 𝐸𝑝
𝑇) and Ψ = (Ψ1

Ψ2) = ker(𝐶 𝐹𝑝) and 𝑌𝛾 = 𝛾2𝑌. 

Once we have determined 𝑋, 𝑌 and the minimal performance level 𝛾∗, the 

corresponding Lyapunov matrix 𝒳∗ can be computed as follows: compute full 

rank 𝑈, 𝑉 such that 𝑈𝑉𝑇 = 𝐼 − 𝑋𝑌 by using an SVD decomposition and set 

𝒳∗ = (
𝑌 𝑉
𝐼 0

)
−1

(
𝐼 0
𝑋 𝑈

) to obtain the desired closed-loop Lyapunov matrix. 

The last step of the synthesis procedure is the construction of a stable controller 

for the previously determined Lyapunov matrix and performance bound. By 

substituting 𝒳∗ and 𝛾∗ in (8) one can easily recognize that (8) – due to the special 

structure (6) of the closed loop system – has exactly the same structure as the LMI 

in the Elimination Lemma. As a consequence, one possible controller candidate 

can be determined by using the basiclmi procedure. 

3 Parameterization of the Controllers 

In what follows we present an approach for characterizing all solutions of the 

design equations based on the following results: 

Lemma 3 ()  Let 𝑃 ∈ ℝ(𝑚+𝑛)×(𝑚+𝑛) be a given symmetric (Hermitian) matrix with 

inertia 𝑖𝑛(𝑃) = (𝑚, 0, 𝑛). Let the matrix 𝑀 be defined such that 𝑃 = 𝑀∗𝐽𝑀, 

where, 𝐽 = 𝑑𝑖𝑎𝑔(−𝐼𝑚, 𝐼𝑛). Then all solutions 𝑍 ∈ ℝ𝑛×𝑚 of inequality 

(
𝐼
𝑍

)
∗

𝑃 (
𝐼
𝑍

) < 0                 (12) 

can be expressed as 𝑍 = 𝑇𝑀−1(𝐻), where 𝐻 is an arbitrary contraction: 𝐻𝑇𝐻 < 𝐼. 

Theorem 1  Consider the quadratic matrix inequality 

(
𝐼
𝐴𝐾𝐵 + 𝐶

)
𝑇

𝑃 (
𝐼
𝐴𝐾𝐵 + 𝐶

) < 0                 (13) 

in the unstructured unknown 𝐾. Assume 𝐶 is of dimension 𝑛 × 𝑚, 𝑃 has inertia 

(𝑚, 0, 𝑛) and assume that 𝐴 has full column- and 𝐶 has full row rank, respectively. 

If the solvability conditions are satisfied then all solutions of (13) can be 

characterized as follows: 

𝐾 = 𝑉𝑎Σ𝑎
−1𝑍Σ𝑏

−1𝑈𝑏
𝑇 ,    𝑍 = 𝑇𝑁(𝐻)                 (14) 
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where 𝑉𝑎, Σ𝑎, Σ𝑏 , 𝑈𝑏 and 𝑁 are constant matrices determined by 𝐴, 𝐵, 𝐶, 𝑃 and 𝐻 

is an arbitrary contraction. 

Remark 1 The rank conditions on 𝐴 and 𝐵 have been introduced to ease the 

discussion. By slightly modifying the proof and the final formula (14) they can be 

relaxed. 

Proof. Suppose (13) has a solution, i.e., the solvability conditions hold. Compute 

first the SVD-decomposition of 𝐴 and 𝐵: 

𝐴 = 𝑈𝑎 (
Σ𝑎

0
) 𝑉𝑎

𝑇 ,        𝐵 = 𝑈𝑏(Σ𝑏 0)𝑉𝑏
𝑇 

 Σ𝑎, Σ𝑏  are diagonal matrices collecting the nonzero singular values of 𝐴 and 𝐵. 

Then we have 

𝐴𝑋𝐵 = 𝑈𝑎 (
Σ𝑎

0
) 𝑉𝑎

𝑇𝐾𝑈𝑏(Σ𝑏 0)𝑉𝑏
𝑇

 = 𝑈𝑎 (
Σ𝑎 0
0 0

) 𝐾 (
Σ𝑏 0
0 0

) 𝑉𝑏
𝑇=𝑈𝑎 (Σ𝑎𝐾Σ𝑏 0

0 0
) 𝑉𝑏

𝑇 

Introducing 𝑍 = Σ𝑎𝐾Σ𝑏 (13) reads as 

(∗)𝑇𝑃 (
𝐼 0
𝐶 𝐼

) (
𝐼

𝑈𝑎 (
𝑍 0
0 0

) 𝑉𝑏
𝑇) < 0 

Multiplying it from left and right by 𝑉𝑏
𝑇 and 𝑉𝑏 we get 

(∗)𝑇𝑃 (
𝐼 0
𝐶 𝐼

) (
𝑉𝑏

𝑈𝑎 (
𝑍 0
0 0

)
) < 0 

which is the same as 

(∗)𝑇𝑃 (
𝐼 0
𝐶 𝐼

) (
𝑉𝑏 0
0 𝑈𝑎

) (

𝐼 0
0 𝐼
𝑍 0
0 0

) < 0 

The next step is reordering the rows of the rightmost matrix. For this, a 

permutation matrix Π is introduced: 

Π = (

𝐼 0 0 0
0 0 𝐼 0
0 𝐼 0 0
0 0 0 𝐼

)                               Π (

𝐼 0
0 𝐼
𝑍 0
0 0

) = (

𝐼 0
𝑍 0
0 𝐼
0 0

) 

Then (13) amounts to 

(∗)𝑇𝑃 (
𝐼 0
𝐶 𝐼

) (
𝑉𝑏 0
0 𝑈𝑎

) Π𝑇 (

𝐼 0
𝑍 0
0 𝐼
0 0

) < 0 
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Denoting the inner matrix product by �̃� and partitioning it according to the blocks 

of the outer terms we arrive at the following inequality: 

(

𝐼 0
𝑍 0
0 𝐼
0 0

)

𝑇

(
�̃�11 �̃�12

∗ �̃�22

) (

𝐼 0
𝑍 0
0 𝐼
0 0

) < 0 

or, equivalently 

(
(

𝐼
𝑍

)
𝑇

�̃�11 (
𝐼
𝑍

) (
𝐼
𝑍

) �̃�12 (
𝐼
0

)

∗ (
𝐼
0

)
𝑇

�̃�22 (
𝐼
0

)

) < 0 

If the analysis equation has a solution (which is assumed), then the bottom-right 

block is negative definite, i.e., �̅�22 = (
𝐼
0

)
𝑇

�̃�22 (
𝐼
0

) < 0. Schur complement 

theorem can be applied now to transform the LMI to the form of (12): 

(
𝐼
𝑍

)
𝑇

[�̃�11 − �̃�12 (
𝐼
0

) 𝑃22
−1 (

𝐼
0

)
𝑇

�̃�12
𝑇 ] (

𝐼
𝑍

) < 0               (15) 

Using this form Lemma 3 can be applied to generate all solutions of (15): 

denoting by �̅� = 𝑀∗𝐽𝑀 the inner matrix if one picks a particular solution given by 

the matrix 𝑍 = 𝑇𝑀−1(𝐻), then the original unknown controller variable 𝐾 can be 

computed as 𝐾 = 𝑉𝑎Σ𝑎
−1𝑍Σ𝑏

−1𝑈𝑏
𝑇 . 

If we apply Theorem 1 to the synthesis inequality (8) evaluated at the previously 

constructed Lyapunov matrix 𝒳 and performance level 𝛾 = 𝛾∗ values then we can 

see that the controllers that guarantee the given performance level can be 

parameterized as follows: 

𝐾 = (
𝐴𝑐 𝐵𝑐

𝐶𝑐 𝐷𝑐
) = 𝑉𝑎Σ𝑎

−1𝑍Σ𝑏
−1𝑈𝑏

𝑇                 (16) 

with 𝑍 = 𝑇𝑁(𝐻) and 𝐻 a contractive matrix. Throughout this paper it is assumed 

that the domain of the Möbius transform 𝑇𝑁  is the entire contractive ball. 

Remark 2 An analogous result can be obtained along the classical two Riccati 

based approach, where the set of the controllers is described by a linear 

fractional transform defined on the set of the contractive transfer functions, for the 

details see, e.g., [21]. Then, by restricting the set of parameters on the set of 

contractive matrices, we obtain an analogous starting point as for the LMI case. 
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4 The Matrix Blaschke Group 

As we have already shown, for performance problems the parametrization of the 

solutions provides an immediate blending possibility by following the indirect 

approach. In contrast to the stabilization problem [17], the identification of the 

elements of this approach is not trivial. In what follows we present the group 

structure and a parametrization of the automorphism group of the unit ball. 

Setting 𝐽 = (
𝐼 0
0 −𝐼

) we consider the associated group of 𝐽-unitary matrices Φ, 

i.e., those matrices for which Φ∗𝐽Φ = 𝐽. There is a correspondence between the 

contractive ball and the 𝐽-unitary matrices: for every contraction 𝐻 the matrix 

Φ𝐻 = (
𝑁𝐻 0
0 𝑁𝐻∗

) (
𝐼 −𝐻∗

−𝐻 𝐼
) 

is 𝐽-unitary. It is convenient to introduce the following notations: 𝐷𝐻 = (𝐼 − 𝐻∗𝐻) 

and 𝑁𝐻 = 𝐷𝐻
−1. Observe that we have the following properties: 

𝑁𝐻 = 𝑁𝐻
∗ ,    𝑁(−𝐻) = 𝑁𝐻 ,    𝐻𝑁𝐻 = 𝑁𝐻∗𝐻, 

𝑁𝑈𝐻 = 𝑁𝐻 ,    𝑁𝐻𝑈𝑈∗ = 𝑈∗𝑁𝐻 , 

for any unitary 𝑈. It is immediate that Φ𝐻 = Φ𝐻
∗  and that Φ𝐻

−1 = Φ−𝐻. 

Concerning the geometric content, recall that 𝐽-unitary matrices define the 

movements, i.e., hyperbolic translations, on the matrix unit ball that preserve the 

hyperbolic distance. Their Möbius transform defines the multidimensional 

generalization of the elementary Blaschke products: 

𝐵𝐻(𝑍) = 𝔐Φ(𝑍) = 𝑁𝐻∗(𝑍 − 𝐻)(𝐼 − 𝐻∗𝑍)−1𝐷𝐻 = 

−𝐻 + 𝐷𝐻∗𝑍(𝐼 − 𝐻∗𝑍)−1𝐷𝐻 = 𝔉𝑙(Ψ, 𝑍) 

with Ψ = (
−𝐻 𝐷𝐻∗

𝐷𝐻 𝐻∗ ). The elementary Blaschke products 𝐵𝐻(𝑍) are 

biholomorphic automorphisms of the unit ball ℬ and ∥ 𝐵𝐻(𝑍) ∥≤ 𝐵∥𝐻∥(∥ 𝑍 ∥). 

Moreover, every biholomorphic mapping ℎ is of the form ℎ = 𝐵ℎ(0)(𝑈𝑍𝑉) =

𝑈𝐵ℎ−1(0)(𝑍)𝑉, where 𝑈 and 𝑉 are unitary operators. The metric defined as 

𝜌(𝐴, 𝐵) = ln
1+∥ 𝐵𝐴(𝐵) ∥

1−∥ 𝐵𝐴(𝐵) ∥
= 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(∥ 𝐵𝐴(𝐵) ∥) 

is invariant with respect to biholomorphic automorphisms and provides an 

extension of the Poincaré disk model of the hyperbolic geometry to the operator 

ball. For details see, e.g., [4, 8, 10]. 

Note that 

𝐵𝐻(0) = −𝐻,    𝐵𝐻(𝐻) = 0,    𝐵−𝐻(0) = 𝐻               (17) 

𝐵𝐻 ∘ 𝐵−𝐻 = 𝐵−𝐻 ∘ 𝐵𝐻 = 𝐼                (18) 
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In contrast to the Euclidean geometry, where elementary translations form a 

group, in the hyperbolic world we do not have this property. This fundamental 

difference makes things more complicated: we cannot define a group structure 

merely on the contractive ball. However, based on the observation that every 𝐽-

unitary matrix can be expressed as an elementary translation and a block diagonal 

unitary action, there is a remedy. 

Theorem 2  Every 𝐽-unitary matrix can be expressed as 𝛷 = 𝑊𝑈,𝑉𝛷𝐻, where 𝐻 is 

a suitable contraction and 𝑈 and 𝑉 are unitary matrices, with 𝑊𝑈,𝑉 =

𝑑𝑖𝑎𝑔{𝑈, 𝑉}. 

For the result in the general, operator valued context, see, e.g., [2]. Its proof relies 

on the existence and uniqueness properties of the polar decomposition. The 

following commutation formula is the basic observation for our purposes. 

 Φ𝐻𝑊𝑈,𝑉 = 𝑊𝑈,𝑉Φ𝑉∗𝐻𝑈  (19) 

Its importance relies in the derivation of the formula that relates the action of the 

𝐽-unitary group in terms of the three parameters (𝑈, 𝑉, 𝐻). Observe that 

Φ1Φ2 = 𝑊𝑈1,𝑉1
Φ𝐻1

𝑊𝑈2,𝑉2
Φ𝐻2

= 𝑊𝑈1,𝑉1
𝑊𝑈2,𝑉2

Φ𝑉2
∗𝐻1𝑈2

Φ𝐻2
= 𝑊𝑈,𝑉Φ𝐻 , 

 i.e., Φ(𝑈1,𝑉1,𝐻1)Φ(𝑈2,𝑉2,𝐻2) = Φ(𝑈,𝑉,𝐻) 

The operation (𝑈, 𝑉, 𝐾) = (𝑈1, 𝑉1, 𝐻1) ∘ (𝑈2, 𝑉2, 𝐻2) defined by this 

homomorphism is obviously a group, called the Blaschke group. If we would like 

to provide an explicit expression of this homomorphism, we need to provide a 

formula for the product Φ𝐻1
Φ𝐻2

 of the elementary Blaschke factors, i.e., for 

(𝑈, 𝑉, 𝐻) = (𝐼, 𝐼, 𝐻1) ∘ (𝐼, 𝐼, 𝐻2). 

As a first step, observe that by definition we have 

(𝑈, 𝑉, 𝐻) = (𝑈, 𝑉, 0) ∘ (𝐼, 𝐼, 𝐻) 

(𝑈1𝑈2, 𝑉1𝑉2, 0) = (𝑈1, 𝑉1, 0) ∘ (𝑈2, 𝑉2, 0) 

and we have already shown that 

(𝑈1, 𝑉1, 𝐻1) ∘ (𝑈2, 𝑉2, 𝐻2) = (𝑈1𝑈2, 𝑉1𝑉2, 0) ∘ (𝐼, 𝐼, 𝑉2
∗𝐻1𝑈2) ∘ (𝐼, 𝐼, 𝐻2)            (20)  

Before arriving to the final formula, we need some relations that are interesting in 

their own right. First observe that by using the 𝐽-unitary property of Φ𝐻 and the 

definition of 𝐵𝐻  we have  (
𝐼
𝐵𝐻(𝑍)

)
∗

𝐽 (
𝐼
𝐵𝐻(𝑍)

) = (⋆)𝐽 (
𝐼
𝑍

) (𝐼 − 𝐻∗𝑍)𝐷𝐻 , i.e., the 

defect can be expressed as𝐷𝐵𝐻(𝑍)
2 = 𝐼 − 𝐵𝐻

∗ (𝑍)𝐵𝐻(𝑍) = 𝑄𝐻
∗ (𝑍)𝑄𝐻(𝑍), with the 

factor 𝑄𝐻(𝑍) = 𝐷𝑍(𝐼 − 𝐻∗𝑍)−1𝐷𝐻 . 

Thus, for the unitary matrix 𝐸𝐻(𝑍) we get the expression 𝐷𝐵𝐻
= 𝐸𝐻

∗ (𝑍)𝑄𝐻(𝑍), 

i.e., 

𝐸𝐻(𝑍) = 𝑄𝐻(𝑍)𝑁𝐵𝐻(𝑍), and, by a direct verification results that 
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𝐵𝐻(𝑍) = −𝐵𝑍(𝐻)𝐸𝐻(𝑍)                 (21) 

Now we can formulate one of the main results of this section: 

Theorem 3  The product of elementary 𝐽-unitary matrices is the 𝐽-unitary matrix 

given by 

Φ𝐻1
Φ𝐻2

= 𝑊𝑈,𝑉Φ𝐻 , 

where the contractive term and the unitary factor can be computed as 

𝐻 = 𝐵−𝐻2
(𝐻1),    𝑈 = 𝐸−𝐻2

(𝐻1),    𝑉 = 𝐸−𝐻2
∗(𝐻1

∗) 

Proof: Indeed, from the identity 𝐵𝐻1
(𝐵𝐻2

(𝑍)) = 𝑉𝐵𝐻(𝑍)𝑈∗  and applying  (17) 

we get 0 = 𝑉𝐵𝐻(𝐵−𝐻2
(𝐻1))𝑈∗, 𝑖. 𝑒., 𝐻 = 𝐵−𝐻2

(𝐻1). It also follows that 

𝐵𝐻1
(−𝐻2) = −𝑉𝐻𝑈∗. Thus 

𝐷𝐵𝐻1(−𝐻2)
2 = 𝑈𝐷𝐻

2 𝑈∗ = 𝑈𝐷𝐵−𝐻2(𝐻1)
2 𝑈∗ 

𝐷𝐵𝐻1
∗ (−𝐻2)

2 = 𝑉𝐷𝐻∗
2 𝑉∗ = 𝑉𝐷𝐵−𝐻2

∗ (𝐻1)
2 𝑉∗ 

Putting together all these results we can obtain the expressions of the unitary 

factors as 𝑈 = 𝐸−𝐻2
(𝐻1),    𝑉 = 𝐸−𝐻2

∗(𝐻1
∗), as it was claimed. Finally, we have 

that 

(𝐸−𝐻2
(𝐻1), 𝐸−𝐻2

∗(𝐻1
∗), 𝐵−𝐻2

(𝐻1))= (𝐼, 𝐼, 𝐻1) ∘ (𝐼, 𝐼, 𝐻2) 

Combining Theorem 3 with (20) we have obtained the explicit formula for the 

desired blending operation that defines the group homomorphism 

Φ(𝑈1,𝑉1,𝐻1)Φ(𝑈2,𝑉2,𝐻2) = Φ(𝑈1,𝑉1,𝐻1)∘(𝑈2,𝑉2,𝐻2) = Φ(𝑈,𝑉,𝐻) 

as follows: 

Theorem 4  Corresponding to our notations, the operation given by 

(𝑈, 𝑉, 𝐻) = (𝑈1, 𝑉1, 𝐻1) ∘ (𝑈2, 𝑉2, 𝐻2) =
 (𝑈1𝑈2𝐸−𝐻2

(𝑉2
∗𝐻1𝑈2), 𝑉1𝑉2𝐸−𝐻2

∗(𝑈2
∗𝐻1

∗𝑉2), 𝐵−𝐻2
(𝐻1))              (22) 

 defines a group structure.  

Remark 3  In the performance problem considered in this paper we are interested 

only in the contraction part, see (16). One might think that the map (𝐻1, 𝐻2) →
𝐵−𝐻2

(𝐻1) is sufficient to define the blending, and that the unitary part does not 

play any role. Thus, it seems that in the matrix case, for practical purposes one 

needs only the elementary Blaschke maps according to 𝑇Φ𝐻
(0) = −𝐻. 

Remember, however, that Φ𝐻1
Φ𝐻2

= 𝑊𝑈,𝑉Φ𝐻, in general. Thus, the elementary 

Blaschke maps are not enough to define an automorphism group structure and we 

should use the formula 𝑇Φ𝐻1
𝑇Φ𝐻2

(0) = 𝑇Φ𝐻
(0) = −𝑉𝐻𝑈∗, where the parameters 

are given by Theorem 4. At this point recall, that the controller is given by (16), 



J. Bokor et al. The ℋ∞ Control Performance Group 

 – 22 – 

where 𝑍 = 𝑇𝑁(𝐻) = (𝐶 + 𝐷𝐻)(𝐴 + 𝐵𝐻)−1. Thus, in an iterative process, the 

additional unitary factors may be used to maintain some structural constraints 

through the iteration. As an example, taking a generalized SVD of the pair (𝐴, 𝐵), 

one can simplify the computation of the inverse during the iteration. 

Conclusions 

This paper proposes a method for improving the ℋ∞ control synthesis, which 

provides a starting point for developing algorithms that uses some sort of iteration. 

The paper is based on the observation that solutions of the quadratic performance 

problems, e.g., a suboptimal ℋ∞ design, are parametrized by the elements of the 

unit ball. Based on the formulation for all controllers belonging to a given 

performance level and Lyapunov function candidate, the paper reveals the group 

structure corresponding to the control performance problem. 

The paper presents, in detail, an explicit parametrization of the hyperbolic motions 

of the matrix unit ball and the corresponding induced operation, on this parameter 

space. The obtained formula, leads to an indirect blending algorithm, for 

controllers, that guarantees a given performance level. In contrast to the operator 

valued case, in this context, one can implement the necessary operations easily. 

Based on this group structure, efficient systematic algorithms can be developed 

for ℋ∞ controller tuning. 
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Appendix 

Notations and basic results 

The notations used in the paper are fairly standard. The kernel of a matrix 𝑀 is 

denoted by 𝑀⊥ and is interpreted as 𝑀𝑀⊥ = 0. The inertia of a matrix 𝑀 is 

denoted by in(𝑚, 𝑘, 𝑛) where 𝑚, 𝑘, 𝑛 are the number of positive, zero and negative 

eigenvalues of 𝑀. The Möbius transformation of matrix 𝐾 with respect to the 

matrix 𝑁 is denoted by 𝑇𝑁(𝐾) and is defined by  𝑇𝑁(𝐾) = (𝐶 + 𝐷𝐾)(𝐴 +
𝐵𝐾)−1, 

where 𝑁 = [
𝐴 𝐵
𝐶 𝐷

]. 

Lemma 2 (Projection lemma) For arbitrary A, B and a symmetric P, the LMI 

𝐾𝑇𝑋𝐵 + 𝐵𝑇𝑋𝑇𝐴 + 𝑃 < 0              (30) 

in the unstructured 𝑋 has a solution if and only if 

𝐴⊥
𝑇 𝑃𝐴⊥ < 0         𝑎𝑛𝑑     𝐵⊥

𝑇𝑃𝐵⊥ < 0,             (31) 

where 𝐴⊥ = ker(𝐴) and 𝐵⊥ = ker(𝐵). 

If (31) is satisfied then one particular solution 𝑋 of (30) can be determined by the 

numerical algorithm implemented in basiclmi MATLAB routine. 

Lemma 3 (Elimination lemma) Consider the quadratic matrix inequality 

(
𝐼
𝐴𝑋𝐵 + 𝐶

)
𝑇

𝑃 (
𝐼
𝐴𝑋𝐵 + 𝐶

) < 0                 (32) 

in the unstructured unknown 𝑋. Assume 𝐶 is of dimension 𝑛 × 𝑚 and 𝑃 has 

inertia (𝑚, 0, 𝑛). Then (32) has a solution if and only if 

𝐵⊥
𝑇 (

𝐼
𝐶

)
𝑇

𝑃 (
𝐼
𝐶

) 𝐵⊥ < 0,     𝑎𝑛𝑑  𝐴⊥
𝑇 (−𝐶𝑇

𝐼
)

𝑇

𝑃−1 (−𝐶𝑇

𝐼
) 𝐴⊥ > 0,             (33) 

where 𝐴⊥ = ker(𝐴) and 𝐵⊥ = ker(𝐵). 

Note, that solution of the 𝐻∞ problem uses the Projection lemma, which is a 

special case of the Elimination lemma when 𝑃 = (
𝑄 𝑆
𝑆∗ 0

). 

Möbius transformation and basic properties 

Definition 1  Let 𝑀 ∈ 𝔽(𝑚+𝑛)×(𝑚+𝑛)  (𝐹 = ℝ or ℂ) be partitioned as 𝑀 =

(
𝐴 𝐵
𝐶 𝐷

).   The Möbius transformation 𝑇𝑀 is defined by the equation 

𝑇𝑀(𝑋) = (𝐶 + 𝐷𝑋)(𝐴 + 𝐵𝑋)−1 for 𝑋 ∈ 𝔽𝑛×𝑚 where (𝐴 + 𝐵𝑋)−1 exists. Denote 

by dom(𝑇𝑀) = {𝑋 ∈ 𝔽𝑛×𝑚 ∶  ∃(𝐴 + 𝐵𝑋)−1}  the domain of 𝑇𝑀. 

The dual Möbius transformation is defined by 𝑇𝑀
𝑑(𝑍) = (𝑍𝐵 + 𝐷)−1(𝑍𝐴 + 𝐶),  
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and dom(𝑇𝑀
𝑑) = {𝑍 ∈ 𝔽𝑛×𝑚 ∶  ∃(𝑍𝐵 + 𝐷)−1}. 

Theorem 5  Let 𝑀 ∈ 𝔽(𝑚+𝑛)×(𝑚+𝑛). Then  

 𝑋 ∈ 𝑑𝑜𝑚(𝑇𝑀
𝑑)     ⇔     𝑋∗ ∈ 𝑑𝑜𝑚(𝑇𝐿∗𝑀∗𝐿). 

Moreover 𝑇𝑀
𝑑(𝑋) = 𝑇𝐿∗𝑀∗𝐿

∗ (𝑋∗), where 𝐿 = (
0 𝐼𝑚

𝐼𝑛 0
). If 𝑀 ∈ 𝔽(𝑚+𝑛)×(𝑚+𝑛) is a 

nonsingular matrix, then  𝑇𝑀(𝑋) = −𝑇𝑀−1
𝑑 (−𝑋).  

Corollary 1   −𝑇𝑀
∗ (𝑋) = 𝑇𝐿∗𝑀−∗𝐿(−𝑋∗). 

Let us consider the composition of two Möbius transformations. 

Definition 2  Let 𝑀 and 𝑁 be partitioned as 𝑀 = (
𝐴 𝐵
𝐶 𝐷

) ,    𝑁 = (
𝐸 𝐹
𝐺 𝐻

). 

Composition of the transformations 𝑇𝑀 and 𝑇𝑁 is (𝑇𝑁 ∘ 𝑇𝑀)(𝑋) = 𝑇𝑁(𝑇𝑀(𝑋)). 

Lemma 4 (𝑇𝑁 ∘ 𝑇𝑀)(𝑋) = 𝑇𝑁(𝑇𝑀(𝑋)) = 𝑇𝑁𝑀(𝑋), with  𝑋 ∈ 𝑑𝑜𝑚(𝑇𝑀) and 

𝑇𝑀(𝑋) ∈ dom(𝑇𝑁).  If 𝑀 is nonsingular, 𝑍 ∈ dom(𝑇𝑀) and 𝑇𝑀(𝑋) = 𝐾 then 

𝐾 ∈ dom(𝑇𝑀−1) and 𝑇𝑀−1(𝐾) = 𝑋, i.e., dom(𝑇𝑀) = Range(𝑇𝑀−1). 


