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Abstract. Ebben a cikkben egy passźıv radar 2D ISAR képekre
kifejlesztett módszer kerül bemutatásra, mellyel azt vizsgáljuk, hogy a
képalapú jellemzők mennyire alkalmazhatóak a célpontok kinyerésére
és osztályozására. A munka célja, hogy a korábbi jelfeldolgozás
alapú detekciót és felismerést kibőv́ıtsük a rendelkezésre álló képi
információval. A bemutatott módszer gyors, könnyen beágyazható és
bőv́ıthető, közel valósidejű és az elvégzett tesztek alapján hatékonyan
alkalmazható valós passźıv 2D ISAR képek osztályozására.

1 Introduction

Passive radar systems use one or more non-cooperative illuminators of
opportunity (e.g., digital video broadcasts [1], mobile communications [2], digital
or FM radio [3], etc.) as signal sources and one or more controlled receivers.
Passive radars have recently received a renewed interest from the scientific
community since the recent technological advances have made the realization
of low cost passive radars [4] and real time processing possible. Following the
recent technological advances on this field, additional radar techniques are added
to passive radars to make them able to handle several tasks. One of such task
is the radar imaging [5] of non-cooperative targets though the use of Inverse
Synthetic Aperture Radar (ISAR) methods [6–8], which in turn may open the
door to Automatic Target Classification (ATC). Although recent researches have
demonstrated the feasibility of passive radar imaging, the ability to use these
ISAR images for target recognition was formulated but not demonstrated. This
paper is an attempt to prove whether 2D ISAR passive radar images can be used
for such a purpose.

In particular, this paper focuses on target segmentation and classification
using 2D ISAR range-crossrange images of passive radar systems [9]. The
goal of the proposed method is to have a generic, model-free approach for
image-based target recognition that can be used for various target classes and
image resolutions, can be used with a low number of target samples, but can be
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easily extended to support larger target classes. The most important application
area is silent, passive defense observation for force and area protection (e.g., [4]).

Passive radar technology has been applied to target detection and imaging
[2, 7] and for target classification [10–12] using signal or image processing
approaches. Our goal is to extract targets and features from 2D passive ISAR
images originating from a multistatic passive radar measurement system that can
be used for image-based classification. When we know possible target structures,
works like [12, 13] provide detection methods using a Markovian approach.
However, our goal is to detect targets without target model constraints. The
contribution of the current work is that it proposes a lightweight solution,
without the need of periodic retraining, that can also work with a low number of
examples. The proposed method produces a segmentation of the target from 2D
passive ISAR images, based on previous results in saliency based feature map
generation [14, 15]. First, we produce a fused feature map of directional and
textural salient information, then we extract target regions and their contours
as a basis for classification using shape based recognition and retrieval [16].

The proposed approach has been tested on data acquired with the
SMARP (Software-defined Multiband Array Passive Radar) passive radar
demonstrator. SMARP has been developed by the Radar and Surveillance
Systems Laboratory (RaSS Lab.) of the Italian National Inter-University
Consortium for Telecommunications (CNIT). SMARP is a dual band and dual
polarization passive radar operating at UHF (470 − 790 MHz) and S-band
(2100 − 2200 MHz). In its current version SMARP is able to acquire up to
25 MHz bandwidth signal at UHF [4].

A picture of SMARP and some detection and tracking results are shown in
Fig. 1 (a)-(b). Examples of Passive ISAR images obtained by using the SMARP
system are shown in Fig. 2. Conversely from conventional ISAR images which
are in the range/Doppler domain, such images are in a fully spatial coordinate
system. To get the ISAR images in the range/cross-range domain, the algorithm
proposed in [17] has been applied in order to scale cross-range axis from Hz to
m.

2 The Proposed Approach

The main goal of the approach proposed in this paper is to provide a method
that can work with a limited dataset, but can scale to hundreds or thousands of
samples as well. The method has two steps: i). detection and extraction of targets
from range-crossrange images, along with target features, and ii). classification
of the extracted target based on previously seen samples.

The dataset that we used for processing and testing contains real
range-crossrange images produced by passive ISAR measurements, and were
provided by partners of the MAPIS (Multichannel passive ISAR imaging for
military applications) Project Consortium. The dataset contains images of
targets from 8 classes, 128 images in total. Figs. 2 and 3 show examples of
input images that we process for detection and classification.
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(a)

(b)

Fig. 1. (a) Picture of the SMARP system and (b) detection and tracking results.
Colored lines are the targets AIS trajectories of ships and the black lines are the radar
tracks.

2.1 Detection and Extraction

The goal of the first step is the detection of objects/targets in obtained
range-crossrange images. The method that we propose is generic, in the sense
that does not use any a priori target information (shape, model, etc.), but relies
only on discriminative image features. A benefit of such an approach is flexibility
and independence from possible target model constraints. The goal here is the
detection of the target candidates, and the extraction of features that can later
be used for classification and recognition. The method that we propose is based
on the extraction of fused morphological, textural and edge feature maps. The
final features that we aim to extract and retain are the shape/contour of the
target and its length.

Input images can be of various size and resolution, and they can contain
targets with different meters/pixel resolution (e.g., Table. 1 shows the various
resolutions from the used dataset). As a first step, we resize the raw inputs to
have a ratio consistent with their resolution (e.g., Fig. 3). In Fig. 4 the raw input
image is shown in the first row, the resized image is in Fig. 4(a), representing
a 103.28 meter × 512.39 meter area. The resized image is processed using the
proposed algorithm.

The main concept of the proposed detection and extraction is to first extract
the salient object - target candidate - in the image, then use the features of
this object in the classification step. As a first step of the object extraction, a
texture map is calculated by using the sparse texture model of [18] and measuring
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example raw input range-crossrange images.

Fig. 3. Example input range-crossrange images resized according to real size ratios
(having different resolutions).

the statistical textural distinctiveness of the occurring texture atoms. After
extracting rotation-invariant, neighborhood-based textural representations for
the image pixels, a global texture model is defined for the image. Textures are
built from repeating patterns, therefore the calculated texture representations
are merged from pixel-level to region-level to formalize unique patterns, called
as texture atoms, representing the image. The number of these atoms can be set
beforehand, and is usually chosen quite low, resulting in a sparse texture model
of the image (the original method used 20 texture atoms, and we also use the
same throughout the experiments), using the atoms to classify image regions.

From the different atoms, the salient ones are searched to find those
areas of the image that draw visual attention by defining a statistical texture
distinctiveness value for each atom. Passive ISAR images are different from
general imagery, however the main rules still hold: more distinct regions have
higher statistical texture distinctiveness. Also, in such images the target is
usually close to image center, which also attracts higher visual attention,
therefore these image areas require higher distinctiveness. The calculated
T texture map is shown in Fig. 4(b), where the higher distinctiveness is
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Table 1. Resolutions (meters/pixel) of the various raw input images, and their average
width/height (crossrange-range) values (meters).

Class Im. resolution (m/px) Avg. im. width (m) Avg. im. height (m)

A 1.44-3.12 1767 953

B 0.82-1.58 118 452

C 0.91-2.35 432 706

D 0.81 212 470

E 3.1-3.14 1126 1018

F 4.65-4.69 661 1524

G 1.3-1.32 636 427

H 4.18-4.21 5946 1371

represented by lighter color. The texture map is binarized with the adaptive
Otsu thresholding [19] to define the initial salient blob (Fig. 4(c)).

To extract features representing the salient object, the first step is a robust
object outline detection, which is a great challenge in case of passive ISAR
images, as edges can be quite blurry. To compensate for this challenge, the
keypoints of the detected salient area are extracted and salient directions
are calculated based on the main orientations of the gradient in the small
surroundings around the keypoints. This orientation feature is then used for an
improved edge enhancement by building a structural feature map. To represent
the salient object as the fusion of structural and textural features, the textural
distinctiveness map is also incorporated in the proposed boundary detection
model.

A modification of the Harris characteristic function [20] was introduced for
noisy and high curvature boundaries [18] for keypoint extraction. Keypoints are
calculated as the local maxima of the Modified Harris for Edges and Corners
(MHEC) function, which is based on the eigenvalues (λ1 and λ2) of the Harris
matrix, the function looks as the following:

Rmod = max(λ1, λ2). (1)

The calculated MHEC keypoint set is shown in white in Fig. 4(d), the
points are selected in the P keypoint set if they have Rmod value over an
adaptive Otsu threshold. Based on the P point set, features are searched for
object contour enhancement. Local direction as a feature [21, 22] may facilitate
contour detection by defining the main orientations where relevant edges should
be searched for. To handle multiple orientation cases (such as corners) and to
calculate proper direction information (not only histogram binning) on a contour
level (not only pixel level), the direction feature extraction algorithm introduced
in [23] was applied and then the Morphological Feature Contrast (MFC) operator
[24] was used for edge detection.

The local gradient orientation density (LGOD) [25] function is calculated by
analyzing the small Wn(i) neighborhood (n× n, in our case n = 3) around the
keypoints in the P point set, and the location of its maxima is assigned to the
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point as the main orientation. For the ith point (Pi) its form is:

φi = argmax
φ∈[−90,+90]

 1

Ni

∑
r∈Wn(i)

1

h
· ∥∇gr∥ · κ

(
φ− φ∇

r

h

) , (2)

where ∇gi is the gradient vector for Pi with ∥∇gi∥ magnitude and φ∇
i

orientation, Ni =
∑

r∈Wn(i)
∥∇gr∥ and κ is a Gaussian smoothing kernel with

h = 0.7 bandwidth parameter.
After φi is calculated for all points in P , a ϑ(φ) orientation histogram

is defined. Orientations belonging to the maxima of this ϑ(φ) histogram are
assumed to be the main orientations of the salient area. To calculate these
orientations, Gaussians are correlated to ϑ(φ) iteratively. By measuring the
correlation rate between ϑ(φ) and the Gaussian, the iterative process stops when
this rate is starting to decrease. At this point, the main orientations of the salient
area are extracted.

The MFC operator [24] first distinguishes background texture and isolated
salient features, and it has an extension to extract linear features in defined
directions. By applying this extension in the previously extracted main
orientations, the relevant features can be emphasized. By fusing this Salient
Direction feature map (MSD) with the MHEC function (Rmod), the structural
information of the salient area is enhanced in an S structural feature map, which
is shown in Fig. 4(e) and is calculated as follows:

S = max(max(0, log(MSD)),max(0, log(Rmod))). (3)

By this point, only structural information is applied for object contour
detection. To also incorporate textural information, the T texture map
(Fig. 4(b)) is fused with the S structural feature map (with weight γ = 0.3)
resulting in an improved object contour representation (Fig. 4(f)):

C = γ |∇(S(x, y))|+ (1− γ) |∇(T (x, y))| . (4)

By applying adaptive Otsu thresholding on the C object feature map, the
binary contours are defined (Fig. 4(g)) for further processing steps. The 5 biggest
blobs are selected, followed by the extraction of contiguous blobs and extracting
their contours (Fig. 4(h)). After ordering the blobs by size, the largest one is
selected as the target candidate and its main length is measured (Fig. 4(i)).

Fig. 5 shows some examples for input images and the final results of the
above described target detection and extraction steps.

2.2 Classification

The goal of the classification step is using extracted features to recognize targets
from the same class later. Since we do not have, and it would be extremely
hard to obtain a large enough dataset to train deep convolutional networks for
classification, our approach was to find a method that can work with a small
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. The process of the segmentation and extraction, visualized.

Fig. 5. Examples of input images (top) and final extracted regions and main lengths
(bottom).

dataset but is able to scale to larger datasets as well. The proposed solution does
not need periodic re-training, is easy to extend with new target classes, and is
part of a classification process that is invariant to target rotation.

First, we take the targets extracted from the previous step, and extract their
contours. For classification, the contour of the candidate is transformed into
a rotation invariant tangent function representation [26]. To obtain a target
class estimate, we propose a method based on [16], with a point of view of
content based retrieval. Using the available labeled dataset, we construct an
index structure [27] which indexes the dataset based on the comparison of the
extracted shape descriptors (i.e., turning function representations). The index
structure is using BK*-trees described in detail in [27], in which a node can have
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multiple children, each child falling into a specific difference interval from its
parent.

In this solution, the classification of a target becomes a content based retrieval
step: an input target is a query, and we find the most similar nodes in the index
structure, assigning the class of the most similar results as the class of the queried
target.

Because of the index tree’s structure, when looking for similar nodes and
traversing the tree, large parts of the index can be disregarded at every node.
This structure has multiple benefits: it is easy to extend with new elements,
which only need to be added to the tree, thus no full reconstruction is necessary;
we can use it to not only get a single class estimate for a query target, but to
obtain the first N most similar candidates as well, being able to keep a constant
statistics of the class estimates and propose the most frequent estimate as the
target class; it is also a very lightweight solution, a class estimation step requiring
less than 0.2s (1.6GHz Core i5); it is also easy to parallelize, since we can run
multiple retrieval steps on the index in parallel, thus multiple targets can be
classified simultaneously.

Using the shape representation of an extracted target, we classify the target
by performing a retrieval step on the available index and taking the best results
as an indicator of the class.

3 Evaluation

As mentioned above, we used a dataset of 128 real passive ISAR range-crossrange
images of 8 targets, 2 aerial (planes), 6 nautical (ships). We label these classes
with letters A to H.

Using the above described index structure, we performed retrievals on the
indexed dataset to find target classes. For evaluation, we indexed the dataset and
performed retrievals for each dataset element, discarding the first result (which
was always the input/query image).

First, we used a smaller subset (classes A-D, containing 56 samples), to
perform retrievals where we evaluated the first best match, the majority of
the first 3 matches, and the majority of the first 10 matches to obtain a class
estimate. Fig. 6 shows the average recognition rates for these retrievals: the class
estimate of a target gets better if we take into consideration not only the closest
match, but a statistics of matches. In practice this means, that when we have
more samples of the same target class incorporated in the index structure, the
recognition of a target class will improve (i.e., the more we see the same class,
the better we will be able to recognize it).

For our evaluations, we used the third approach: for each queried target
image, we retrieve the 10 closest matches and take the majority of the results
as the class estimate. Table 2 shows the normalized confusion values of the
classification using the full dataset, and Fig. 7 shows the average recognition
rates for the used classes. From these results we can see that some classes were
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Fig. 6. Comparison of the first (1), majority of first three (3) and majority of first ten
(10) approaches (for classes A-D).

Table 2. Normalized confusion matrix.

A B C D E F G H

A 0.64 0.14 0.21 0.00 0.00 0.00 0.00 0.00
B 0.00 0.38 0.06 0.13 0.00 0.19 0.00 0.25
C 0.13 0.00 0.67 0.07 0.07 0.00 0.00 0.07
D 0.00 0.27 0.18 0.55 0.00 0.00 0.00 0.00
E 0.00 0.00 0.00 0.00 0.56 0.00 0.33 0.11
F 0.00 0.17 0.06 0.06 0.06 0.28 0.33 0.06
G 0.00 0.00 0.00 0.00 0.07 0.00 0.93 0.00
H 0.00 0.06 0.00 0.00 0.00 0.06 0.06 0.83

well recognized (94%), others had a lower recognition rate (28%), the average
recognition rate being 61%.

To put these results into perspective, we also evaluated other classification
methods on the same dataset. First, we ran SVM (support vector machine)
classifications, using histogram of oriented gradients and local binary pattern
features, and we show the classification results in Fig. 8. We used the
Matlab SVM implementation and tried linear (SVML), Gaussian (SVMG),
RBF (SVMR) and polynomial (SVMP) kernels. We also tried decision tree
(Dec.tree) and k nearest neighbor (kNN) learner templates. All versions were
run 10 times, with random 75% of the dataset used for training and 25% for
testing, and averaging the results. The results show that the best SVM average
(SVML+HOG: 70%) is similar to our proposed results.

However, we also measured training/indexing and prediction/retrieval times
for all methods, and we show in Table 3 the results of those methods that are
close to the proposed in average recognition rates, namely HOG-based SVM,
decision trees and kNN. Compared to methods with similar recognition rate, the
proposed method is more lightweight and faster both in indexing and in retrieval.
We also need to keep in mind here, that the proposed approach only needs to
build the index once (with later elements added to the index tree), while for the
others training needs to be performed repeatedly (with increased time) when
new target classes/elements need to be added to the model.

To showcase another benefit and strength of the proposed approach, we
performed another evaluation step. We created 2 rotated (with 45 and 135
degrees) versions of 1 raw input image from each class (16 images in total),
and tried to classify these rotated versions using the proposed approach and
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Fig. 7. Average recognition rates for the proposed method.

Fig. 8. Average recognition rates for the SVM approaches, the decision tree and kNN
methods and the proposed method.

the closest methods from Fig. 8. The rotated images were not included in the
indexing and in the model training steps, only used as unknown input targets.
Fig. 9 shows some examples of such rotated images. The goal of this evaluation
step is to show that the proposed method is strong in recognizing the class of
targets which are rotated versions of targets seen before (i.e., have samples of the
target in the index, but from different angles). Fig. 10 shows average recognition
rates for the rotated inputs (2 images for each class, averaged). The results show
that the proposed method could correctly classify the rotated targets, while the
other approaches mostly failed.

As final examples, Fig. 11 shows two examples of input passive ISAR
range-crossrange images (with target regions zoomed in) and the first 3 matches
from the index.

4 Conclusion

In this paper we presented an automatic target extraction and classification
method for passive multistatic ISAR range-crossrange images, to show the
possibility and capability of image feature based approaches for such tasks. The
presented approach handles the classification from a content based retrieval
point of view, providing several benefits: can work with a small number of
samples, moreover, it is easy to extend with more data; it is lightweight and can
handle multi-target classification as well; does not need re-training as traditional
machine learning approaches; it can handle the classification of rotated targets;
its robustness can be increased by incorporating more variations of class samples.
The proposed approach is lightweight enough to be embeddable to existing ATR
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Table 3. Indexing/training and classification/prediction times (s) for the proposed
method, SVM, decision trees and KNN.

Methods Indexing/training (s) Classification/prediction (s)

Proposed 2.87 0.20

SVML+HOG 17.39 1.79

SVMP+HOG 58.38 8.63

Dec.tree(HOG) 107.12 0.11

KNN(HOG) 23.02 16.30

(a)

(b)

Fig. 9. Samples of artificially rotated raw inputs.

systems that incorporate passive multistatic ISAR imaging. In the future we
hope to further increase the robustness and speed of the approach.

Köszönetnyilváńıtás
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