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Absztrakt. A LIDAR szenzorok az intelligens jarmiivek érzékelSrendsz-
ereinek fontos részei, amelyek targy és szabadtér detekciét biztositanak.
Egy felismerd rendszert javasolunk néhany detekcios sikkal rendelkezd
LIDAR-ok szdméara. A tanulményban javasolt modszer kiilonosképpen
hasznos ha a vizszintes felbontas megfelels, de fiiggsleges iranyban a
sikok tavol helyezkednek el egymastol. A modszer 4j funkcidkat hasznal
beleértve Fourier alapt leirast és mélytanulasi osztalyozéast, amennyiben
3D informaci6 is rendelkezésre all azt is hasznositja. A modszert nagy,
publikus adatbazisboél szarmazo6 tébb tizezer mintan teszteltiink. A tanul-
many egy hatékony megoldast ad a LIDAR alapu alakfelismerés egy ne-
héz problémajara, nevezetesen a tavoli targyak észlelésére gyenge ver-
tikalis felbontas esetén.

1. Introduction

Autonomous driving requires different sensor modalities to work together in or-
der to ensure safe transportation. There are ways of task allocation between
sensors which are proved to be efficient, like using depth sensors as LIDARs
for free-space or object candidate detection, vision for object recognition. How-
ever, relying only on one sensor in case of any task (for example cameras for
classification) is just not enough to minimize probability of accidents in any cir-
cumstances because of the limited capabilities of the sensors. That is why we
have to maximize the efficiency of each sensor modality for each task. We aim to
improve the overall classification performance with LIDAR sensors in this paper.

Vehicles are frequently equipped with LIDARs with only a few detection
planes (e.g. SICK LD-MRS! or Velodyne VLP-162) or even with only one (e.g.,

* Jelen cikk az TPAS 2018-ra (2018.12.12-14, Franciaorszig, Sophia Antipolis) Street
object classification via LIDARs with only a single or a few layers cimen elfogadott
publikacié eredményeit mutatja be.

** Rozsa Zoltan palyazatot nyujt be Kuba Attila dijra.

! https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors /1d-
mrs/c/g91913

2 http:/ /velodynelidar.com /vlp-16.html
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SICK LMS5xx series®). Dealing with LIDARs with many planes (e.g. Velodyne
HDL-64%), we will experience that far objects will be represented in only a few
planes and they cannot be treated as point clouds (Figure 1). In [18], the authors
proposed a solution for the relatively slow Automated Guided Vehicles, where a
3D reconstruction was made by fusing the separated planes. However, in case of
autonomous vehicles, their fast movement requires even faster decision. In this
paper we propose a solution to this problem by handling all the object candidates
as set of plane curves. We will show that these plane curves are suitable for
object recognition and increasing number of scan planes increases the recognition
probability as well. Instead of point clouds of very poor vertical resolution at far-
distances, we use the advantage of good in-plane resolution of few-layer LIDARS,
considering the under-sample situation at the vertical direction.

Recent works (e.g. [13], [12]) show good detection performance for a few
categories (about 95 % recall for four categories) in case of 2D LIDARs. We aim
to enhance these methods and apply to the present problem.

1. Figure Velodyne VLP16 sequence. Car represented only with 3 detection plane (and
so cannot be treated as point cloud) is marked with red points. The car’s distance to
the sensor is about 13 m.

Addressing the above problems usual in recognition tasks from LIDAR point
cloud we contribute a new methodology listed now:

New approach for description of plane curves.

Object representation as set of plane curves with altitude.

— Convolutional Neural Network (CNN) with classification at the output.

— Extension is possible for tracking and/or multiple planar curves.

Propose voting scheme in order to increase recognition probability.

Offer solution to recognition cases of limited number of LIDAR planes scan-
ning an object, including far objects cut by only a few scan plane.

3 https://www.sick.com/us/en/detection-and-ranging-solutions,/2d-lidar-
sensors/lms5xx/c/g179651
4 http:/ /velodynelidar.com /hdl-64e.html
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2. Related works

The related literature mainly corresponds to recognition of objects realized with
LIDAR sensors having one or only a few planes. Methods working on 3D LIDARs
have the potential for the classification of several object classes, because these
methods have more information than in the case of dealing with separated 2D
LIDAR segments. Works like [3] and [16] use 2D or 3D Convolutional networks
for classification, but they require point clouds as input. Compared to this, in
work of [18] a solution was proposed for the problem, where 2.5D point clouds
are not available, only partial (but connected) object data. However, objects in
the far plane cannot be handled even with this type of methods, because they
are scanned by only a few unconnected 2D planar curves, so here a combined
approach is proposed.

The first applications related to object detection [1] and tracking [7] with
laser range finders have been already introduced in the early 2000s. The primary
goal of these early approaches were to find and track people; more than one
object class was not considered. Today, it is still an actual topic in robotics
and autonomous driving. Now, the development of sensors and computer vision
algorithms offer the possibility to consider more than one class to recognize
even in this planar contour data. [13] used the width of an obstacle and the
measured intensity. The authors were capable of differentiating four categories
with good accuracy based on euclidean distance. Later, adding one more feature
to the descriptor (range variance) they were able to increase their classification
accuracy [14]. Another approach was presented in [8] where the detected blobs
were converted to a 5x5 binary image and SVM was used to classify the objects as
vehicles or pedestrians. [23] propose a distant-invariant feature for segmentation
and detection of people without walking aids, people with walkers, people in
wheelchairs and people with crutches.

There are further works, gathering information from multiple planes, either
by using more than one planar LIDARs or utilizing multi-planar ones. The au-
thors of [4] detect different body parts at different heights by using more than
10 features acquired from the scans and AdaBoost algorithm to train a strong
classifier and based on that and their model they predict people’s shape. A simi-
lar approach is presented in [17] but they use multiple laser range-finder instead
of a multi-layered one and in [20] as well. [24] applied motion characteristics to
identify humans with baby cart, shopping cart or wheel chairs.

Summarizing, classification methods dealing with on one or a few planar
scans, most of the cases use tens of geometrical features and Adaboost or neu-
ral network methods to build a strong classifier ( [12], [2]). They do not use
the information provided via multiple planes (only for searching specific body
parts). A few classes are considered for detection. Most of the time these meth-
ods are applied for the classification of objects of industrial halls scanned with
indoor sensors with limited range (they also mostly depend on range and angu-
lar resolution of the sensor). These tests have been executed on a few thousands
of samples [12]. Compared to these, we list here the main advantages of our
method:



v Roézsa Z., Szirdnyi T.

— We propose a method for classification of data acquired by LIDARs with a
few layers and far field data of 3D LIDARs with utilizing the multi-plane
information.

— Our method is designed for outdoor object classification, and it is suitable
for several classes.

— We validated our method on ten thousands of samples.

3. Our proposed method

In the following we will explain our method in details. First, preprocessing steps
will be described then the classification procedure which is the contribution of
the paper. We will assume a few-layer LIDAR in the following.

3.1 Preprocessing

The input of the pipeline is a full scan of a LIDAR sensor, which we call frame
in the following. By segmenting the ground we can detect objects clusters. Here,
we are listing known methods that we used in our experiments:

— Ground detection: M-estimator SAmple Consensus (MSAC) Plane fitting
[21]. MSAC uses the loss function:

2

et lel<T
Loss(e) = 1
© {T2 otherwise M)
where e is the error and T is the threshold for inliers.
— Object detection: Euclidean cluster extraction [19] with distance varying
neighborhood radius.

Ilustration of these processing steps can be seen on Fig. 2. After we found object
clusters, if an object is represented on more than one ring, we segment it to plane
curves in order to separately evaluate it.

3.2 Descriptor and classification

Here, we assume that objects are represented by plane curves. In our experiments
we used a fx(n + 6) matrix as a descriptor of LIDAR segments. Here f is the
number of curves representing an object and n is the number of Fourier descriptor
components we use (n is also the minimum number of points which can construct
a segment). In the following it will be explained how it is composed.

3.3 Fourier descriptor Instead of extracting geometric features from curves,
we found that utilizing a descriptor which can be used to reconstruct the curve
exactly [6] gives better classification results. Fourier descriptor is applicable on
closed contours, we construct a closed contour from the segment by adding to the
original 2D cloud its points in reverse order [15]. By subtracting the mean from
the 2D point cloud and by using the absolute value of the Fourier transformed
contour we get a translation and rotation invariant representation of the plane
curve. This representation also shows robustness against varying point density.
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2. Figure Example of preprocessing steps on KITTI tracking database
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Statistical measures Other than shape properties of the plane curve are stored
in a simple form. The mean and standard deviation values of altitude, distance
to the sensor and intensity values are also part of our descriptor.

Multiple plane We use the f geometrically nearest curve of the same object,
these will form the rows of our descriptor matrix. In our experiments we used
f =5 and n =5, if the object has f < 5 curves, we used the original curve more
than once in order to always get 5x(5 + 6) descriptor dimension. As tested, this
simple but useful replication solved the lack of enough samples at the input. The
descriptor matrix is illustrated on Fig. 3 and Table 1.
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3. Figure Example of description of a car from 5 segments (Purple: Curve 1, Green:
Curve 2, Blue: Curve 3, Red: Curve 4, Black: Curve 5)

Classification For the classification of the objects we use a Convolutional Neu-
ral Network [10]. The network architecture we used can be seen in Fig. 4. We
use this classifier and this structure because we found it to be superior to other
classifiers we tried in case of our descriptor (e.g. multilayer fully-connected net-
work, Nearest Neighbor Classification or Support Vector Machine [11]) and it
also has the advantage of grouped curve classification. This model is prepared
for using 5 segments from an object as input.

Voting We applied voting scheme in cases when an object was built up from
more than 5 planar curves. Each of the segments is evaluated separately, but the
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1. Table The (transpose matrix of the) descriptor of the 2D point cloud set above
(FDx indicates the xth Fourier component, z is the altitude, r is the distance to the
origin and I means intensity)

HCurve 1 ‘Curve 2 ‘Curve 3 ‘Curve 4 ‘Curve 5

FDI1 |0.2477  [0.2774  |0.3139  [0.2839  [0.3363
FD2 |0.0774  [0.0642  [0.0418  [0.0555  |0.0504
FD3 |0.0312  [0.0649  [0.0268  [0.0253  |0.0394
FD4 10.0203  [0.0380  |0.0128  [0.0081  [0.0390
FD5 |0.0120  {0.0361  [0.0171  [0.0299  |0.0178
mean(z) |[|-0.1315  |-0.6662  |-0.8657  |-1.1011  |-1.3704
std(z)  ]/0.0021  ]0.0023  |0.0023  [0.0037  |0.0041
mean(r) ||42.8106 [41.5523 [41.0485  [40.7877  |40.8404
std(r)  ]|0.2516  [0.1127  |0.0857  [0.1172  |0.1063
mean(I) /0.0 0.0 0.0 |0.1808  {0.0793
std(I) |00 0.0 0.0 |0.2080  [0.1044
final decision is made at the object level.
C = argmax;N; (2)

where C' is the final decision about the object class, i is the class number
and N; is the number of vote for the i*" class, which we get by counting the all
the segments classified as member of the ¥ class from all the n segments of the
object.

N = = ] (3)
j=1

4. Test results

For the comparable test purposes we used the well-known KITTI database in-
cluding Velodyne 64 data, for which we randomly selected out the vertically far
under-sampled planes, which results infrequent random few-plane sampling. We
have also tested other devices, like Velodyne VLP-16 and Qunaergy MS ° in
real-word conditions with similar results, however there were not enough anno-
tated data to show relevant comparison here. So, we conducted our quantitative,
proof of concept tests in the training set of the KITTI tracking database [9]. In

5 https://quanergy.com/m8/
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4. Figure Network architecture: all convolutional layers are followed by ReLUs and
the fully-connected layer is followed by a softmaxlayer not illustrated in the scheme.

this set labeled objects are annotated through different number of frames in 21
sequences. It allows us to investigate our classification algorithm independently
from the quality of the preprocessing. In these tests we gathered all the not oc-
cluded and not truncated objects from 8 categories (car, van, truck, pedestrian,
person sitting, cyclist, tram, misc) having at least 1 segment with minimum 5
points. These objects were cut out based on their annotated 3D bounding box
and then we divided them into segments by the scanner planes. This resulted us
197,256 samples, which we divided into training (70 %), validation (15 %) and
test (15 %) sets randomly, however there were completely new sequences in the
tests as well. From the original KITTI categories of car and van and also pedes-
trian and person sitting are combined, because they are 'neighboring’ categories.
The categories are the following: 1: Car and Van, 2: Truck, 3: Pedestrian and
Person Sitting, 4: Cyclists, 5: Tram, 6: Misc.

First, we tested our method on single planar segments without using informa-
tion from the neighboring curves with one (n 4 6) data vector at the input. The
result is visible in Table 3. We implemented this in order to be able to compare
our method to the state of the art one applied on 2D LIDAR databases. The
method proposed in [13] and [14] was tested in our database (Table 2). In the
test of Table 2 a nearest neighbor classification was made based on Euclidean
distance to the train database built from width, range variance and intensity
data as the authors of [14] proposed. Comparing results of Tables 2 and 3 it
can be seen that our method is superior in almost every aspect. However, our
method has been developed for multiple curves, so if we use information of them
and voting scheme we get significant improvements. Confusion matrices for these
cases are shown in Tables 4 and 6. Table 4 uses 5 planar segments of an object
as CNN input, Table 6 uses only 1 planar segment as CNN input, but voting is
applied on object level on the output. In the second way all the segments of an
object can be considered for the decision. Average F-measure is indicated as F,
F-measure weighted by sample number of each category denoted by F,:

F,=Y F-% (4)

Where Fj is the F-measure and n; is the number of samples of i*" category,
and N is the cardinality of all the samples.
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2. Table Confusion matrix for single planar curves by method proposed in [13], [14].
(1: Car and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4: Cyclists, 5: Tram, 6:
Misc)

R FF e
1 |10024 |460  [1136 [289 |16  [267  |82.2
2 ||466 ~ |464 [281 |31  [12  [43  |35.7
3 |1146 [314  |11170(924 |2 112 [81.7
4 325 32 [919 |541 |0 |40 [29.1
5 8 12 |2 0 15 |1 31.3
6 |255 |46 [103 |40 |1 81 [15.4
?}Z;aﬂ H81.9 ‘34.9 ‘82.1 ‘29.6 ‘32.6 ‘14.9 1%004523

3. Table Confusion matrix for single planar curves by our proposed method. (1: Car
and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4: Cyclists, 5: Tram, 6: Misc)

e
1 |11876 337  [232 |168 |26 [330 [91.6
2 |175 974 |0 3 14 |58 |79.6
3 |13 |4 112395776 |0 |74 |92.8
4 |47 |10 |970 |874 |0 |48 |44.8
5 |0 0 0 0 |6 0 |100.0
6 23 |3 14 |4 0 |34 |43.6
?}Z;aﬂ H97.1 ‘73.3 ‘91.2 ‘47.9 ‘13.0 ‘6.3 %%5';38

The confusion matrix in Table 3 shows that even one 2D contour can produce
good initial results with our method, and both using multiple curve information
Table 4 and simple voting scheme 6 is effective to increase the accuracy of the
classification even more. Detailed results divided by categories:

— The results of car and pedestrian categories are convincing both in terms of
precision and recall.
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4. Table Confusion matrix for planar curves by our proposed method, using maximum
5 segments of an object as descriptor (CNN input). (1: Car and Van, 2: Truck, 3:
Pedestrian and Person Sitting, 4: Cyclists, 5: Tram, 6: Misc)

A O O O O i
1 11957286 |67 |90 |13 [299  |94.1
2 |205  |1031 |0 0 20 |93 |76.4
3 24 |1 13182914 |0 |105  [92.7
4 |41 10 [361 [822 |0 28 |65.1
5 |0 0 0 0 13 |0 |100.0
6 |7 0 1 0 0 |19 |70.4
?;Sau H97.7 ‘77.6 ‘96.9 ‘45.0 ‘28.3 ‘3.5 %‘?6‘232

5. Table Confusion matrix for planar curves (of far objects) by our proposed method,
using maximum 5 segments of an object as descriptor (CNN input). (1: Car and Van,
2: Truck, 3: Pedestrian and Person Sitting, 4: Cyclists, 5: Tram, 6: Misc)

N O O O GO v
1o fr o |7 |5 |12 |o7.8
S T I O O R O
s 3o Js10 s o1 oo
t o o o o es
R R R R R X
T R R R O R
?W‘Z‘)?a“ ng.s ‘66.7 ‘98.7 ‘25.0 ‘0.0 ‘28.6 %(?6?;9

— The performance in case of truck category is acceptable, the main source of
confusion is that they are frequently categorized as Car or Van, which can
be reasonable.

— There is a similar situation in case of cyclists, which are frequently cate-
gorized as Pedestrian or Person Sitting. The performance measurements in
case of this category are not satisfying in case of 2D contours, but it has to
be noted there were much less samples in this case. If we merge this category
to the other human related one (pedestrian and person sitting), we get cc. 99
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6. Table Confusion matrix for planar curves by our proposed method and voting using
all the segments of an object (after CNN output). (1: Car and Van, 2: Truck, 3:
Pedestrian and Person Sitting, 4: Cyclists, 5: Tram, 6: Misc)

R R e
1 |12170 |62 |8 61 |15 [373  [96.0
2 |62 |1266 |0 0 |18 |42 |91.2
3 £t 0 |13444(755 |0 79 |94.2
4 |0 0 |157  [1009 |0 |46 [83.3
5 |0 0 0 0 13 |0 |100
6 |1 0 2 0 0 |4 57.1
?;Sau H99.5 ‘95.3 ‘98.8 ‘55.3 ‘28.3 ‘0.8 %‘?6‘?322

% precision and recall for this category and about 0.96 F-measure weighted
by sample numbers of each category.

— The results on tram class are hardly sufficient, the recall of the category is
increasing by using multiple curves of the same object and voting. However,
it is not representative because of the very small number of samples.

— Finally, in case of misc category our proposed method did not performed well
at all, because of the variety of the objects hard to identify in 2D contours
and distinguish from vehicles (e.g. trailer, caravan).

In Table 5 a separate evaluation is presented for far objects. Here an object is
considered far if it builds up from maximum five scan planes. In this case the
average distance of center of gravity from the sensor is about 38.5 m. The table
shows that the increasing distance does not influence the method. Note that:
some categories are not present in the far field in this database or just with very
few samples, results about these cases are not representative.

We present a comparison (Table 7) with state of the art 3D recognition
method as well. The test dataset is presented in [3], it contains segmented objects.
Intensity data is not provided, so it was left out from our descriptor. There
are four object categories in this urban data, namely: vehicle, street furniture,
pedestrian and facade. Results show that our method perform better in case of
almost every measure. Vehicle category is an exception, however, authors of [3]
execute a contextual refinement for this class.

Fig. 5 shows examples of categorized plane curves. The results are promising
considering that pedestrian detection robust against about 30 % occlusion [22]
on 2D images, and in a similar dataset [9] best detection results using both
vision and LIDAR data [5] is about 82 % for cars and less for pedestrians and
cyclists. In Fig. 6 an illustration of the executed tests are visible, respectively
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(a) Car (b) Cyclist
5. Figure Far object examples of the KITTI database: the colors of the points cor-
respond to the output category of the algorithm (Red - Pedestrian, Purple - Cyclist,
Blue - Car, Green - Truck).

7. Table Results of Budapest dataset [3]

Categories Precision (%) Recall (%) F-rate
3] |proposed | [3] |proposed | [3] |proposed

Vehicle  ||98 |96 199 |94 |0.99 0.95
Street ‘92 ‘94 ‘97 ‘100 ‘0.94 ‘0.97
Furniture

Pedestrian||78 |97 |78 |100 0.78 |0.98
Facade  ||93 190 |77 |97 0.84 |0.94
Average ||90 194 |87 |98 0.89 |0.96

from Tables 3, 4 and 6. In Fig. 6(a) one can observe that, human segments of
cyclists objects are frequently categorized as pedestrian (and also some cases car
segments categorized as truck). In Fig. 6(b) single mis-categorized curves are
not present; different decision clusters can be seen in one object by evaluating
5 neighboring curve simultaneously. Finally, in Fig. 6(c) decisions are made on
object level by voting of separately evaluated curves of an object; here most of the
cyclists are predicted correctly, however some of them predicted as pedestrian.

5. Conclusions

In the paper we proposed a novel 2D recognition method using additional 3D
information if it is available. This method is designed to solve the recognition
problem of far objects from LIDAR clouds or the general recognition problem for
a few layer LIDARs. We demonstrated that our method is capable of categorizing
noisy 2D clouds on a large public database. We proposed a method with the
advantages of being model-free and also designed for outdoor objects by being
invariant of the sensor we use. We compared it to a method used for object
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(c) Object level voting on separately evaluated single planar curves in CNN

6. Figure Examples on KITTI database (Colormap: Blue - Car and Van, Green -
Truck, Red - Pedestrian and Person sitting, Purple - Cyclist, Cyan - Tram, Yellow -
Misc).
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detection in 2D LIDAR clouds, our method is proved to be superior. In case
of 5 categories 0.96 F-measure is reachable. We compared our method to 3D
recognition methods as well. Our proposed method using CNN deep learning
makes possible the grouped valuation of multiple planar curves (on the local
or temporal - during tracking - neighboring planes). We suggest to use it as
extension to 3D recognition methods on environment they cannot process. In
the future we would like to combine our method with tracking to increase the
recognition performance, evaluate the method on different databases, implement
more sophisticated decision and execute remote scanning (far object) tests.
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