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Abstract
•Extended Kalman Filter (EKF) for estimating the baseline coordinates and single dif-

ferenced integer ambiguities between two GNSS antennas and receivers [1]

• Single frequency, Multi GNSS (GPS, Glonass, Galileo) single baseline measurements

•Using code, phase and baselength measurements as the EKF’s inputs to determine the
float solution

•Cycleslip detection based on triple differenced phase and the integrated doppler mesure-
ments

• Integer ambiguity fixing

•Using modified LAMBDA (Least-squares AMBiguity Decorrelation Adjustment)
method based on [2],[3]

• Inputs are the EKF’s states (baseline coordinates and transformed, double differenced
integer ambiguities) the covariances, and the baselength between the antennas

• Searching for the best n integer ambiguity vector in the unconstrained space around
the float solution and select the best vector in the baselength constrained space

•Validation with the norm of the fixed baseline coordinates

•Update the EKF’s baseline coordinate states and the covariances

•Computing bank (φ) or elevation (θ) and the heading (ψ) attitude angles from the
single baseline coordinates

•Using surveying systems for validation, a small UAV and low-cost sensors for the testing
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Fig. 1: Algorithm schematic

State Vector and Covariance Matrix:

x =
[
xb xN

]T
, Q =

[
Qbb QbN

QNb QNN

]
Phase, Code and Baselength Measurement Vector:

y =
[
yph ypr ybl

]T
b: Baseline components
N : Integer ambiguity components
v̂: Float solution variable
v̆: Fix solution variable

Ground Test and Validation
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Fig. 2: Ground Test

•Testing the algorithm under real, but ideal circumstances (clear
sky, no disturbing terrain features) (Fig. 2)

•Reference angles were computed from the distances between the
Prism and the Total Station

•Compare heading (ψ) and elevation (θ) angles from the GNSS
(GPS, GLO) solution and the Total station’s solution

•Results (Fig. 3)

•Low mean and standard deviation values at the differences of
the two kind of measurements

•Higher heading differences at the dynamic phases, probably
time synchronization problem
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Fig. 3: Heading (ψ) and elevation (θ) angles,
and the differences of the two kind of measurements (∆ψ, ∆θ)

Flight Test

•Testing the algorithm with UAV flight data using low-cost sen-
sors (Fig. 4)

•Reference angles were computed from the UAV’s IMU sensors
(LIS331DLH accelerometer, L3G4200D gyroscope, HMC5883
magnetometer). Attitude angle’s accuracy (φ ± 5◦, θ ± 5◦,
ψ ± 10◦) depends on the slideslip angle of the UAV.

•Compare heading (ψ) and bank (φ) angles from the GNSS (GPS,
GLO, GAL) solution and the IMU solution
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Fig. 4: The UAV with the GNSS receivers and the antennas

Flight phases

•Controlled landing phases, with low glide angle

•Freestyle flight, with a barrel roll
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Fig. 5: The flight altitude and satellite numbers
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Fig. 6: Mean absolute value of the phase triple differences

Results

•Fix solution rate is 74.5%, lower at the freestyle flight phase.
Float solution also has the trend with lower reliability.

•Higher angle differences at the higher dynamic phases, probably
caused by slideslip flight, where the IMU solution accuracy is
lower.
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Fig. 7: Heading (ψ) and bank (φ) angles,
and the differences of the two kind of measurements (∆ψ, ∆φ)

Future plans

•Cycleslip determination and reconstruction using ac-
celerometer sensor

•Tight fusion with low-cost IMU sensors for position and
orientation estimation

•Validation with tactical grade sensors

The VISION project (Validation of Integrated Safety-enhanced Intelligent flight cON-
trol) is an Europe/Japan collaborative research project. To enhance air transport safety,
the main objective of VISION is to validate smarter technologies for aircraft Guidance,
Navigation and Control (GNC) by including Vision-based systems, Advanced detection
and resilient methods.
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