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Abstract

e Extended Kalman Filter (EKF) for estimating the baseline coordinates and single dif-
ferenced integer ambiguities between two GNSS antennas and receivers 1

e Single frequency, Multi GNSS (GPS, Glonass, Galileo) single baseline measurements

e Using code, phase and baselength measurements as the EKE’s inputs to determine the
float solution

e Cycleslip detection based on triple differenced phase and the integrated doppler mesure-
ments
e Integer ambiguity fixing

e Using modified LAMBDA (Least-squares AMBiguity Decorrelation Adjustment)
method based on &3

e Inputs are the EKF’s states (baseline coordinates and transformed, double differenced
integer ambiguities) the covariances, and the baselength between the antennas

e Searching for the best n integer ambiguity vector in the unconstrained space around
the float solution and select the best vector in the baselength constrained space

e Validation with the norm of the fixed baseline coordinates

e Update the EKF’s baseline coordinate states and the covariances

e Computing bank (¢) or elevation (f) and the heading (v) attitude angles from the
single baseline coordinates

e Using surveying systems for validation, a small UAV and low-cost sensors for the testing
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Fig. 1: Algorithm schematic

State Vector and Covariance Matrix:

Tr = [:IJb xN}Ta Q — [g;bb g]@;]

Phase, Code and Baselength Measurement Vector:
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b: Baseline components

N: Integer ambiguity components
v: Float solution variable

v: Fix solution variable

Ground Test and Validation
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Fig. 2: Ground Test

e Testing the algorithm under real, but ideal circumstances (clear
sky, no disturbing terrain features) (Fig. 2)

e Reference angles were computed from the distances between the
Prism and the Total Station
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e Results (Fig. 3)

e Low mean and standard deviation values at the differences of
the two kind of measurements
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time synchronization problem

Flight

e Testing the algorithm with UAV flight data using low-cost sen-
sors (Fig. 4)

e Reference angles were computed from the UAV’s IMU sensors
(LIS331DLH accelerometer, L3G4200D gyroscope, HMC5883

magnetometer). Attitude angle’s accuracy (¢ £+ 5°, 6 4+ 5°,
Y £ 10°) depends on the slideslip angle of the UAV.

e Compare heading (/) and bank (¢) angles from the GNSS (GPS,
GLO, GAL) solution and the IMU solution
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Fig. 4. The UAV with the GNSS receivers and the antennas

Flight phases

e Controlled landing phases, with low glide angle
e Freestyle flight, with a barrel roll
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Fig. 5: The flight altitude and satellite numbers
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e Cycleslip determination and reconstruction using ac-
celerometer sensor

Future plans

e Tight fusion with low-cost IMU sensors for position and
orlentation estimation

e Validation with tactical grade sensors
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Fig. 6: Mean absolute value of the phase triple differences

Results

Fix solution rate is 74.5%, lower at the freestyle flight phase.
Float solution also has the trend with lower reliability:.

Higher angle differences at the higher dynamic phases, probably
caused by slideslip flight, where the IMU solution accuracy is
lower.
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Fig. 7: Heading (1)) and bank (¢) angles,
and the differences of the two kind of measurements (A, Ag)
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trol) is an Europe/Japan collaborative research project. To enhance air transport safety,
the main objective of VISION is to validate smarter technologies for aircraft Guidance,
Navigation and Control (GNC) by including Vision-based systems, Advanced detection

and resilient methods.
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