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Abstract— The well-known robust control design algorithms
generate only one solution that fulfils the suboptimal H∞ norm
criterion and thus leave no room for further controller tuning.
If the controller obtained is not suitable, e.g., it is unstable or
some structural properties needs to be also satisfied, then the
designer has to modify the original control problem and then
has to perform the entire synthesis again. This paper proposes
a method for improving the H∞ control synthesis.

Based on the formulation of all controllers belonging to
a given performance level and Lyapunov function candidate,
the paper reveals the the group structure corresponding to
performance problem. Based on this group structure efficient
systematic algorithms can be developed for H∞ controller
tuning.

I. INTRODUCTION

The most typical robust performance problem can be
cast as a suboptimal normalized H∞ design, where for
a fix (given) generalized plant description P we seek all
controllers K that internally stabilize the loop and achieves
‖Fl(P,K)‖ < 1. Through a design problem often it would
be desirable to perform a search on a set of controllers that
guarantee a given performance level in order to select a
suitable one for a specific implementational goal. A typical
example is to find a stable controller, or a controller that
achieve a closed loop performance that was included in the
H∞ design specification. In order to implement such an
iterative algorithm, a controller blending method is needed
which keeps invariant the stability of the loop and the
prescribed H∞ performance level.

It is a standard fact that by applying the Youla parametriza-
tion the closed-loop will be an affine expression Fl(P̄ , Q),
defined by the stable parameter Q and the stable matrix

P̄ =

(
nzw nzu
ñyw 0

)
. Recall that the Youla parametrization

Kstab = {K = MΣP
(Q) | Q ∈ Q, (V +NQ)−1 exists},

where Q = {Q |Q stable } and

MΣP
(Q) = (U +MQ)(V +NQ)−1,

is induced by a double coprime factorization of the plant,
i.e., we have stable matrices such that(

Ṽ −Ũ
−Ñ M̃

)(
M U
N V

)
= Σ̃PΣP =

(
I 0
0 I

)
, (1)
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with P = NM−1 = M̃−1Ñ and a stabilizing controller
K0 = UV −1 = Ṽ −1Ũ . For a recent work that covers most
of the known control system methodologies using a unified
approach based on the Youla parameterization, see [1].

With a further simplification, i.e., an inner(co-inner)-outer
factorization we can consider a parametrization where nzu
and nyw are isometries. Then we have the invariance relation
‖Fl(P̄ , Q1) − Fl(P̄ , Q2)‖ = ‖Q1 − Q2‖ of the Euclidean
distance. However, this is not the invariance we are interested
in.

The starting point of this paper is the fact that solutions of
the suboptimal H∞ design are parametrized by the elements
of the unit ball. One of the most well-known approach to ar-
rive to this conclusion assumes either left or right invertibility
of P and uses the scattering framework by augmenting the
plant, if necessary, to obtain a well defined Potapov-Ginsburg
transform P̂ , see [2], [3] for details. Then a J-inner outer
factorization P̂ = Θ̂aR̂, with a block tridiagonal structure
of the outer factor that corresponds to the structure of the
augmentation, solves the problem. The controllers are given
by MR̂−1(Ha) with

Ha =

(
0 0
0 H

)
, ‖H‖ < 1,

while the closed loop is given by MΘ̂a
(Ha). Recall that Θa

is an inner function, thus

‖Fl(P,K)‖ = ‖MΘ̂a
(Ha)‖ = ‖Fl(Θa, Ha)‖ < 1. (2)

For the details on J-inner and J-lossless functions see [4]
and [3].

These facts motivate our interest in the unit corresponding
ball: if we would like to blend controllers and guarantee
a prescribed performance level, we should blend elements
of the unit ball. One possible approach is to consider the
action of the J-unitary operators on this ball – they obviously
form a group considering the composition of operators– and
to express the desired operation as a group homomorphism.
This is the same idea (the indirect approach) that we follow
with the addition of the Youla parameters to blend stable
controllers:

K = MΣP
((MΣ̃P

(K1) + MΣ̃P
(K2))). (3)

We can formulate this process in more technical terms as
follows: considering the parameter space Q, the group of
automorphisms associated to this space is formed by simple
translations Q 7→ τQ, with

τQ =

(
I Q
0 I

)
, τQ1

τQ2
= τQ1+Q2

.



In this particular case the group homomorphism between the
composition of translations and the addition of parameters
is trivially combined with the Möbius transform that defines
the Youla parametrization. The only obstruction might appear
for non strictly proper plants, where some of the non strictly
proper parameters are out-ruled. While this approach does
not provide an exhaustive characterization of the topic, one
can define a blending that preserves stability and it is defined
directly in terms of the plant and controller, without the
necessity to use any factorization, see [5], [6].

However, we cannot define directly an operation on the
unit ball in a trivial way that bears a nice algebraic structure.
The group actions that correspond to the addition of stable
plants seen for the Youla parametrization are the hyperbolic
motions of the unit ball, determined by the J-unitary opera-
tors. Therefore, to fulfil our program for the H∞ problem, a
suitable parametrization is needed that relates the J-unitary
operators to the elements of the unit ball. Moreover, due to
the increase in the plant order, we might encounter serious
difficulties. While most of the results presented in this paper
remain valid in a more general, operator valued, setting, here
we restrict our attention to the state space solutions and
blending of full order H∞ controllers.

It turns out that when we consider the solution of dif-
ferent quadratic performance problems by using a state
space description and LMI techniques, the solution sets are
parametrized by elements of a matrix unit ball, see [7], [8],
[9]. This paper presents in details an explicit parametrization
of these suboptimal H∞ controllers and the corresponding
induced operation on the parameter space. In contrast to the
operator valued case, in this context one can implement the
necessary operations easily.

Concerning the structure of the presentation, Section II
gives a more detailed motivation background for the problem
tackled in the paper. For the sake of completeness in Section
III we summarize the basic results related to the LMI based
suboptimal H∞ controller synthesis problem, while Section
IV presents the result that provides all the solutions of the
problem that correspond to a fixed Lyapunov matrix. As
a counterpart of the indirect approach for the controller
blending based on the Youla parameters for stability, Section
V presents the main result of the paper for performance
problems by providing a parametrization of the J-unitary
matrices and the group operation of this parameter space
that corresponds to the hyperbolic motions defined by these
J-unitary matrices.

II. NOTATION AND PRELIMINARY RESULTS

The notations used in the paper are fairly standard. The
kernel of a matrix M is denoted by M⊥ and is interpreted
as MM⊥ = 0. The inertia of a matrix M is denoted by
in(m, k, n) where m, k, n are the number of positive, zero
and negative eigenvalues of M . The Möbius transformation
of matrix K with respect to the matrix N is denoted by
TN (K) and is defined by

TN (K) = (C +DK)(A+BK)−1,

where N =

[
A B
C D

]
.

Lemma 1 (Projection lemma [10]): For arbitrary A,B
and a symmetric P , the LMI

KTXB +BTXTA+ P < 0 (4)

in the unstructured X has a solution if and only if

AT⊥PA⊥ < 0 and BT⊥PB⊥ < 0, (5)

where A⊥ = ker(A) and B⊥ = ker(B).
If (5) is satisfied then one particular solution X of (4) can
be determined by the numerical algorithm implemented in
basiclmi MATLAB routine.

Lemma 2 (Elimination lemma [11]): Consider the
quadratic matrix inequality(

I
AXB + C

)T
P

(
I

AXB + C

)
< 0 (6)

in the unstructured unknown X . Assume C is of dimension
n×m and P has inertia (m, 0, n). Then (6) has a solution
if and only if

BT⊥

(
I
C

)T
P

(
I
C

)
B⊥ < 0, and

AT⊥

(
−CT
I

)T
P−1

(
−CT
I

)
A⊥ > 0, (7)

where A⊥ = ker(A) and B⊥ = ker(B).
Note, that solution of the H∞ problem uses the Projection
lemma, which is a special case of the Elimination lemma

when P =

(
Q S
S∗ 0

)
.

III. LMI BASED H∞ SYNTHESIS FOR LTI SYSTEMS

In this section we recall the main steps of LMI-based
robust control synthesis. The synthesis starts from the state-
space model of the augmented plant comprising the nominal
plant model and all necessary weighting functions:ẋz

y

 =

 A Bp B
Cp Dp Ep
C Fp 0

xw
u

 . (8)

Here u is the control input, y is the measured output,
z is the performance output and w collects the external
(performance) inputs, such as noises, disturbances, reference
signals, etc. The controller is a finite dimensional, linear time
invariant system described as(

ẋc
u

)
=

(
Ac Bc
Cc Dc

)(
xc
y

)
. (9)



With this controller, the closed loop system admits the
following description:(

ξ̇
z

)
=

(
A B
C D

)(
ξ
w

)
, where

(
A B
C D

)
=

 A+BDcC BCc Bp +BDcFp

BcC Ac BcFp

Cp + EpDcC EpCc Dp + EpDcFp


=

 A 0 Bp

0 0 0
Cp 0 Dp

+

0 B
I 0
0 Ep

(Ac Bc

Cc Dc

)(
0 I 0
C 0 Fp

)
.

(10)

The aim of the control design is to minimize the induced
L2 norm between w and z of Tzw = D + C(sI − A)−1B
of, i.e., to find a stable controller (9) so that the closed loop
(10) satisfies the performance relation

∫ ∞
0

(
w(t)
z(t)

)T (−γ2I 0
0 I

)(
w(t)
z(t)

)
dt (11)

≤ −ε
∫ ∞

0

w(t)Tw(t)dt, ε > 0 (12)

where the performance bound γ > 0 is minimized to be as
small as possible. If X defines a quadratic storage function
V (x) = xTXx the dissipativity relation

dV (x)

dt
+

(
w
z

)T (−γ2I 0
0 I

)(
w
z

)
< 0

leads to the matrix inequality

X > 0,
I 0
0 I
A B
C D


T 

0 0 X 0
0 −γ2I 0 0
X 0 0 0
0 0 0 I



I 0
0 I
A B
C D

 < 0,

(13)

which is nonlinear (quadratic) in the unknown variables. To
render it linear, X is partitioned as:

X =

(
X U
UT ∗

)
and X−1 =

(
Y V
V T ∗

)
, (14)

where dimX = dimA and dim ∗ = dimAc. If we consider

ker

(
0 I 0
BT 0 ETp

)
=

Φ1

0
Φ2

 and (15)

ker

(
I 0 0
0 C Fp

)
=

 0
Ψ1

Ψ2

 , (16)

then, by an application of the elimination lemma, (13) is
equivalent to the following set of LMIs:(

Y I
I X

)
> 0 (17a)

(∗)T


0 X 0 0
X 0 0 0
0 0 −γ2I 0
0 0 0 I



I 0
A Bp
0 I
Cp Dp

Ψ < 0 (17b)

(∗)T


0 Yγ 0 0
Yγ 0 0 0
0 0 −I 0
0 0 0 γ2I



−AT −CTp
I 0
−BTp −DT

p

0 I

Φ > 0

(17c)

where Φ =

(
Φ1

Φ2

)
= ker

(
BT ETp

)
and Ψ =

(
Ψ1

Ψ2

)
=

ker
(
C Fp

)
and Yγ = γ2Y .

Once we have determined X,Y and the minimal perfor-
mance level γ∗, the corresponding Lyapunov matrix X∗ can
be computed as follows: compute full rank U, V such that
UV T = I − XY by using an SVD decomposition and set

X∗ =

(
Y V
I 0

)−1(
I 0
X U

)
to obtain the desired closed-

loop Lyapunov matrix.
The last step of the synthesis procedure is the construction

of a stable controller for the previously determined Lyapunov
matrix and performance bound. By substituting X∗ and γ∗
in (13) one can easily recognize that (13) – due to the
special structure (10) of the closed loop system – has exactly
the same structure as the LMI in the Elimination Lemma.
As a consequence, one possible controller candidate can be
determined by using the basiclmi procedure.

IV. PARAMETERIZATION OF THE CONTROLLERS

Observe that for fixed values X∗, γ∗ the synthesis inequal-
ity (13) is equivalent to (6). In what follows we present an
approach for characterizing all soultions of (6) based on the
following results:

Lemma 3 ([7]): Let P ∈ R(m+n)×(m+n) be a given sym-
metric (Hermitian) matrix with inertia in(P ) = (m, 0, n).
Let the matrix M be defined such that P = M∗JM , where
J = diag(−Im, In). Then all solutions Z ∈ Rn×m of
inequality (

I
Z

)∗
P

(
I
Z

)
< 0 (18)

can be expressed as Z = TM−1(H), where H is an arbitrary
contraction: HTH < I .

Theorem 1: Consider the quadratic matrix inequality(
I

AKB + C

)T
P

(
I

AKB + C

)
< 0 (19)

in the unstructured unknown K. Assume C is of dimension
n × m, P has inertia (m, 0, n) and assume that A has
full column- and C has full row rank, respectively. If the



solvability conditions are satisfied then all solutions of (19)
can be characterized as follows:

K = VaΣ−1
a ZΣ−1

b UTb , Z = TN (H), (20)

where Va, Σa, Σb, Ub and N are constant matrices deter-
mined by A,B,C, P and H is an arbitrary contraction.

Remark 1: The rank conditions on A and B have been
introduced to ease the discussion. By slightly modifying the
proof and the final formula (20) they can be relaxed.

Proof: Suppose (19) has a solution, i.e., the solvability
conditions hold. Compute first the SVD-decomposition of A
and B:

A = Ua

(
Σa
0

)
V Ta , B = Ub

(
Σb 0

)
V Tb .

Σa, Σb are diagonal matrices collecting the nonzero singular
values of A and B. Then we have

AXB = Ua

(
Σa
0

)
V Ta KUb

(
Σb 0

)
V Tb

= Ua

(
Σa 0
0 0

)
K̃

(
Σb 0
0 0

)
V Tb

= Ua

(
ΣaK̃Σb 0

0 0

)
V Tb .

Introducing Z = ΣaK̃Σb (19) reads as

(∗)TP
(
I 0
C I

) I

Ua

(
Z 0
0 0

)
V Tb

 < 0.

Multiplying it from left and right by V Tb and Vb we get

(∗)TP
(
I 0
C I

) Vb

Ua

(
Z 0
0 0

) < 0,

which is the same as

(∗)TP
(
I 0
C I

)(
Vb 0
0 Ua

)
I 0
0 I
Z 0
0 0

 < 0.

The next step is reordering the rows of the rightmost matrix.
For this, a permutation matrix Π is introduced:

Π =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 , Π


I 0
0 I
Z 0
0 0

 =


I 0
Z 0
0 I
0 0

 .

Then (19) amounts to

(∗)TP
(
I 0
C I

)(
Vb 0
0 Ua

)
ΠT


I 0
Z 0
0 I
0 0

 < 0.

Denoting the inner matrix product by P̃ and partitioning it
according to the blocks of the outer terms we arrive at the

following inequality:
I 0
Z 0
0 I
0 0


T (

P̃11 P̃12

∗ P̃22

)
I 0
Z 0
0 I
0 0

 < 0,

or, equivalently
(
I
Z

)T
P̃11

(
I
Z

) (
I
Z

)
P̃12

(
I
0

)
∗

(
I
0

)T
P̃22

(
I
0

)
 < 0.

If (6) has a solution (which is assumed), then the bottom-
right block is negative definite, i.e.,

P̄22 =

(
I
0

)T
P̃22

(
I
0

)
< 0.

Schur complement theorem can be applied now to transform
the LMI to the form of (18):(

I
Z

)T [
P̃11 − P̃12

(
I
0

)
P−1

22

(
I
0

)T
P̃T12

](
I
Z

)
< 0. (21)

Using this form Lemma 3 can be applied to generate all
solutions of (21): denoting by P̄ = M∗JM the inner matrix
if one picks a particular solution given by Z = TM−1(H),
then the original unknown variable K can be computed as
K = VaΣ−1

a ZΣ−1
b UTb .

If we apply Theorem 1 to the synthesis inequality (13)
evaluated at the previously constructed Lyapunov matrix X
and performance level γ = γ∗ values then we can see that
the controllers that guarantee the given performance level
can be parameterized as follows:

K =

(
Ac Bc
Cc Dc

)
= VaΣ−1

a ZΣ−1
b UTb , (22)

with Z = TN (H) and H a contractive matrix. Throughout
this paper it is assumed that the domain of the Möbius
transform TN is the entire contractive ball. The general case
will be discussed elsewhere.

Remark 2: An analogous result can be obtained along
the classical two Riccati based approach, where the set of
the controllers is described by a linear fractional transform
defined on the set of the contractive transfer functions, for
the details see, e.g., [12]. Then, by restricting the set of
parameters on the set of contractive matrices, we obtain an
analogous starting point as for the LMI case.

V. THE BLASCHKE GROUP

As we have already shown, for performance problems
the parametrization of the solutions provides an immediate
blending possibility by following the indirect approach. In
contrast to the stabilization problem, see, e.g., [5], the identi-
fication of the elements of this approach is not trivial. In what
follows we present the group structure and a parametrization
of the automorphism group of the unit ball.



Setting J =

(
I 0
0 −I

)
we consider the associated group

of J-unitary matrices Φ, i.e., those matrices for which
Φ∗JΦ = J . There is a correspondence between the contrac-
tive ball and the J-unitary matrices: for every contraction H
the matrix

ΦH =

(
NH 0
0 NH∗

)(
I −H∗
−H I

)
,

is J-unitary, where it is convenient to introduce the following
notations: DH = (I −H∗H) and NH = D−1

H . Observe that
we have the following properties:

NH = N∗H , N(−H) = NH , HNH = NH∗H,

NUH = NH , NHUU
∗ = U∗NH ,

for any unitary U . It is immediate that ΦH = Φ∗H and that
Φ−1
H = Φ−H .
Concerning the geometric content, recall that J-unitary

matrices define the movements, i.e., hyperbolic translations,
on the matrix unit ball that preserve the hyperbolic distance.
Their Möbius transform defines the multidimensional gener-
alisation of the elementary Blaschke products:

BH(Z) = MΦ(Z) = NH∗(Z −H)(I −H∗Z)−1DH =

−H +DH∗Z(I −H∗Z)−1DH = Fl(Ψ, Z),

with Ψ =

(
−H DH∗

DH H∗

)
. The elementary Blaschke products

BH(Z) are biholomorphic automorphisms of the unit ball
B and ‖BH(Z)‖ ≤ B‖H‖(‖Z‖). Moreover, every biholo-
morphic mapping h is of the form h = Bh(0)(UZV ) =
UBh−1(0)(Z)V , where U and V are unitary operators. The
metric defined as

ρ(A,B) = ln
1 + ‖BA(B)‖
1− ‖BA(B)‖

= arctanh(‖BA(B)‖)

is invariant with respect to biholomorphic automorphisms
and provides an extension of the Poincaré disk model of the
hyperbolic geometry to the operator ball. For details see, e.g.,
[13], [14], [15]. Note that

BH(0) = −H, BH(H) = 0, B−H(0) = H (23)

BH ◦B−H = B−H ◦BH = I. (24)

In contrast to the Euclidean geometry, where elementary
translations form a group, in the hyperbolic world we do
not have this property. This fundamental difference makes
things more complicated: we cannot define a group structure
merely on the contractive ball. However, based on the
observation that every J-unitary matrix can be expressed as
an elementary translation and a block diagonal unitary action,
there is a remedy.

Theorem 2: Every J-unitary matrix can be expressed as
Φ = WU,V ΦH , where H is a suitable contraction and U and
V are unitary matrices, with WU,V = diag{U, V }.
For the result in the general, operator valued context, see,
e.g., [4]. Its proof relies on the existence and uniqueness

properties of the polar decomposition. The following com-
mutation formula

ΦHWU,V = WU,V ΦV ∗HU (25)

is the basic observation for our purposes. Its importance
relies in the derivation of the formula that relates the action
of the J-unitary group in terms of the three parameters
(U, V,H). Observe that

Φ1Φ2 = WU1,V1
ΦH1

WU2,V2
ΦH2

=

= WU1,V1
WU2,V2

ΦV ∗
2 H1U2

ΦH2
= WU,V ΦH ,

i.e.,

Φ(U1,V1,H1)Φ(U2,V2,H2) = Φ(U,V,H).

The operation (U, V,K) = (U1, V1, H1) ◦ (U2, V2, H2) de-
fined by this homomorphism is obviously a group, called
the Blaschke group. If we would like to provide an explicit
expression of this homomorphism, we need to provide a
formula for the product ΦH1ΦH2 of the elementary Blaschke
factors, i.e., for (U, V,H) = (I, I,H1) ◦ (I, I,H2).

As a first step, observe that by definition we have

(U, V,H) = (U, V, 0) ◦ (I, I,H)

(U1U2, V1V2, 0) = (U1, V1, 0) ◦ (U2, V2, 0)

and we have already shown that

(U1, V1, H1) ◦ (U2, V2, H2) = (26)

(U1U2, V1V2, 0) ◦ (I, I, V ∗2 H1U2) ◦ (I, I,H2).

Before arriving to the final formula, we need some relations
that are interesting in their own right. First observe that by
using the J-unitary property of ΦH and the definition of BH
we have(

I
BH(Z)

)∗
J

(
I

BH(Z)

)
= (?)J

(
I
Z

)
(I −H∗Z)DH ,

i.e.,

D2
BH(Z) = I −B∗H(Z)BH(Z) = Q∗H(Z)QH(Z), (27)

with

QH(Z) = DZ(I −H∗Z)−1DH . (28)

Thus, for a unitary EH(Z) we have DBH
= E∗H(Z)QH(Z),

i.e.,

EH(Z) = QH(Z)NBH(Z). (29)

By a direct verification one can show that

BH(Z) = −BZ(H)EH(Z). (30)

Now we can formulate one of the main results of the paper:
Theorem 3: The product of elementary J-unitary matrices

is the J-unitary matrix given by

ΦH1ΦH2 = WU,V ΦH ,

where the contractive term and the unitary factor can be
computed as

H = B−H2(H1), U = E−H2(H1), V = E−H∗
2
(H∗1 ).



Proof: Indeed, from

BH1
(BH2

(Z)) = V BH(Z)U∗

we have, see (23), that

0 = V BH(B−H2
(H1))U∗, i.e., H = B−H2

(H1).

It also follows that BH1
(−H2) = −V HU∗. Thus

D2
BH1

(−H2) = UD2
HU
∗ = UD2

B−H2
(H1)U

∗,

D2
B∗

H1
(−H2) = V D2

H∗V ∗ = V D2
B∗

−H2
(H1)V

∗.

Finally, using (29) and (27) we have

U = E−H2
(H1), V = E−H∗

2
(H∗1 ),

as it was claimed.
As a conclusion, we have that

(E−H2(H1), E−H∗
2
(H∗1 ), B−H2(H1)) =

= (I, I,H1) ◦ (I, I,H2)

Combining Theorem 3 with (26) we have obtained the
explicit formula for the desired blending operation that
defines the group homomorphism

Φ(U1,V1,H1)Φ(U2,V2,H2) = Φ(U1,V1,H1)◦(U2,V2,H2) = Φ(U,V,H)

as follows:
Theorem 4: Corresponding to our notations, the operation

given by

(U, V,H) = (U1, V1, H1) ◦ (U2, V2, H2) = (31)

(U1U2E−H2(V ∗2 H1U2), V1V2E−H∗
2
(U∗2H

∗
1V2), B−H2(H1))

defines a group structure.
Remark 3: In the performance problem considered in this

paper we are interested only in the contraction part, see (22).
One might think that the map (H1, H2) → B−H2

(H1) is
sufficient to define the blending, and that the unitary part
does not play any role. Thus, it seems that in the matrix
case, for practical purposes one needs only the elementary
Blaschke maps according to

TΦH
(0) = −H.

Remember, however, that ΦH1
ΦH2

= WU,V ΦH , in general.
Thus, the elementary Blaschke maps are not enough to define
an automorphism group structure and we should use the
formula

TΦH1
TΦH2

(0) = TΦH
(0) = −V HU∗,

where the parameters are given by Theorem 4.
At this point recall, that the controller is given by (22),

where Z = TN (H) = (C +DH)(A+BH)−1. Thus, in an
iterative process, the additional unitary factors may be used
to maintain some structural constraints through the iteration.
As an example, taking a generalized SVD of the pair (A,B),
one can simplify the computation of the inverse during the
iteration.

VI. CONCLUSIONS

This paper proposes a method for improving the H∞
control synthesis which provides a starting point in de-
veloping algorithms that uses some sort of iteration. The
paper is based on the observation that solutions of the
quadratic performance problems, e.g., a suboptimal H∞
design, are parametrized by the elements of the unit ball.
Based on the formulation of all controllers belonging to a
given performance level and Lyapunov function candidate,
the paper reveals the the group structure corresponding to
performance problem.

The paper presents in details an explicit parametrization
of the hyperbolic motions of the matrix unit ball and the
corresponding induced operation on this parameter space.
The obtained formula leads to an indirect blending algorithm
for controllers that guarantee a given performance level. In
contrast to the operator valued case, in this context one
can implement the necessary operations easily. Based on
this group structure efficient systematic algorithms can be
developed for H∞ controller tuning.
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