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Abstract—We show a parallel repetition theorem for the en-
tangled value ω∗(G) of any two-player one-round game G where
the questions (x, y) ∈ X × Y to Alice and Bob are drawn from
a product distribution on X × Y . We show that for the k-fold
product Gk of the game G (which represents the game G played
in parallel k times independently)

ω∗
(
Gk

)
=

(
1− (1− ω∗(G))3

)Ω
(

k
log(|A|·|B|)

)

where A and B represent the sets from which the answers of
Alice and Bob are drawn.

The arguments we use are information theoretic and are
broadly on similar lines as that of Raz [1] and Holenstein [2] for
classical games. The additional quantum ingredients we need,
to deal with entangled games, are inspired by the work of
Jain, Radhakrishnan, and Sen [3], where quantum information
theoretic arguments were used to achieve message compression
in quantum communication protocols.

Index Terms—parallel repetition theorem; two-player game;
entangled value

I. INTRODUCTION

A two-player one-round game G is specified by finite sets
X , Y , A, and B, a distribution µ over X ×Y , and a predicate
V : X × Y ×A× B → {0, 1}. It is played as follows.
• The referee selects questions (x, y) ∈ X × Y according

to distribution µ.
• The referee sends x to Alice and y to Bob. Alice and Bob

are spatially separated, so they do not see each other’s
input.

• Alice chooses answer a ∈ A and sends it back to the
referee. Bob chooses answer b ∈ B and sends it back to
the referee.

• The referee accepts if V (x, y, a, b) = 1 and otherwise
rejects. Alice and Bob win the game if the referee accepts.

The value of the game G, denoted by ω(G), is defined to be the
maximum winning probability (averaged over the distribution
µ) achieved by Alice and Bob.

These games have played an important and pivotal role
in the study of the rich theory of inapproximability, leading
to the development of Probabilistically Checkable Proofs

and the famous Unique Games Conjecture. One of the most
fundamental problems regarding this model is the so called
parallel repetition question, which concerns the behavior
of multiple copies of the game played in parallel. For the
game G = (µ,X ,Y,A,B, V ), its k-fold product is given by
Gk = (µk,X k,Yk,Ak,Bk, V k), where V k(x, y, a, b) = 1 if
and only if V (xi, yi, ai, bi) = 1 for all i ∈ [k]. Namely, Alice
and Bob play k copies of game G simultaneously, and they win
iff they win all the copies. It is easily seen that ω(Gk) ≥ ω(G)k

for any game G. The equality of the two quantities, for all
games, was conjectured by Ben-Or, Goldwasser, Kilian and
Wigderson [4]. The conjecture was shown to be false by
Fortnow [5].

However one could still expect that ω(Gk) goes down
exponentially in k (asymptotically). This is referred to as the
parallel repetition (also known as the direct product) conjecture.
This was shown to be indeed true in a seminal paper by Raz [1].
Raz showed that

ω
(
Gk
)

= (1− (1− ω(G))c)Ω( k
log(|A||B|) )

where c is a universal constant. This result, along with the
the PCP theorem had deep consequences for the theory of
inapproximability [6], [7], [8]. A series of works later exhibited
improved results for general and specific games [2], [9], [10],
[11], [12].

In the quantum setting, it is natural to consider the so
called entangled games where Alice and Bob are, in addition,
allowed to share a quantum state before the games starts.
The questions and answers in the game remain classical.
On receiving questions, Alice and Bob can generate their
answers by making quantum measurements on their shared
entangled state. The value of the entangled version of the
game G is denoted by ω∗(G). The study of entangled games
is deeply related to the foundation of quantum mechanics
and that of quantum entanglement. These games have been
used to give a novel interpretation to Bell inequalities, one
of the most famous and useful methods for differentiating
classical and quantum mechanics (e.g., by Clauser, Horne,
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Shimony and Holt [13]). Recently these games have also been
studied from cryptographic motivations such as in Refs. [14],
[15], [16]. Analogously to the classical case, the study of the
parallel repetition question in this setting may potentially have
applications in quantum complexity theory.

The parallel repetition conjecture has been shown to be
true for several sub-classes of entangled games, starting with
the so called XOR games by Cleve, Slofstra, Unger and
Upadhyay [17], later generalized to unique games by Kempe,
Regev and Toner [18] and very recently further generalized to
projection games by Dinur, Steurer and Vidick [19] (following
an analytical framework introduced by Dinur and Steurer
in [20] to deal with classical projection games). For general
games, Kempe and Vidick [21] (following a framework by
Feige and Killian [22] for classical games) showed a parallel
repetition theorem albeit with only a polynomial decay in k, in
the value ω∗(Gk). In a recent work, Chailloux and Scarpa [23]
showed an exponential decay in ω∗(Gk) using information
theoretic arguments.

Theorem I.1 ([23]). For any game G = (µ,X ,Y,A,B, V ),
where µ is the uniform distribution on X × Y , it holds that

ω∗
(
Gk
)

=
(
1− (1− ω∗(G))2

)Ω( k
log(|A||B||X||Y|) ) .

As a corollary, for a general distribution µ,

ω∗
(
Gk
)

=
(
1− (1− ω∗(G))2

)Ω( k
Q4 log(Q) log(|A||B|)

)

where

Q = max


 1

minx,y:µ(x,y)6=0

{√
µ(x, y)

}
 , |X | · |Y|

 .

Note that here ω∗(Gk) depends on |X | · |Y| as well, in
addition to |A| · |B| (as in Raz’s result). Also the value of Q
can be arbitrarily large, depending on the distribution µ.

Our result

In this paper we consider the case when the distribution µ is
product across X ×Y . That is, there are distributions µX , µY
on X ,Y respectively such that ∀(x, y) ∈ X × Y : µ(x, y) =
µX(x) · µY (y). We show the following.

Theorem I.2 (Main Result). For any game

G = (µ,X ,Y,A,B, V )

where µ is a product distribution on X × Y , it holds that

ω∗
(
Gk
)

=
(
1− (1− ω∗(G))3

)Ω( k
log(|A||B|) ) .

Note that the uniform distribution on X × Y is a product
distribution and our result has no dependence on the size of
X ×Y . Hence, our result implies and strengthens on the result
of Chailloux and Scarpa [23] (up to the exponent of 1−ω∗(G)).

Our techniques

The arguments we use are information theoretic and are
broadly on similar lines as that of Raz [1] and Holenstein [2]
for classical games. The additional quantum ingredients we
need, to deal with entangled games, are inspired by the work of
Jain, Radhakrishnan, and Sen [3], where quantum information
theoretic arguments were used to achieve message compression
in quantum communication protocols.

Given the k-fold game Gk, let us condition on success
on a set C ⊆ [k] of coordinates. If the overall success in
coordinates in C is already as small as we want, then we are
done. Otherwise, we exhibit another coordinate j /∈ C such that
the success in the j-th coordinate, even when conditioning on
success in the coordinates inside C, is bounded away from
1. Here we assume that ω∗(G) is bounded away from 1.
This way the overall success keeps going down and becomes
exponentially small in k, after we have identified Ω(k) such
coordinates. To argue that the probability with which Alice
and Bob win the j-th coordinate, conditioned on success in C,
is bounded away from 1, we show that close to this success
probability can be achieved for a single instance of the game
G. That is, given inputs (x′, y′), drawn from µ, for a single
instance of G, Alice and Bob can embed (x′, y′) to the j-th
coordinate of Gk, conditioned on success in C, and generate the
rest of the state with good approximation. So, if the probability
of success in the j-th coordinate, conditioned on success in C,
is very close to 1, there is a strategy for G with probability of
success strictly larger than ω∗(G), reaching a contradicting to
the definition of ω∗(G).

Suppose the global state, conditioned on success in C, is of
the form

σXYAB =
∑

x∈Xk,y∈Yk

µ̃(x, y) |xy〉〈xy|XY ⊗ |φxy〉〈φxy|AB

where µ̃ is a distribution, potentially different from µ because
of the conditioning on success. (Here we further fix the
questions and answers in C to specific values and do not specify
them in σXYAB .) In protocol P for the single instance of G,
we let Alice and Bob start with the shared pure state

|ϕ〉 =
∑

x∈Xk,y∈Yk

√
µ̃(x, y) |xxyy〉X̃XỸ Y ⊗ |φxy〉AB .

Note that |ϕ〉 is a purification of σXYAB , where registers
X̃ and Ỹ are identical to X and Y . We introduce these
copies of the registers X and Y so that the marginal state
in these registers remains a classical state and these registers
can be viewed as classical registers, which is important in our
arguments.

Using the chain rule for mutual information, we are able
to argue that both I

(
Xj : Y Ỹ B

)
and I

(
Yj : XX̃A

)
are very

small (close to 0), in |ϕ〉. This, obviously, is only possible
when the distribution µ is product. In addition, the distribution
of the questions in the j-th coordinate, in |ϕ〉, remains close
to µ, in the `1-distance. In protocol P, when Alice and Bob
get questions x′ and y′, suppose they measure registers Xj



and Yj , in |ϕ〉, and get x′j and y′j . Let
∣∣∣ϕx′jy′j〉 be the resulting

state. If by luck it so happens that (x′, y′) =
(
x′j , y

′
j

)
, then

they can measure the answer registers Aj and Bj , in
∣∣∣ϕx′jy′j〉,

respectively, and send the answers to the referee. However, the
probability that (x′, y′) =

(
x′j , y

′
j

)
can be very small and they

want to get this desired outcome with probability very close
to 1. We describe next how this can be achieved.

Let
∣∣∣ϕx′j〉 be the resulting state obtained after we measure

register Xj (in |ϕ〉) and obtain outcome x′j . The fact that

I
(
Xj : Y Ỹ B

)
is close to 0 implies that Bob’s side of

∣∣∣ϕx′j〉
is mostly independent of x′j . By the unitary equivalence
of purifications and Uhlmann’s theorem, there is a unitary
transformation Ux′j

that Alice can apply to take the state

|ϕ〉 quite close to the state
∣∣∣ϕx′j〉. Similarly, let us define∣∣∣ϕy′j〉 and again I

(
Yj : XX̃A

)
being close to 0 implies that

Alice’s side of
∣∣∣ϕy′j〉 is mostly independent of y′j . Again, by

Uhlmann’s theorem, there is a unitary transformation Uy′j
that

Bob can apply to take the state |ϕ〉 quite close to the state∣∣∣ϕy′j〉. Interestingly, as was argued in [3], when Alice and Bob
simultaneously apply Ux′j

and Uy′j
, they take |ϕ〉 quite close

to the state
∣∣∣ϕx′jy′j〉! This again requires the distribution of

questions to be independent across Alice and Bob.

Organization of the paper

In Section II, we present some background on information
theory, as well as some useful lemmas that we will need for our
proof. In Section III, we prove our main result, Theorem I.2.

II. PRELIMINARIES

In this section we present some notations, definitions, facts,
and lemmas that we will use later in our proof.

Information theory

For integer n ≥ 1, let [n] represent the set {1, 2, . . . , n}.
Let X and Y be finite sets and k be a natural number. Let
X k be the set X × · · · × X , the cross product of X , k times.
Let µ be a probability distribution on X . Let µ(x) represent
the probability of x ∈ X according to µ. Let X be a random
variable distributed according to µ. We use the same symbol
to represent a random variable and its distribution whenever it
is clear from the context. The expectation value of function f
on X is defined as Ex←X [f(x)]

def
=
∑
x∈X Pr[X = x] · f(x),

where x ← X means that x is drawn from the distribution
of X . A quantum state (or just a state) ρ is a positive semi-
definite matrix with trace equal to 1. It is pure if and only if
the rank is 1. Let |ψ〉 be a unit vector. With slight abuse of
notation, we use ψ to represent the state and also the density
matrix |ψ〉〈ψ|, associated with |ψ〉. A classical distribution µ
can be viewed as a quantum state with diagonal entries µ(x)
and non-diagonal entries 0. For two quantum states ρ and σ,
ρ⊗ σ represents the tensor product (Kronecker product) of ρ
and σ. A quantum super-operator E(·) is a completely positive

and trace preserving (CPTP) linear map from states to states.
Readers can refer to [24], [25], [26] for more details.

Definition II.1. For quantum states ρ and σ, the `1-distance be-
tween them is given by ‖ρ− σ‖1, where ‖X‖1

def
= Tr

√
X†X

is the sum of the singular values of X . We say that ρ is ε-close
to σ if ‖ρ− σ‖1 ≤ ε.

Definition II.2. For quantum states ρ and σ, the fidelity
between them is given by F(ρ, σ)

def
=
∥∥√ρ√σ∥∥

1
.

The following proposition states that the distance between
two states can’t be increased by quantum operations.

Proposition II.3 ([25], pages 406 and 414). For states ρ, σ,
and quantum operation E(·), it holds that

‖E(ρ)− E(σ)‖1 ≤ ‖ρ− σ‖1

and

F(E(ρ),E(σ)) ≥ F(ρ, σ).

The following proposition relates the `1-distance and the
fidelity between two states.

Proposition II.4 ([25], page 416). For quantum states ρ and
σ, it holds that

2(1− F(ρ, σ)) ≤ ‖ρ− σ‖1 ≤ 2
√

1− F(ρ, σ)2.

For two pure states |φ〉 and |ψ〉, we have

‖|φ〉〈φ| − |ψ〉〈ψ|‖1 =

√
1− F(|φ〉〈φ| , |ψ〉〈ψ|)2

=
√

1− |〈φ|ψ〉|2.

Let ρAB be a bipartite quantum state in registers AB. We
use the same symbol to represent a quantum register and the
Hilbert space associated with it. We define

ρB
def
= TrA

(
ρAB

) def
=
∑
i

(〈i| ⊗ 1B)ρAB(|i〉 ⊗ 1B)

where {|i〉}i is a basis for the Hilbert space A and 1B is the
identity matrix in space B. The state ρB is referred to as the
marginal state of ρAB in register B.

Definition II.5. We say that a pure state |ψ〉 ∈ A ⊗ B is a
purification of some state ρ if TrA(|ψ〉〈ψ|) = ρ.

Theorem II.6 (Uhlmann’s theorem). Given quantum states
ρ, σ, and a purification |ψ〉 of ρ, it holds that F(ρ, σ) =
max|φ〉 |〈φ|ψ〉|, where the maximum is taken over all purifica-
tions of σ.

The entropy of a quantum state ρ (in register X) is defined
as S(ρ)

def
= −Trρ log ρ. We also let S (X)ρ represent S(ρ). The

relative entropy between quantum states ρ and σ is defined
as S(ρ‖σ)

def
= Trρ log ρ− Trρ log σ. The relative min-entropy

between them is defined as S∞(ρ‖σ)
def
= min

{
λ : ρ ≤ 2λσ

}
.

Since the logarithm is operator-monotone, S(ρ‖σ) ≤ S∞(ρ‖σ).



Let ρXY be a quantum state in space X ⊗ Y . The mutual
information between registers X and Y is defined to be

I(X : Y )ρ
def
= S (X)ρ + S (Y )ρ − S (XY )ρ .

It is easy to see that I(X : Y )ρ = S
(
ρXY

∥∥ρX ⊗ ρY ). If X is
a classical register, namely ρ =

∑
x µ(x) |x〉〈x| ⊗ ρx, where

µ is a probability distribution over X , then

I(X : Y )ρ = S (Y )ρ − S (Y |X)ρ

= S

(∑
x

µ(x)ρx

)
−
∑
x

µ(x)S (ρx)

where the conditional entropy is defined as

S(Y |X)ρ
def
= E

x←µ
[S(ρx)] .

Let ρXY Z be a quantum state with Y being a classical register.
The mutual information between X and Z, conditioned on Y ,
is defined as

I(X : Z |Y )ρ
def
= E

y←Y

[
I(X : Z |Y = y)ρ

]
= S (X|Y )ρ + S (Z|Y )ρ − S (XZ|Y )ρ .

The following chain rule for mutual information follows easily
from the definitions, when Y is a classical register.

I(X : Y Z)ρ = I(X : Y )ρ + I(X : Z |Y )ρ .

We will need the following basic facts.

Fact II.7. The relative entropy is jointly convex in its ar-
guments. That is, for quantum states ρ, ρ1, σ, and σ1, and
p ∈ [0, 1],

S
(
pρ+ (1− p)ρ1

∥∥pσ + (1− p)σ1
)

≤ p · S(ρ‖σ) + (1− p) · S
(
ρ1
∥∥σ1

)
.

We have the following chain rule for the relative-entropy.

Fact II.8. Let

ρ =
∑
x

µ(x) |x〉〈x| ⊗ ρx

and

ρ1 =
∑
x

µ1(x) |x〉〈x| ⊗ ρ1
x.

It holds that

S
(
ρ1
∥∥ρ) = S

(
µ1
∥∥µ)+ E

x←µ1

[
S
(
ρ1
x

∥∥ρx)] .
Fact II.9. For quantum states ρXY , σX , and τY , it holds that

S
(
ρXY

∥∥σX ⊗ τY ) ≥ S
(
ρXY

∥∥ρX ⊗ ρY ) = I(X : Y )ρ .

Fact II.10 ([26], [27]). For quantum states ρ and σ, it holds
that

‖ρ− σ‖1 ≤
√

S(ρ‖σ) and 1− F(ρ, σ) ≤ S(ρ‖σ) .

Fact II.11. The relative entropy is non-increasing when
subsystems are considered. Let ρXY and σXY be quantum
states, then S

(
ρXY

∥∥σXY ) ≥ S
(
ρX
∥∥σX) .

The following fact is easily verified.

Fact II.12. Let 0 < ε, ε′ < 1, 0 < c, µ and µ′ be probability
distributions on a set X , and f : X → [0, c] be a function.
If Ex←µ [f(x)] ≤ ε and ‖µ− µ′‖1 ≤ ε′ then Ex←µ′ [f(x)] ≤
ε+ cε′.

Useful lemmas
Here we state and prove some lemmas that we will use later.

Lemma II.13. Let |ψ〉AB be a bipartite pure state with the
marginal state on register B being ρ. Let a 0/1 outcome
measurement be performed on register A with outcome O.
Let Pr [O = 1] = q. Let the marginal states on register B
conditioned on O = 0 and O = 1 be ρ0 and ρ1 respectively.
Then, S∞(ρ1‖ρ) ≤ log 1

q .

Proof: It is easily seen that ρ = qρ1 + (1− q)ρ0. Hence
S∞(ρ1‖ρ) ≤ log 1

q .
The following lemma states that when the concerned mutual

information is small, then a measurement on Alice’s side can
be simulated by a unitary operation on Alice’s side.

Lemma II.14. Let µ be a probability distribution on X . Let

|ϕ〉 def
=
∑
x∈X

√
µ(x) |xx〉X̃X ⊗ |ψx〉AB

be a joint pure state of Alice and Bob, where registers X̃XA
are with Alice and register B is with Bob. Let I(X : B)ϕ ≤
ε and |ϕx〉

def
= |xx〉 ⊗ |ψx〉. There exist unitary operators

{Ux}x∈X acting on X̃XA such that

E
x←µ

[‖|ϕx〉〈ϕx| − (Ux ⊗ 1B) |ϕ〉〈ϕ| (U∗x ⊗ 1B)‖1] ≤ 4
√
ε.

Proof: Let us denote the reduced state of Bob in |ϕx〉 and
|ϕ〉 by

ρx
def
= TrA(|ψx〉〈ψx|) and ρ

def
= TrX̃XA(|ϕ〉〈ϕ|) .

Using Fact II.10, it holds that

ε ≥ I(X : B) = E
x←µ

[S(ρx‖ρ)] ≥ 1− E
x←µ

[F(ρx, ρ)] .

By the unitary equivalence of purifications and Theorem II.6,
there exists a Ux for each x ∈ X such that

| 〈ϕx| (Ux ⊗ 1B) |ϕ〉 | = F(ρx, ρ).

The lemma follows from the following calculation.

E
x←µ

[‖|ϕx〉〈ϕx| − (Ux ⊗ 1B) |ϕ〉〈ϕ| (U∗x ⊗ 1B)‖1]

= 2 E
x←µ

[√
1− | 〈ϕx| (Ux ⊗ 1B) |ϕ〉 |2

]
(4)

≤ 2

√
1− E

x←µ
[| 〈ϕx| (Ux ⊗ 1B) |ϕ〉 |]2 (5)

= 2

√
1− E

x←µ
[F(ρx, ρ)]

2

≤ 4
√
ε.



where Eq. (4) follows from Proposition II.4 and at Eq. (5) we
used the concavity of the function

√
1− α2.

The following is a generalization of the above lemma that
states that when the concerned mutual informations are small
then the simultaneous measurements on Alice’s and Bob’s side
can be simulated by unitary operations on Alice’s and Bob’s
side. It is a special case of a more general result in Ref. [3].

Lemma II.15 ([3]). Let µ be a probability distribution over
X × Y . Let µX and µY be the marginals of µ on X and Y .
Let

|ϕ〉 def
=

∑
x∈X ,y∈Y

√
µ(x, y) |xxyy〉X̃XỸ Y ⊗ |ψx,y〉AB

be a joint pure state of Alice and Bob, where registers X̃XA
belong to Alice and registers Ỹ Y B belong to Bob. Let

I
(
X : BY Ỹ

)
ϕ
≤ ε and I

(
Y : AXX̃

)
ϕ
≤ ε.

Let |ϕx,y〉
def
= |xxyy〉 ⊗ |ψx,y〉. There exist unitary operators

{Ux}x∈X on X̃XA and {Vy}y∈Y on Ỹ Y B such that

E
(x,y)←µ

[∥∥|ϕx,y〉〈ϕx,y| − (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

)∥∥
1

]
≤ 8
√
ε+ 2 ‖µ− µX ⊗ µY ‖1 .

Proof: Let |ϕx〉 be the state obtained when we measure
register X in |ϕ〉 and obtain x. Similarly let |ϕy〉 be the state
obtained when we measure register Y in |ϕ〉 and obtain y.
By Lemma II.14, there exist unitary operators {Ux}x∈X and
{Vy}y∈Y such that

E
x←µX

[‖|ϕx〉〈ϕx| − (Ux ⊗ 1B) |ϕ〉〈ϕ| (U∗x ⊗ 1B)‖1] ≤ 4
√
ε

and

E
y←µY

[∥∥|ϕy〉〈ϕy| − (1A ⊗Vy) |ϕ〉〈ϕ|
(
1A ⊗V∗y

)∥∥
1

]
≤ 4
√
ε.

Using the above, we get the bound of Eq. (3) from the
calculation that is on the bottom of this page. Equation (1)
follows from the triangle inequality, the second term in Eq. (2)
is because Ux doesn’t change the `1-distance, and the first
term in Eq. (2) follows from Proposition II.3 with the super-
operator that corresponds to measuring Y in the standard basis
and storing the outcome in a new register. The lemma follows
from the following calculation.

E
(x,y)←µ

[∥∥|ϕx,y〉〈ϕx,y| − (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

)∥∥
1

]
=

∥∥∥∥ E
(x,y)←µ

[
|xy〉〈xy| ⊗ |ϕx,y〉〈ϕx,y|

− |xy〉〈xy| ⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

) ]∥∥∥∥
1

≤
∥∥∥∥ E

(x,y)←µ
[|xy〉〈xy| ⊗ |ϕx,y〉〈ϕx,y|]

− E
(x,y)←µX⊗µY

[
|xy〉〈xy|

⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

) ]∥∥∥∥
1

+

∥∥∥∥ E
(x,y)←µX⊗µY

[
|xy〉〈xy|

⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

) ]
− E

(x,y)←µ

[
|xy〉〈xy|

⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

) ]∥∥∥∥
1

≤ 8
√
ε+ 2 ‖µ− µX ⊗ µY ‖1

where the first inequality follows from the triangle inequality
and at the last inequality we used Eq. (3) and Fact II.12.

III. PROOF OF THE MAIN RESULT

Let a game G = (µ,X ,Y,A,B, V ) be given. We assume
that the distribution µ = µX ⊗ µY is product across X and

∥∥∥∥ E
(x,y)←µ

[|xy〉〈xy| ⊗ |ϕx,y〉〈ϕx,y|]− E
(x,y)←µX⊗µY

[
|xy〉〈xy| ⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|

(
U∗x ⊗V∗y

)]∥∥∥∥
1

≤
∥∥∥∥ E

(x,y)←µ
[|xy〉〈xy| ⊗ |ϕx,y〉〈ϕx,y|]− E

(x,y)←µX⊗µY

[|xy〉〈xy| ⊗ (Ux ⊗ 1B) |ϕy〉〈ϕy| (U∗x ⊗ 1B)]

∥∥∥∥
1

+

∥∥∥∥ E
(x,y)←µX⊗µY

[
|xy〉〈xy| ⊗ (Ux ⊗ 1B) |ϕy〉〈ϕy| (U∗x ⊗ 1B)− |xy〉〈xy| ⊗ (Ux ⊗Vy) |ϕ〉〈ϕ|

(
U∗x ⊗V∗y

)]∥∥∥∥
1

(1)

≤
∥∥∥ E
x←µX

[|x〉〈x| ⊗ |ϕx〉〈ϕx| − |x〉〈x| ⊗ (Ux ⊗ 1B) |ϕ〉〈ϕ| (U∗x ⊗ 1B)]
∥∥∥

1

+

∥∥∥∥ E
xy←µX⊗µY

[
|xy〉〈xy| ⊗ |ϕy〉〈ϕy| − |xy〉〈xy| ⊗ (1A ⊗Vy) |ϕ〉〈ϕ|

(
1A ⊗V∗y

)]∥∥∥∥
1

(2)

= E
x←µX

[‖|ϕx〉〈ϕx| − (Ux ⊗ 1B) |ϕ〉〈ϕ| (U∗x ⊗ 1B)‖1]

+ E
y←µY

[∥∥|ϕy〉〈ϕy| − (1A ⊗Vy) |ϕ〉〈ϕ|
(
1A ⊗V∗y

)∥∥
1

]
≤ 8
√
ε (3)



Y . Before the game starts, Alice and Bob share a pure state
on the registers AE′ABE

′
B , where A and B are used to store

the answers for Alice and Bob, respectively. After getting the
inputs, Alice and Bob perform unitary operations independently
and then they measure registers A and B. The outcomes of
the measurements are sent to the referee. Now, let’s consider
the game Gk. Let x = x1 . . . xk ∈ X k, y = y1 . . . yk ∈ Yk,
a = a1 . . . ak ∈ Ak, and b = b1 . . . bk ∈ Bk. To make notations
short, we denote µ(x, y) =

∏
i µ(xi, yi) and V (x, y, a, b) =∏

i V (xi, yi, ai, bi), whenever it is clear from the context. Let
C ⊆ [k] and let C̄ represent its complement in [k]. Let xC
represent the substring of x corresponding to the indices in C.
(Similarly, we will use yC , aC , bC .) Let’s define

|θ〉 def
=
∑
x,y

√
µ(x, y) |xxyy〉X̃XỸ Y

⊗
∑
aCbC

|aCbC〉ACBC ⊗ |γxyaCbC 〉
EAEB

where EA
def
= E′AAC̄ , EB

def
= E′BBC̄ , and

∑
aCbC
|aCbC〉 ⊗

|γxyaCbC 〉 is the shared state after Alice and Bob performed
their unitary operations corresponding to questions x and y.
(Note that |γxyaCbC 〉 is unnormalized.) Consider the state

|ϕ〉 def
=

1
√
q

∑
x,y

√
µ(x, y) |xxyy〉X̃XỸ Y

⊗
∑

aCbC :V (xC,yC,aC,bC)=1

|aCbC〉ACBC ⊗ |γxyaCbC 〉
EAEB

where normalizer q is the probability of success on C.

Lemma III.1.

E
xCyCaCbC←ϕXCYCACBC

[
S
(
ϕ
X̃C̄ỸC̄XYEAEB

xCyCaCbC

∥∥∥θX̃C̄ỸC̄XYEAEB
xCyC

)]
≤ − log q + |C| · log(|A| · |B|) .

Proof: Note that, by Lemma II.13,

S∞

(
ϕX̃C̄ỸC̄XYEAEB

∥∥∥θX̃C̄ỸC̄XYEAEB

)
≤ − log q.

Let p(aC , bC) be the probability of obtaining (aC , bC) when
measuring registers (AC , BC) in |ϕ〉. Consider,

E
aCbC←ϕACBC

[
S∞

(
ϕ
X̃C̄ỸC̄XYEAEB

aCbC

∥∥∥θX̃C̄ỸC̄XYEAEB

)]
≤ E
aCbC←ϕACBC

[
S∞

(
ϕ
X̃C̄ỸC̄XYEAEB

aCbC

∥∥∥ϕX̃C̄ỸC̄XYEAEB

)
+ S∞

(
ϕX̃C̄ỸC̄XYEAEB

∥∥∥θX̃C̄ỸC̄XYEAEB

)]
≤ E
aCbC←ϕACBC

[− log p(aC , bC)− log q]

= − log q + S
(
ϕACBC

)
≤ − log q + |C| · (log |A|+ log |B|) .

Now,

− log q + |C| · log(|A| · |B|)

≥ E
aCbC←ϕACBC

[
S∞

(
ϕ
X̃C̄ỸC̄XYEAEB

aCbC

∥∥∥θX̃C̄ỸC̄XYEAEB

)]
≥ E
aCbC←ϕACBC

[
S
(
ϕ
X̃C̄ỸC̄XYEAEB

aCbC

∥∥∥θX̃C̄ỸC̄XYEAEB

)]
≥ E

xCyCaCbC
←ϕXCYCACBC

[
S
(
ϕ
X̃C̄ỸC̄XYEAEB

xCyCaCbC

∥∥∥θX̃C̄ỸC̄XYEAEB
xCyC

)]

where the last inequality follows from Fact II.8.
For each i ∈ [k], let us define a binary random variable

Ti ∈ {0, 1}, which indicates success in the i-th repetition.
That is, Ti = V (Xi, Yi, Ai, Bi). Our main theorem will follow
from the following lemma.

Lemma III.2. Let 0.1 > δ1, δ2, δ3 > 0 such that δ3 = δ2 +

δ1 · log(|A| · |B|). Let k′ def
= bδ1kc. For any quantum strategy

for the k-fold game Gk, there exists a set {i1, . . . , ik′}, such
that for each 1 ≤ r ≤ k′ − 1, either

Pr
[
T (r) = 1

]
≤ 2−δ2k

or

Pr
[
Tir+1

= 1
∣∣∣T (r) = 1

]
≤ ω∗(G) + 12

√
10δ3

where T (r) def
=

r∏
j=1

Tij .

Proof: In the following, we assume that 1 ≤ r < k′.
However, the same argument also works when r = 0, i.e., for
identifying the first coordinate, which we skip for the sake of
avoiding repetition. Suppose that we have already identified r
coordinates i1, . . . , ir satisfying that

Pr[Ti1 = 1] ≤ ω∗(G) + 12
√

10δ3

and

Pr
[
Tij+1 = 1

∣∣∣T (j) = 1
]
≤ ω∗(G) + 12

√
10δ3

for 1 ≤ j ≤ r − 1. If Pr
[
T (r) = 1

]
≤ 2−δ2k then we are

done, so from now on, we assume that Pr
[
T (r) = 1

]
> 2−δ2k.

Let C def
= {i1, . . . , ir}. To simplify notations, let Ã

def
=

X̃C̄XEA, B̃ def
= ỸC̄Y EB , and Ri

def
= XCYCX<iY<iACBC .

For coordinate i, let |ϕx<iy<i〉 be the pure state that re-
sults when we measure registers X<iY<i (i.e., registers
X1, . . . , Xi−1, Y1, . . . , Yi−1) in |ϕ〉 and get outcome x<iy<i.
We argue now that for a typical coordinate outside C, the
distribution of questions is close to µ in the state ϕ. We also
prove that, for this coordinate, the questions and Ri are almost



independent. From Lemma III.1, we get that

δ3k ≥ δ2k + |C| · log(|A| · |B|)

≥ E
xCyCaCbC

←ϕXCYCACBC

[
S
(
ϕ
X̃C̄ỸC̄XYEAEB

xCyCaCbC

∥∥∥θX̃C̄ỸC̄XYEAEB
xCyC

)]
(6)

≥ E
xCyCaCbC←ϕXCYCACBC

[
S
(
ϕXYxCyCaCbC

∥∥θXYxCyC)] (7)

=
∑
i/∈C

E
ri←ϕRi

[
S
(
ϕXiYi
ri

∥∥θXiYi
)]

(8)

=
∑
i/∈C

S
(
ϕXiYiRi

∥∥ϕRi ⊗ θXiYi
)

(9)

≥
∑
i/∈C

S
(
ϕXiYiRi

∥∥ϕRi ⊗ ϕXiYi
)

(10)

≥
∑
i/∈C

E
xiyi←ϕXiYi

[
S
(
ϕRi
xiyi

∥∥ϕRi
)]

(11)

≥
∑
i/∈C

E
xiyi←ϕXiYi

[∥∥ϕRi
xiyi − ϕ

Ri
∥∥2

1

]
(12)

≥
∑
i/∈C

(
E

xiyi←ϕXiYi

[∥∥ϕRi
xiyi − ϕ

Ri
∥∥

1

])2

(13)

where Eq. (6) follows from Lemma III.1, Eq. (7) follows from
Fact II.11, Eqs. (8), (9) and (11) follow from Fact II.8, Eq. (10)
follows from Fact II.9, Eq. (12) follows from Fact II.10, and
Eq. (13) follows from the convexity of the function α2. Next,
we argue that for a typical coordinate outside C, the information
between Alice’s questions and Bob’s registers is small in |ϕ〉.
Again, from Lemma III.1 and Fact II.11, we get that

δ3k ≥ E
xCyCaCbC←ϕXCYCACBC

[
S
(
ϕXB̃xCyCaCbC

∥∥∥θXB̃xCyC)]
≥ I
(
X : B̃

∣∣∣R1

)
ϕ

(14)

≥
∑
i/∈C

I
(
Xi : B̃

∣∣∣R1X<i

)
ϕ

(15)

≥
∑
i/∈C

I
(
Xi : B̃

∣∣∣Ri)
ϕ

(16)

where at Eq. (14) we used Fact II.9 and the fact that θXB̃xCyC =

θXxCyC ⊗ θ
B̃
xCyC . Equations (15) and (16) follow from the chain

rule for the mutual information and at Eq. (16) we also used
the observation that B̃ contains register Y . Similarly to the
above, for Bob’s questions we have

δ3k ≥
∑
i/∈C

I
(
Yi : Ã

∣∣∣Ri)
ϕ
. (17)

From Eqs. (8), (13), (16) and (17) and using standard ap-
plication of Markov’s inequality, we get that there exists a

coordinate j /∈ C such that

E
rj←ϕRj

[
S
(
ϕXjYj
rj

∥∥∥θXjYj

)]
≤ 5δ3

1− δ1
≤ 10δ3 (18)

E
xjyj←ϕXjYj

[∥∥∥ϕRj
xjyj − ϕ

Rj

∥∥∥
1

]
≤
√

5δ3
1− δ1

≤
√

10δ3 (19)

I
(
Xj : B̃

∣∣∣Rj)
ϕ
≤ 5δ3

1− δ1
≤ 10δ3 (20)

I
(
Yj : Ã

∣∣∣Rj)
ϕ
≤ 5δ3

1− δ1
≤ 10δ3. (21)

Let
∣∣ϕrj〉 be the pure state that we get when we measure

register Rj in |ϕ〉 and get outcome rj .
Suppose that there exists a protocol P0 for Gk which wins all

coordinates in C with probability greater than 2−δ2k. Moreover,
conditioning on success on all coordinates in C, the probability
it wins the game in the j-th coordinate is ω.
• Let us construct a new protocol P1, that starts with the

joint state ϕXjYjRjEAEB , where XjEA and YjEB are
given to Alice and Bob, respectively, and Rj is shared
between them. From our assumption, the probability that
Alice and Bob win the game in the j-th coordinate is ω.

• Let us consider a new protocol P2, where Alice and Bob
are given questions (xj , yj) ← ϕXjYj and they share
rj ← ϕ

Rj
xjyj as public coins. By Lemma II.15, they are

able to create a joint state that is close to the starting
state of P1 by sharing

∣∣ϕrj〉 and applying local unitary
operations. More concretely, Eqs. (20) and (21) show
the conditions for the mutual informations required by
Lemma II.15. From Eq. (18), we can get

10δ3 ≥ E
rj←ϕRj

[
S
(
ϕXjYj
rj

∥∥∥θXjYj

)]
≥ E
rj←ϕRj

[
S
(
ϕXjYj
rj

∥∥∥ϕXj
rj ⊗ ϕ

Yj
rj

)]
(22)

≥ E
rj←ϕRj

[∥∥∥ϕXjYj
rj − ϕXj

rj ⊗ ϕ
Yj
rj

∥∥∥2

1

]
(23)

≥

(
E

rj←ϕRj

[∥∥∥ϕXjYj
rj − ϕXj

rj ⊗ ϕ
Yj
rj

∥∥∥
1

])2

(24)

where Eq. (22) follows from Fact II.9, Eq. (23) follows
from Fact II.10, and at Eq. (24) we used the convexity
of the function α2. This implies

E
rj←ϕRj

[∥∥∥ϕXjYj
rj − ϕXj

rj ⊗ ϕ
Yj
rj

∥∥∥
1

]
≤
√

10δ3.

Thus, using the above and Lemma II.15, we conclude
that they can win the game with probability at least ω −
10
√

10δ3.
• Let us construct a new protocol P3, where Alice and Bob

are given questions (xj , yj)← ϕXjYj . They share public
coins rj ← ϕRj and execute the same strategy as in P2.
By Eq. (19), the probability that they win the game is at
least ω − 11

√
10δ3.

• Let us consider a new protocol P4, where Alice and Bob
are given questions (x, y) ← µ and they execute the



same strategy as in P3. By Eq. (18) and Fact II.10, the
probability that they win the game is at least ω−12

√
10δ3.

Note that P4 is a strategy for game G under distribution
µ. This means that ω − 12

√
10δ3 ≤ ω∗(G).

We conclude the lemma.
We can now prove our main result. We restate it here for

convenience.

Theorem I.2. Let ε > 0. Given a game G with value ω∗(G) ≤
1− ε, it holds that

ω∗
(
Gk
)
≤
(

1− ε

2

) ε2k
12000(log |A|+log |B|)

=
(
1− ε3

)Ω( k
log |A|+log |B| ) .

Proof: We set δ1 = ε2

12000(log |A|+log |B|) , δ2 = ε2

12000 , and

δ3 = ε2

6000 . Given any strategy for Gk, using Lemma III.2,
either ω∗

(
Gk
)
≤ 2−δ2k, or there are bδ1kc coordinates{

i1, . . . , ibδ1kc
}

such that the probability Alice and Bob win
the ij-th coordinate, conditioning on success on all the previous
coordinates, is at most 1− ε/2. This finishes the proof of the
theorem.

ACKNOWLEDGEMENTS

We thank Oded Regev, Thomas Vidick, and anonymous
referees for useful comments. This work is supported by the
Singapore Ministry of Education Tier 3 Grant and the Core
Grants of the Center for Quantum Technologies, Singapore.

REFERENCES

[1] R. Raz, “A parallel repetition theorem,” in Proceedings of the
twenty-seventh annual ACM Symposium on Theory of Computing,
ser. STOC ’95, New York, NY, USA, 1995, pp. 447–456. [Online].
Available: http://doi.acm.org/10.1145/225058.225181

[2] T. Holenstein, “Parallel repetition: simplifications and the no-signaling
case,” in Proceedings of the thirty-ninth annual ACM Symposium on
Theory of Computing, ser. STOC ’07, New York, NY, USA, 2007,
pp. 411–419. [Online]. Available: http://doi.acm.org/10.1145/1250790.
1250852

[3] R. Jain, J. Radhakrishnan, and P. Sen, “Optimal direct sum and privacy
trade-off results for quantum and classical communication complexity,”
CoRR, vol. abs/0807.1267, 2008.

[4] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-prover
interactive proofs: How to remove intractability assumptions,” in
Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’88, New York, NY, USA, 1988, pp. 113–131.
[Online]. Available: http://doi.acm.org/10.1145/62212.62223

[5] L. Fortnow, “Complexity-theoretic aspects of interactive proof systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1989.

[6] S. Arora and S. Safra, “Probabilistic checking of proofs: A new
characterization of NP,” Journal of the ACM, vol. 45, no. 1, pp.
70–122, Jan. 1998. [Online]. Available: http://doi.acm.org/10.1145/
273865.273901

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof
verification and the hardness of approximation problems,” Journal of
the ACM, vol. 45, no. 3, pp. 501–555, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/278298.278306

[8] I. Dinur, “The PCP theorem by gap amplification,” Journal
of the ACM, vol. 54, no. 3, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1236457.1236459

[9] A. Rao, “Parallel repetition in projection games and a concentration
bound,” in Proceedings of the 40th annual ACM Symposium on Theory
of Computing, ser. STOC ’08, New York, NY, USA, 2008, pp. 1–10.
[Online]. Available: http://doi.acm.org/10.1145/1374376.1374378

[10] R. Raz, “A counterexample to strong parallel repetition,” in Proceedings
of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, Washington, DC, USA, 2008, pp. 369–373. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1470582.1470676

[11] B. Barak, A. Rao, R. Raz, R. Rosen, and R. Shaltiel, “Strong
parallel repetition theorem for free projection games,” in Proceedings
of the 12th International Workshop and 13th International Workshop
on Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, ser. APPROX ’09 / RANDOM ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 352–365. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03685-9_27

[12] R. Raz and R. Rosen, “A strong parallel repetition theorem for projec-
tion games on expanders,” 2013 IEEE Conference on Computational
Complexity, vol. 0, pp. 247–257, 2012.

[13] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
“Proposed experiment to test local hidden-variable theories,” Phys.
Rev. Lett., vol. 23, pp. 880–884, Oct. 1969. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.23.880

[14] E. Hänggi and R. Renner, “Device-independent quantum key distribution
with commuting measurements,” CoRR, vol. abs/1009.1833, 2010.

[15] M. Tomamichel, S. Fehr, J. Kaniewski, and S. Wehner, “A monogamy-
of-entanglement game with applications to device-independent quantum
cryptography,” New Journal of Physics, vol. 15, 2013.

[16] L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quan-
tum key distribution with causally independent measurement devices,”
Nature Communications, vol. 2, 2011.

[17] R. Cleve, W. Slofstra, F. Unger, and S. Upadhyay, “Perfect parallel
repetition theorem for quantum xor proof systems,” Comput. Complex.,
vol. 17, no. 2, pp. 282–299, May 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00037-008-0250-4

[18] J. Kempe, O. Regev, and B. Toner, “Unique games with entangled
provers are easy,” SIAM Journal on Computing, vol. 39, pp. 3207–3229,
Jul. 2010. [Online]. Available: http://dx.doi.org/10.1137/090772885

[19] I. Dinur, D. Steurer, and T. Vidick, “A parallel repetition theorem for
entangled projection games,” CoRR, vol. abs/1310.4113, 2013.

[20] I. Dinur and D. Steurer, “Analytical approach to parallel repetition,”
CoRR, vol. abs/1305.1979, 2013.

[21] J. Kempe and T. Vidick, “Parallel repetition of entangled games,”
in Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, ser. STOC ’11, New York, NY, USA, 2011, pp. 353–362.
[Online]. Available: http://doi.acm.org/10.1145/1993636.1993684

[22] U. Feige and J. Kilian, “Two-prover protocols—low error at affordable
rates,” SIAM Journal on Computing, vol. 30, no. 1, pp. 324–346, Apr.
2000. [Online]. Available: http://dx.doi.org/10.1137/S0097539797325375

[23] A. Chailloux and G. Scarpa, “Parallel repetition of entangled games
with exponential decay via the superposed information cost,” CoRR, vol.
abs/1310.7787, 2013.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory, ser.
Wiley Series in Telecommunications. New York, NY, USA: John Wiley
& Sons, 1991.

[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, UK: Cambridge University Press, 2000.

[26] J. Watrous, “Theory of Quantum Information, lecture notes,” 2011.
[Online]. Available: https://cs.uwaterloo.ca/~watrous/LectureNotes.html

[27] R. Jain, J. Radhakrishnan, and P. Sen, “A lower bound for the bounded
round quantum communication complexity of set disjointness,” in
Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, ser. FOCS ’03, Washington, DC, USA, 2003, pp.
220–229. [Online]. Available: http://dl.acm.org/citation.cfm?id=946243.
946331

http://doi.acm.org/10.1145/225058.225181
http://doi.acm.org/10.1145/1250790.1250852
http://doi.acm.org/10.1145/1250790.1250852
http://doi.acm.org/10.1145/62212.62223
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/278298.278306
http://doi.acm.org/10.1145/1236457.1236459
http://doi.acm.org/10.1145/1374376.1374378
http://portal.acm.org/citation.cfm?id=1470582.1470676
http://dx.doi.org/10.1007/978-3-642-03685-9_27
http://link.aps.org/doi/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1007/s00037-008-0250-4
http://dx.doi.org/10.1137/090772885
http://doi.acm.org/10.1145/1993636.1993684
http://dx.doi.org/10.1137/S0097539797325375
https://cs.uwaterloo.ca/~watrous/LectureNotes.html
http://dl.acm.org/citation.cfm?id=946243.946331
http://dl.acm.org/citation.cfm?id=946243.946331

