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Abstract

We give a simpler proof of one of the results of Kobayashi, Le Gall, and Nishimura
[KLGN13], which shows that any QMA protocol can be converted to a one-sided error
protocol, in which Arthur and Merlin initially share a constant number of EPR pairs and
then Merlin sends his proof to Arthur. Our protocol is similar but somewhat simpler than
the original. Our main contribution is a simpler and more direct analysis of the soundness
property that uses well-known results in quantum information such as properties of the
trace distance and the fidelity, and the quantum de Finetti theorem.

1 Introduction

The class MA was defined by Babai [Bab85] as the natural probabilistic extension of the class
NP. In the definition of MA, the prover (Merlin) gives a polynomial length ‘proof’ to the verifier
(Arthur), who then performs a polynomial-time randomized computation and has to decide if
an input x is in a language L or not. If we add interaction to the model, i.e., the prover and the
verifier can exchange a polynomial number of messages before the verifier makes his decision,
then we get the class IP [GMR89].1 The verifiers of the above proof systems are allowed to
make some small error in their decision, but they must satisfy two conditions.

• If x ∈ L then the verifier has to accept a valid proof with high probability. The probability
that the verifier rejects such proof is called the completeness error.

• If x /∈ L then no matter what proof the verifier receives, he must reject with high probability.
The probability that the verifier accepts an invalid proof is called the soundness error.

One of the first questions one may ask is whether it is possible to get rid of one or both types
of error. It is easy to see that forcing the soundness error to zero collapses IP (and also MA) to
NP [AB09]. So we can’t eliminate the soundness error completely, but it is known that we can
make it to be at most an inverse-exponential function of the input length, without reducing the
expressive power of MA or IP. On the other hand, it was shown by Zachos and Fürer [ZF87]
that having perfect completeness, also called as one-sided error, doesn’t change the power of
MA. More formally, it holds that MA = MA1, where MA1 is the class with perfect completeness.
The class IP can also be made to have one-sided error, which follows, for example, from the

∗E-mail: attila.pereszlenyi@gmail.com.
1Babai also defined an interactive version of MA, that can be thought of as a ‘public-coin’ version of IP. Later

Goldwasser and Sipser [GS86] showed that this class has the same expressive power as IP.
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characterization of IP being equal to PSPACE, the class of problems decidable in polynomial
space [LFKN92, Sha92, She92]. For more information on these classes see e.g., the book of
Arora and Barak [AB09].

Quantum Merlin-Arthur proof systems (and the class QMA) were introduced by Knill
[Kni96], Kitaev [KSV02], and also by Watrous [Wat00] as a natural extension of MA and
NP to the quantum computational setting. Similarly, quantum interactive proof systems (and
the class QIP) were introduced by Watrous [Wat03] as a quantum analogue of IP. These classes
have also been well studied and now it’s known that the power of quantum interactive proof
systems is the same as the classical ones, i.e., QIP = IP = PSPACE [JJUW10]. Furthermore,
quantum interactive proof systems still have the same expressive power if we restrict the number
of messages to three and have exponentially small one-sided error [KW00].

The class QMA is not as well understood as QIP, but we do have a reasonable amount of
knowledge about it. We know from the early results that it can be made to have exponentially
small two-sided error [KSV02, AN02, MW05]. It also has natural complete problems, such as
the ‘k-local Hamiltonian’ problem [KSV02, AN02], for k ≥ 2 [KKR06], which can be thought
of as a quantum analogue of k-SAT. With respect to the relation of QMA to classical complexity
classes, we know that MA⊆ QMA⊆ PP [MW05].2 There are also interesting generalizations
of QMA, such as with multiple unentangled provers [KMY03, ABD+09, HM10, BT09], but we
will not consider them in this paper.

Interestingly, we don’t know if QMA ?
= QMA1, i.e., whether QMA can be made to have

perfect completeness. It is a long-standing open problem which was already mentioned in an
early survey by Aharonov and Naveh [AN02]. Besides its inherent importance, giving a positive
answer to it would immediately imply that the QMA1-complete problems are also complete for
QMA. Most notable of these is the ‘Quantum k-SAT’ problem of Bravyi [Bra06], for k ≥ 3
[GN13], which is considered as a more natural quantum generalization of k-SAT than the k-
local Hamiltonian problem.3 Unfortunately, all previous techniques used to show one-sided error
properties of quantum interactive proof systems require adding extra messages to the protocol
[KW00, KKMV08, KLGN13], so they can’t be used directly in QMA. Aaronson [Aar09] gave
an evidence that shows that proving QMA = QMA1 may be difficult. He proved that there exists
a quantum oracle relative to which QMA 6= QMA1. Another difficulty with QMA, compared
to MA, is that in a QMA proof system the acceptance probability can be an arbitrary irrational
number. However, if certain assumptions are made about the maximum acceptance probability
then QMA can be made to have one-sided error [NWZ09]. Recently, Jordan, Kobayashi, Nagaj,
and Nishimura [JKNN12] showed that if Merlin’s proof is classical (in which case the class is
denoted by QCMA), then perfect completeness is achievable, i.e., it holds that QCMA=QCMA1.
In another variant of QMA, where we have multiple unentangled provers and exponentially or
double-exponentially small gap, we also know that perfect completeness is achievable [Per12].
The most recent and strongest result towards proving the original QMA versus QMA1 question
is by Kobayashi, Le Gall, and Nishimura [KLGN13]. They showed that we can convert a QMA
proof system to have one-sided error, if we allow the prover and the verifier of the resulting
QMA1 protocol to share a constant number of EPR pairs before the prover sends the proof to
the verifier. The corresponding class is denoted by QMAconst-EPR

1 . With this notation, their result
can be formalized as the following theorem.

Theorem 1.1 ([KLGN13]). QMA⊆ QMAconst-EPR
1 .

Since sharing an EPR pair can be done by the verifier preparing it and sending half of it to
the prover, the above result implies that QMA is contained in the class of languages provable by

2A slightly stronger bound of QMA⊆ A0PP was shown by Vyalyi [Vya03].
3For a list of QMA- and QMA1-complete problems, see e.g., [Boo12].
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one-sided error, two-message quantum interactive proof systems (QMA⊆ QIP1(2)). This is a
nontrivial upper bound. Moreover, a result of Beigi, Shor, and Watrous [BSW11] implies that
equality in Theorem 1.1 holds, resulting in the following characterization of QMA.

Corollary 1.2 ([KLGN13]). QMA = QMAconst-EPR
1 = QMAconst-EPR.

The contribution of this paper is a conceptually simpler and more direct proof of Theo-
rem 1.1, compared to the original one by Kobayashi et al. [KLGN13]. The algorithm of our
verifier is also simpler, but the main difference is in the proof of its soundness. We believe that
our proof helps to understand the result better and we think that it may be simplified further. The
description of the idea behind our proof can be found in Section 3.1, while the complete proof
is presented in Section 3.2.

Organization of the Paper

The remainder of the paper is organized as follows. Section 2 discusses the background defini-
tions, theorems, and lemmas needed to understand our proof. The proof itself is presented in
Section 3, starting with a high level description in Section 3.1, and then presenting the detailed
proof in Section 3.2.

2 Preliminaries

We assume familiarity with quantum information [Wat08b] and computation [NC00]; such
as quantum states, unitary operators, measurements, quantum super-operators, etc. We also
assume the reader is familiar with computational complexity, both classical [AB09] and quantum
[Wat08a]. The purpose of this section is to present the notations and background information
(definitions, theorems) required to understand the rest of the paper. In this paper we denote the
imaginary unit by ι instead of i, which we use as an index in summations, for example. When
we talk about a quantum register R of size k, we mean the object made up of k qubits. It has
associated Hilbert space R= C2k

. We always assume that some standard basis of R= C2k
have

been fixed and we index those basis vectors by bit strings of length k. So the standard basis of
R is denoted by

{
|s〉 : s ∈ {0,1}k

}
. We denote the all zero string by 0̄ def

= 00 . . .0. Throughout
the paper, L(R) denotes the space of all linear mappings from R to itself. The set of all density
operators on R is denoted by D(R). The adjoint of A ∈ L(R) is denoted by A∗.

Definition 2.1. The trace norm of A ∈ L(R) is defined by

‖A‖Tr
def
= Tr

(√
A∗A

)
,

and the operator norm of A is

‖A‖
∞

def
= max{‖A |ϕ〉‖ : |ϕ〉 ∈ R, ‖ϕ‖= 1} .

The following inequality is a special case of the Hölder Inequality for Schatten norms.

Lemma 2.2. For any Hilbert space H and operators A,B ∈ L(H), it holds that

|Tr(B∗A)| ≤ ‖A‖Tr · ‖B‖∞
.

The following definition is used to quantify the distance between operators.
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Definition 2.3. The trace distance between operators A,B ∈ L(H) is defined as

d(A,B) def
=
‖A−B‖Tr

2
.

If the operators represent pure quantum states, i.e., A = |ϕ〉〈ϕ| and B = |ψ〉〈ψ|, for some
|ϕ〉 , |ψ〉 ∈ H, for which ‖ϕ‖ = ‖ψ‖ = 1, then the trace distance can be more conveniently
written as

d(|ϕ〉 , |ψ〉) =
√

1−|〈ϕ|ψ〉|2. (1)

Another way of quantifying the similarity between density operators is by the fidelity defined
below.

Definition 2.4. The fidelity between ρ,σ ∈ D(H) is defied as

F(ρ,σ)
def
=
∥∥√ρ

√
σ
∥∥

Tr .

If ρ = |ϕ〉〈ϕ| then the fidelity can be more conveniently written as

F(|ϕ〉〈ϕ| ,σ) =
√
〈ϕ|σ |ϕ〉. (2)

The following alternate characterization of the fidelity will be useful later.

Theorem 2.5 (Uhlmann’s Theorem, see e.g., [Wat08b] for a proof). Let ρ,σ ∈ D(H) and X

be a Hilbert space such that dim(X)≥ dim(H). Let |ϕ〉 ∈ X⊗H be any purification of ρ , i.e.,
TrX(|ϕ〉〈ϕ|) = ρ . Then

F(ρ,σ) = max{|〈ϕ|ψ〉| : |ψ〉 ∈ X⊗H, TrX(|ψ〉〈ψ|) = σ} .

We now list some properties of the trace distance.

Lemma 2.6 (triangle inequality). For any A,B,C ∈ L(H), it holds that

d(A,B)≤ d(A,C)+d(C,B) .

Theorem 2.7 (Theorem 9.2 from [NC00]). Let Φ : L(H)→ L(K) be a quantum super-operator
(a completely positive and trace preserving linear map) and let ρ,σ ∈ D(H). Then

d(Φ(ρ) ,Φ(σ))≤ d(ρ,σ) .

Lemma 2.8. Let A,B ∈ L(H). If 0≤ B and Tr(B)≤ ε , for some 0≤ ε , then

d(A+B,A)≤ ε

2
.

Proof. From the definition of the trace norm and the trace distance, together with the fact that√
B∗B = B, we get that

d(A+B,A) =
‖A+B−A‖Tr

2

=
‖B‖Tr

2

=
Tr(B)

2

≤ ε

2
.
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Lemma 2.9. Let ρ,σ ∈ D(H) and 0≤ ε < 1. It holds that

d((1− ε)ρ + εσ ,ρ)≤ ε.

Proof. Using the triangle inequality (Lemma 2.6) and Lemma 2.8, we get that

d((1− ε)ρ + εσ ,ρ)≤ d((1− ε)ρ + εσ ,(1− ε)ρ)+d(ρ,(1− ε)ρ)

≤ ε

2
+
‖ρ− (1− ε)ρ‖Tr

2

=
ε

2
+

Tr(ερ)

2
= ε.

The following lemma will be used to quantify how much a projective measurement changes
a state. It is a variant of Winter’s gentle measurement lemma [Win99].

Lemma 2.10 (Lemma 4 from [JN12]). Let ρ ∈ D(H) be a density operator and Π ∈ L(H) be
a projector such that Tr(ρΠ)< 1. Then

1−Tr(ρΠ)≤ F
(

ρ,
(1−Π)ρ (1−Π)

Tr(ρ (1−Π))

)2

.

The following theorem gives a relation between trace distance and fidelity.

Theorem 2.11 (Fuchs-van de Graaf Inequalities, see e.g., [Wat08b] for a proof). For any ρ,σ ∈
D(H), it holds that

1−d(ρ,σ)≤ F(ρ,σ)≤
√

1−d(ρ,σ)2.

The following argument has appeared before, for example in [BSW11]. We present it here
as a separate lemma and include its proof for convenience.

Lemma 2.12. Let 0≤ ε ≤ 1, ρ ∈ D(A⊗B), and σ ∈ D(B). If

d(TrA(ρ) ,σ)≤ ε

then there exists a τ ∈ D(A⊗B) for which

TrA(τ) = σ and d(ρ,τ)≤
√

2ε.

Proof. Let us take an auxiliary Hilbert space X∼=A⊗B and let |ϕ〉 ∈X⊗A⊗B be a purification
of ρ , i.e., TrX(|ϕ〉〈ϕ|) = ρ . We have that

1− ε ≤ 1−d(TrA(ρ) ,σ)

≤ F(TrA(ρ) ,σ) (3)

= max{|〈ϕ|ψ〉| : |ψ〉 ∈ X⊗A⊗B, TrX⊗A(|ψ〉〈ψ|) = σ} , (4)

where (3) follows from Theorem 2.11 and (4) follows from Theorem 2.5. This means that there
exists a |ψ〉 ∈ X⊗A⊗B, such that 1− ε ≤ |〈ϕ|ψ〉| and TrX⊗A(|ψ〉〈ψ|) = σ . Let

τ
def
= TrX(|ψ〉〈ψ|) .
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We only need to bound the distance between ρ and τ .

d(ρ,τ)≤ d(|ϕ〉 , |ψ〉) (5)

=

√
1−|〈ϕ|ψ〉|2 (6)

≤
√

1− (1− ε)2

≤
√

2ε ,

where (5) follows from Theorem 2.7 and (6) follows from (1).

Throughout the paper we denote the identity operator on some Hilbert space H by 1H and
we sometimes omit the subscript if it is clear from the context. We also use some well-known
unitary operators (also called quantum gates), such as the controlled-NOT (CNOT) gate, the
Hadamard gate (H), and the Pauli operators (X, Z, Y). The definition of these operators can be
found in any standard quantum textbook, for example in [NC00]. A key to our main algorithm
will be the following operator which will be used to reduce the acceptance probability of a QMA
verifier to 1/2. The details will be explained later, but it is convenient to define the operator here.
Let q ∈ [0,1], then

Wq
def
=

[√
1−q −ι

√
q

−ι
√

q
√

1−q

]
.

Note that Wq corresponds to a rotation about the x̂ axes in the Bloch sphere and it is very similar
to the corresponding operator in [KLGN13].

We will use the following quantum states often so it is convenient to introduce notations for
them. Let ∣∣φ+

〉 def
=
|0〉+ |1〉√

2
,

∣∣φ−〉 def
=
|0〉− |1〉√

2
,

∣∣φ+
〉
,
∣∣φ−〉 ∈ C2.

Note that |φ+〉 and |φ−〉 can be obtained by applying H on |0〉 and |1〉. We will also use the Bell
basis.

Definition 2.13. The following states form a basis of C4 and are called the Bell basis.∣∣Φ+
〉 def
=
|00〉+ |11〉√

2
,

∣∣Φ−〉 def
=
|00〉− |11〉√

2
,

∣∣Ψ+
〉 def
=
|01〉+ |10〉√

2
,

∣∣Ψ−〉 def
=
|01〉− |10〉√

2
.

The following theorem is used to eliminate the entanglement between registers.

Theorem 2.14 (quantum de Finetti theorem [CKMR07]; this form is from [Wat08b]4). Let
X1, . . . ,XN be identical quantum registers, each having associated space C2, and let ρ ∈D

(
C2N

)
be the state of these registers. Suppose that ρ is invariant under the permutation of the registers.
Then there exist a number m ∈ Z+, a probability distribution {pi : i ∈ {1,2, . . . ,m}}, and a
collection of density operators {ξi : i ∈ {1,2, . . . ,m}} ⊂ D

(
C2
)

such that∥∥∥∥∥TrX3,...,XN (ρ)−
m

∑
i=1

piξi⊗ξi

∥∥∥∥∥
Tr

<
32
N
.

4Note that this is not the general form of the theorem, but this simplified version will be sufficient for our proof.
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Later we will use the SWAP Test of [BBD+97, BCWdW01] and the following property of
this test.

Theorem 2.15 ([BCWdW01, KMY03]). When the SWAP Test is applied to ρ⊗σ , where ρ,σ ∈
D(H), it succeeds with probability

1+Tr(ρσ)

2
.

In order to perform the SWAP Test, we need two Hadamard gates, O(log(dim(H)))-number
of CNOT gates, and we need to measure a qubit in the standard basis.

The following lemma will be the basic building block to prove perfect completeness, simi-
larly to [KLGN13].

Lemma 2.16. Let ∆,Π ∈ L(H) be projectors. Suppose that one of the eigenvalues of ∆Π∆ is
1/2 with corresponding eigenstate |ω〉. Then

∆(1−2Π)∆ |ω〉= 0.

Proof. Using the fact that ∆ |ω〉= |ω〉, we get

∆(1−2Π)∆ |ω〉= (∆−2∆Π∆) |ω〉

= |ω〉−2
(

1
2
|ω〉
)

= 0.

In [KLGN13], the procedure defined by applying ∆(1−2Π)∆ is called ‘Reflection Proce-
dure’. The procedure is very similar to the quantum rewinding technique of Watrous [Wat09],
which has been used before to achieve perfect completeness for quantum multi-prover interac-
tive proofs [KKMV08]. Also note that the idea behind the quantum rewinding technique dates
back to the strong gap amplification for QMA [MW05].

It should be mentioned here that Lemma 2.16 will only be used in the honest case, while in
the dishonest case we will argue about the rejection probability directly. This is why we can have
a much simpler lemma compared to the description of the Reflection Procedure in [KLGN13].

2.1 Choi-Jamiołkowski Representations and Post-Selection

Let Φ : L
(
C2
)
→L

(
C2
)

be a quantum super-operator (a completely positive and trace preserving
linear map). The normalized Choi-Jamiołkowski representation of Φ is defined as5

ρΦ

def
=

1
2 ∑

x,y∈{0,1}
Φ(|x〉〈y|)⊗|x〉〈y| , ρΦ ∈ D

(
C4) .

Suppose we have an EPR pair (|Φ+〉) in registers (S,S′). Then ρΦ can be generated by applying
Φ on register S. If Φ is unitary, i.e., Φ(σ) = U∗σU, for some unitary operator U, then ρΦ is
pure, in which case we use the notation |J(U)〉, where |J(U)〉〈J(U)| = ρΦ. Let q ∈ [0,1]. By
simple calculation, we get that∣∣J(Wq)

〉
= (Wq⊗1)

∣∣Φ+
〉
=
√

1−q
∣∣Φ+

〉
− ι
√

q
∣∣Ψ+

〉
,∣∣J(W∗

q
)〉

=
(
W∗

q⊗1
)∣∣Φ+

〉
=
√

1−q
∣∣Φ+

〉
+ ι
√

q
∣∣Ψ+

〉
.

5The Choi-Jamiołkowski representation is obviously defined for any dimension, but in this paper we will only
need it for qubits, so we will be fine with this restricted definition.
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In Algorithm 2, on page 13, we will be given two copies of
∣∣J(W∗

q
)〉

and we will have to
create the state Wq |0〉 with the help of the first copy. Using the second copy, we will need to
apply W∗

q on an arbitrary input state. The way these can be done is as follows. Suppose now
that we are given

∣∣J(W∗
q
)〉

and we want to create Wq |0〉. This can easily be done by applying
the following unitary

T def
=
∣∣00
〉〈

Φ
+
∣∣− ∣∣10

〉〈
Ψ

+
∣∣+ ∣∣01

〉〈
Φ
−∣∣− ∣∣11

〉〈
Ψ
−∣∣ , (7)

because T
∣∣J(W∗

q
)〉

= (Wq |0〉)⊗|0〉. Now assume that we want to apply W∗
q on an arbitrary

state |ϕ〉, with the help of
∣∣J(W∗

q
)〉

. This can be accomplished with probability 1/2 by a
procedure that we call post-selection. The procedure is described in Algorithm 1. Note that
Algorithm 1 is basically teleportation, where we want to teleport the state of X (let’s say it’s
|ϕ〉) to register S. If we get output |Φ+〉 then no correction is needed in the teleportation. Since
W∗

q was applied to S before, we get W∗
q |ϕ〉 in S. If the output is |Ψ+〉 then there is a ‘Pauli-X

error’ in the teleportation so we get W∗
qX |ϕ〉, which we can correct since W∗

q and X commute.
In case of the other two outputs (|Φ−〉 and |Ψ−〉), there is a Z or a Y error that we can’t correct,
so we declare failure. This idea of simulating a quantum operator with Choi-Jamiołkowski
representations has appeared before in the context of quantum interactive proof and quantum
Merlin-Arthur proof systems, such as in Refs. [BSW11, KLGN13]. We state a lemma here that
we will use in the honest case. In the dishonest case, we will argue about the success probability
and the output of Algorithm 1 in the analysis of Algorithm 2.

Lemma 2.17. Suppose that the inputs to Algorithm 1 are
∣∣J(W∗

q
)〉

in (S,S′), for some q ∈ [0,1],
and an arbitrary |ϕ〉 in X. Then the algorithm will succeed with probability 1/2 and in that case
it will output W∗

q |ϕ〉 in S.

2.2 Quantum Merlin-Arthur Proof Systems

Before we define the complexity class QMA, let us briefly describe what we mean by polynomial-
time quantum algorithms or quantum verifiers. Quantum verifiers are polynomial-time uniformly
generated quantum circuits consisting of some universal set of gates. There are many different
universal sets and we assume that one of them has been chosen beforehand. Usually it doesn’t
matter which set we choose when we define quantum verifiers and classes like BQP or QMA,
because it is known that each universal set can approximate any other set with exponential
precision. However, in the paper we will have quantum proof systems with one-sided error, in
which case the gate set may matter. This is because simulating one set of gates with another may

Algorithm 1 Post-Selection
INPUT: single qubit registers S, S′, X {(S,S′) are supposed to contain the state

∣∣J(W∗
q
)〉

.}
OUTPUT: success and S, or failure

1: Perform a measurement in the Bell basis on (S′,X).
2: IF the output is |Φ+〉 THEN

3: RETURN success and S
4: ELSE IF the output is |Ψ+〉 THEN

5: Apply X on S.
6: RETURN success and S
7: ELSE

8: RETURN failure
9: END IF

8



ruin the one-sided error property. In this paper, we only assume that the verifier can perform
or perfectly simulate the CNOT and the H gate with his universal set, besides being able to
perform any polynomial-time classical computation. Note that with CNOT and H, one can
perform all Pauli operators, as well as operator T, defined by Eq. (7). The above assumption is
enough for our result, so we won’t bother about the gate set in the rest of the paper.

Definition 2.18 ([Wat00, AN02]). For functions c,s : Z+→ (0,1], a language L is in QMA(c,s)
if there exists a quantum verifier V with the following properties. For all n ∈ Z+ and inputs
x ∈ {0,1}n, the circuit of V on input x, denoted by Vx, is a polynomial-time uniformly generated
quantum circuit acting on two polynomial-size registers P and A. One output qubit of Vx is
designated as the acceptance qubit. We say that Vx on input |ϕ〉P⊗

∣∣0̄〉
A

accepts if the acceptance
qubit of Vx

(
|ϕ〉P⊗

∣∣0̄〉
A

)
is projected to |1〉 and we say that Vx rejects if it’s projected to |0〉.

Vx must satisfy the following properties.

Completeness. If x ∈ L then there exists a quantum state |ϕ〉 ∈ P such that the acceptance
probability of Vx, on input |ϕ〉⊗

∣∣0̄〉
A

, is at least c(n).

Soundness. If x /∈ L then for all states |ϕ〉 ∈ P, Vx accepts with probability at most s(n), given
|ϕ〉⊗

∣∣0̄〉
A

as its input.

Note that P is the register in which the verifier receives his proof and A is his private register,
which is, without loss of generality, always initialized to

∣∣0̄〉. Without causing confusion, we
will denote both the circuit of the verifier and the unitary operator it represents by Vx.

Definition 2.19. The class QMA is defined as QMA def
= QMA

(2
3 ,

1
3

)
.

The choice of the constants in the above definition are arbitrary, as shown by the following
theorem.

Theorem 2.20 ([KSV02, AN02, MW05]). Let c ∈ (0,1) be a constant and p(n) be a positive
polynomial in n. It holds that

QMA = QMA
(

c,c− 1
p(n)

)
= QMA

(
1−2−p(n),2−p(n)

)
.

Definition 2.21. The class QMAconst-EPR(c,s) is defined the same way as QMA(c,s) in Defini-
tion 2.18, except that before the prover sends the proof to the verifier, they can share a constant
number of EPR pairs (the two-qubit state |Φ+〉).

Definition 2.22. The class QMAconst-EPR
1 is defined as QMAconst-EPR

1
def
= QMAconst-EPR(1,1/2).

Similarly as before, the choice of 1/2 is arbitrary. This is because a QMAconst-EPR
1 proof

system is a special case of a two-message QIP1 proof system and perfect parallel repetition
holds even for three-message QIP1 [KW00]. So we have the following lemma.

Lemma 2.23. Let p(n) be a positive polynomial in n. It holds that

QMAconst-EPR
1 = QMAconst-EPR

(
1,1− 1

p(n)

)
= QMAconst-EPR

(
1,2−p(n)

)
.

3 Proof of Theorem 1.1

Before we give the detailed proof of Theorem 1.1, let us briefly describe the intuition behind our
proof. We also point out the similarities and the differences between our proof and the proof in
[KLGN13].
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3.1 The Idea Behind the Proof

The basic idea to achieve perfect completeness is very similar to Ref. [KLGN13]. For any input
x, let us define

Mx
def
=
(
1P⊗

∣∣0̄〉〈0̄∣∣
A

)
V∗xΠaccVx

(
1P⊗

∣∣0̄〉〈0̄∣∣
A

)
,

where Vx is the same as in Section 2.2 and Πacc is the projector that corresponds to projecting
the acceptance qubit of Vx to |1〉. Note that 0≤Mx ≤ 1P⊗A. As was observed in [MW05], the
maximum acceptance probability of Vx is ‖Mx‖∞

, or in other words, the maximum eigenvalue
of Mx. We will use Lemma 2.16 to construct a test that succeeds with probability 1 in case x ∈ L.
In order to achieve this, we need that for all x ∈ L, ‖Mx‖∞

= 1/2. Unfortunately, this is not true
in general. Instead, we have that if x ∈ L then ‖Mx‖∞

≥ 1/2. Our first objective is to modify Mx

such that its maximum eigenvalue is exactly 1/2. We do this by using an auxiliary qubit (stored
in register S) and defining

M′x
def
= Mx⊗

(
|0〉〈0|S W∗

q |1〉〈1|S Wq |0〉〈0|S
)

=
(
1P⊗

∣∣0̄〉〈0̄∣∣
A⊗S

)
(Vx⊗Wq)

∗ (Πacc⊗|1〉〈1|S)(Vx⊗Wq)
(
1P⊗

∣∣0̄〉〈0̄∣∣
A⊗S

)
,

where q def
= 1

2p ∈
[1

2 ,1
]
. It is now easy to see that ‖M′x‖∞

= 1/2 and we can also write M′x as
M′x = ∆Π∆, for

∆
def
= 1P⊗

∣∣0̄〉〈0̄∣∣
A⊗S and Π

def
= (Vx⊗Wq)

∗ (Πacc⊗|1〉〈1|S)(Vx⊗Wq) .

Now, we can use Lemma 2.16 and obtain the following test. Let the principal eigenvector of
M′x (that corresponds to eigenvalue 1/2) be denoted by |ω〉P⊗

∣∣0̄〉
A⊗S. The test receives this

eigenstate as the input, applies the unitary operator 1−2Π, and performs a measurement defined
by operators {∆,1−∆}. If the state is projected to ∆ the test rejects and otherwise it accepts.
Lemma 2.16 guarantees that we never project to ∆.

However, a polynomial-time verifier may not be able to perform this test, because it is
possible that Wq can’t be expressed by a polynomial-size quantum circuit and the verifier may
not even know the exact value of q. To overcome this difficulty, the verifier expects the prover to
give several copies of the normalized Choi-Jamiołkowski representations of W∗

q, besides |ω〉P.
As explained in Section 2.1, these can be used to perform Wq and W∗

q, by using unitary T to do
Wq, and Algorithm 1 to do W∗

q. Note that Algorithm 1 may fail, in which case we have to accept
in order to maintain perfect completeness. This is the main idea to prove perfect completeness,
and it is basically the same as in [KLGN13].

The harder part is to prove the soundness and this is where our proof differs from the one
in [KLGN13]. Let us first give a high-level overview of the soundness proof of Kobayashi et
al. [KLGN13]. The main idea in their proof is to perform a sequence of tests (i.e., quantum
algorithms with measurements at the end), which together ensure that the registers that are
supposed to contain the Choi-Jamiołkowski representations of the desired operator, actually
contain the Choi-Jamiołkowski representations of some operator. Then they show that doing
the so-called ‘Reflection Simulation Test’, the one just described above, with these states in
the registers, will cause rejection with some constant probability. The tests they use to ensure
that the states are close to Choi-Jamiołkowski representations are the ‘Distillation Procedure’
(which is used to remove the entanglement between the register of the original proof and the
registers of the Choi-Jamiołkowski representations), the ‘Space Restriction Test’ (which tests
that the states are in a certain subspace), and the SWAP Test. In their analysis they also use the
de Finetti theorem. We don’t describe these tests here, as the interested reader can find them in
[KLGN13]. We just list them in order to compare them to the tools we use.
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Our main idea behind the soundness proof is conceptually different. We don’t argue that
the states are close to Choi-Jamiołkowski representations, but we analyze our version of the
Reflection Simulation Test directly. As we described this test above, there are two measurements
in it. The first measurement is in Algorithm 1 and the second is given by {∆,1−∆}. So, roughly
speaking, we have to prove two things. First, we have to show that Algorithm 1 can’t always
fail, as otherwise we would end up always accepting without reaching the end of the procedure.
This will be formalized later in Lemma 3.3. In order to prove Lemma 3.3, we only need two
assumptions. The first assumption is that the state being measured in Algorithm 1 is separable,
which is guaranteed by the de Finetti theorem (Theorem 2.14). The second assumption is that
the state of some registers is close to being completely mixed, which is obviously true because
these registers hold parts of EPR pairs.

The second part of the soundness proof is to show that conditioned on Algorithm 1 being
successful, we get a state that projects to ∆ with constant probability. To prove this, we first
argue that the private register of the verifier (register A) projects to

∣∣0̄〉〈0̄∣∣. This follows from
simple properties of the trace distance. We then show that the state of register S projects to
|0〉〈0|. To prove this, we use the SWAP Test on the registers that are supposed to contain the
Choi-Jamiołkowski representations. This ensures that the state of these registers are close to the
same pure state. This property is formalized in Lemma 3.4. We also use a simplified version of
the Space Restriction Test, which is not really a test but an application of a super-operator on
the above mentioned registers. This super-operator will be defined later in Eq. (8). We can think
of it as performing a projective measurement that corresponds to the Space Restriction Test and
forgetting the outcome. Using the above tools, it will follow by direct calculation that the state
of S projects to |0〉〈0|.

Note that we don’t use the Distillation Procedure of [KLGN13] and we use a simpler form
of the Space Restriction Test. Besides that, it’s worth mentioning that the tools we use can be
grouped into two sets based on whether we use them in the analysis of the first or the second
measurement. For the analysis of the first measurement, we need that some state is close to
being maximally mixed, while in the analysis of the second, we use the SWAP Test and the
above mentioned super-operator. One exception is the de Finetti theorem, as we need that the
states are separable in both parts. This property of the proof may be useful for simplifying it
further, because for example, to omit the SWAP Test, one would only need to re-prove that the
state of S projects to |0〉〈0| in the last measurement.

3.2 The Detailed Proof

This section presents the detailed proof of Theorem 1.1. Let L ∈ QMA and V be the corre-
sponding verifier. Let x be an input to language L and let us denote its length by n. We denote
the circuit of V on input x (and also the unitary transformation it represents) by Vx. Let the
private register of Vx be denoted by A and the register in which the proof is received by P. As
in the previous section, let Πacc ∈ L(P⊗A) be the projector that corresponds to projecting the
acceptance qubit of Vx to |1〉. By Theorem 2.20, we assume that the completeness of V is at least
1/2 and his soundness is at most 4−n. Let N def

= 2107. We construct a verifier W which recognizes
the same language L with completeness 1, constant soundness, and with the additional property
that W possesses N halves of EPR pairs in registers S′1, . . . ,S′N before the protocol begins. The
other halves of the EPR pairs are held by the prover. W gets his proof in registers P,S1, . . . ,SN ,
where the Si’s are single qubit registers, which had contained the other halves of the EPR pairs
before the prover performed some transformation on them. W expects to get the original proof
of V in P and the state of each (Si,S′i) is supposed to be

∣∣J(W∗
q
)〉

, for some q ∈ [0,1]. In the
description of W we will use the following notations. Let W+ be the subspace of C4 spanned
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by |Φ+〉 and |Ψ+〉, and W− be the subspace spanned by |Φ−〉 and |Ψ−〉. Let

Π
+ def
=
∣∣Φ+

〉〈
Φ

+
∣∣+ ∣∣Ψ+

〉〈
Ψ

+
∣∣ and Π

− def
=
∣∣Φ−〉〈Φ−∣∣+ ∣∣Ψ−〉〈Ψ−∣∣ ,

i.e., the projections to subspaces W+ and W−. Let Ψ : L
(
C4
)
→ L

(
C4
)

be a quantum super-
operator defined as

Ψ(A)
def
= Π

+AΠ
++Π

−AΠ
−. (8)

T still denotes the operator defined by Eq. (7). With these notations, the procedure of W is
described in Algorithm 2.

Note that Algorithm 2 runs in polynomial time and besides performing the circuit Vx and
its inverse, it only uses H, CNOT, T, Pauli gates, and classical logical gates. (This justi-
fies our assumption we made about the gate set in Section 2.2.) We have to prove complete-
ness and soundness in order to prove Theorem 1.1. Lemma 3.1 proves that in the honest
case W always accepts, while Lemma 3.2 proves that in the dishonest case W rejects with
probability at least 2−52. This shows that L ∈ QMAconst-EPR(1,1−2−52

)
. By Lemma 2.23,

QMAconst-EPR(1,1−2−52
)
= QMAconst-EPR

1 so Theorem 1.1 follows.

Lemma 3.1 (Completeness). If x ∈ L then the prover can prepare registers P,S1, . . . ,SN in such
a way that verifier W of Algorithm 2 accepts with probability 1.

Proof. Let px ∈ [1/2,1] be the maximum probability with which V can be made to accept x,
where the maximum is taken over all states in P. Let

q def
=

1
2p

and note that q ∈ [1/2,1]. The honest Merlin prepares |ωx〉 in P, where |ωx〉 is the original wit-
ness of V that makes it accept with probability exactly px. Furthermore, for all i ∈ {1,2, . . . ,N},
Merlin applies W∗

q to Si. This creates
∣∣J(W∗

q
)〉

in all (Si,S′i). Then Merlin sends registers
P,S1, . . . ,SN to W .

Note that steps 1 and 2 of Algorithm 2 don’t change the state because∣∣J(W∗
q
)〉

=
√

1−q
∣∣Φ+

〉
+ ι
√

q
∣∣Ψ+

〉
∈W+.

If, in step 3, b is chosen to be 1 then the SWAP Test in step 21 succeeds with certainty, by
Theorem 2.15. So, from now on, suppose that b is chosen to be 0, in which case we continue to
step 5. From the arguments of Section 2.1, we have that the state of S1 after step 5 is Wq |0〉. So
the state of (P,A,S1) before entering step 10 is

(V∗x⊗1S1)
(
1−2Πacc⊗|1〉〈1|S1

)
(Vx⊗Wq)

(
|ωx〉P⊗

∣∣0̄〉
A
⊗|0〉S1

)
.

We assume that Algorithm 1 in step 10 succeeds, as otherwise we accept. In this case, by
Lemma 2.17, the state of (P,A,S2) after step 10 will be(

V∗x⊗W∗
q
)(
1−2Πacc⊗|1〉〈1|S2

)
(Vx⊗Wq)

(
|ωx〉P⊗

∣∣0̄〉
A
⊗|0〉S2

)
.

Let

∆
def
= 1P⊗

∣∣0̄〉〈0̄∣∣
A
⊗|0〉〈0|S2

and Π
def
= (V∗xΠaccVx)⊗

(
W∗

q |1〉〈1|S2
Wq
)
.
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Algorithm 2 Description of verifier W in the proof of Theorem 1.1.
INPUT: description of a circuit Vx, polynomial-size register P compatible with Vx, and single

qubit registers S1, . . . ,SN ,S′1, . . . ,S′N , where the state of (S′1, . . . ,S′N) is guaranteed to be
1/2N . {For all i, (Si,S′i) are supposed to contain

∣∣J(W∗
q
)〉

.}
OUTPUT: accept or reject

1: Permute registers (S1,S′1) , . . . ,(SN ,S′N) uniformly at random and discard all but (S1,S′1)
and (S2,S′2).

2: Apply Ψ on both (S1,S′1) and (S2,S′2).
3: Choose b ∈R {0,1} uniformly at random.
4: IF b = 0 THEN

5: Apply T on (S1,S′1). {This creates Wq |0〉 in S1. S′1 can be discarded.}
6: Create register A, compatible with Vx, and initialize its state to

∣∣0̄〉.
7: Apply Vx on (P,A).
8: Apply a phase-flip if both the acceptance qubit and register S1 are 1. {This is done

by applying the unitary 1P⊗A⊗S1−2Πacc⊗|1〉〈1|S1
on (P,A,S1).}

9: Apply V∗x on (P,A).
10: Execute Algorithm 1 with input (S2,S′2,S1).
11: IF Algorithm 1 fails THEN

12: RETURN accept
13: END IF

14: Measure (A,S2) in the standard basis.
15: IF the output of the measurement is 0̄ THEN

16: RETURN reject
17: ELSE

18: RETURN accept
19: END IF

20: ELSE

21: Apply the SWAP Test on (S1,S′1) and (S2,S′2).
22: IF the SWAP Test succeeds THEN

23: RETURN accept
24: ELSE

25: RETURN reject
26: END IF

27: END IF

Note that the maximum eigenvalue of operator ∆Π∆ is 1/2, with corresponding eigenstate
|ωx〉P⊗

∣∣0̄〉
A⊗S2

. From Lemma 2.16,

0 = ∆(1−2Π)∆

(
|ωx〉P⊗

∣∣0̄〉
A⊗S2

)
=
(
1P⊗

∣∣0̄〉〈0̄∣∣
A⊗S2

)(
V∗x⊗W∗

q
)(
1−2Πacc⊗|1〉〈1|S2

)
(Vx⊗Wq)

(
|ωx〉P⊗

∣∣0̄〉
A⊗S2

)
.

It means that the measurement of step 14 will never output 0̄. This finishes the proof of the
lemma.

Lemma 3.2 (Soundness). Let x /∈ L and n sufficiently large. Suppose that the input to Algo-
rithm 2 is such that the reduced state on (S′1, . . . ,S′N) is 1/2N . Then Algorithm 2 rejects with
probability at least 2−52.
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Proof. Let’s denote the state of (P,S1,S′1,S2,S′2), after step 1, by ρ1. Theorem 2.14 implies that

d

(
TrP(ρ1) ,

m

∑
i=1

piξi⊗ξi

)
≤ 16

N
.

Let’s denote the state of the same registers, after step 2, by ρ2. It can be checked by direct
calculation that

TrP⊗S1⊗S2 (ρ2) =
1S′1⊗S′2

4
. (9)

From Theorem 2.7, it holds that

d

(
TrP(ρ2) ,

m

∑
i=1

piσi⊗σi

)
≤ 16

N
,

where σi
def
= Ψ(ξi). By Lemma 2.12, there exists a ρ ′2 such that

TrP
(
ρ
′
2
)
=

m

∑
i=1

piσi⊗σi

and

d
(
ρ2,ρ

′
2
)
≤
√

32
N
. (10)

Let us suppose, from now on, that before entering step 3 the state of the system is ρ ′2. This will
result in a bias of at most

√
32/N in the trace distance in the rest of the states that we calculate.

Throughout the rest of the proof, we will assume that the SWAP Test on input TrP(ρ ′2) rejects

with probability at most ε
def
= 2 ·2−52+

√
32/N = 2−50, as otherwise we are done with the proof.

With this in mind, the rest of the proof will only deal with the case when b is chosen to be 0 in
step 3. In this case we continue to step 5. With these assumptions, the state of the system after
step 5 is

ρ5
def
=
(

T⊗1P⊗S2⊗S′2

)
ρ
′
2

(
T∗⊗1P⊗S2⊗S′2

)
.

Let’s denote the state of the whole system after step 7 by

ρ7
def
=
(

Vx⊗1S1⊗S′1⊗S2⊗S′2

)(∣∣0̄〉〈0̄∣∣
A
⊗ρ5

)(
V∗x⊗1S1⊗S′1⊗S2⊗S′2

)
.

Since the acceptance probability of Vx is at most 4−n, we have that

Tr
(

ρ7Π̃acc

)
≤ 1

4n ,

where Π̃acc
def
= Πacc⊗1S1⊗S′1⊗S2⊗S′2 . Let ρ ′7 be the projection of ρ7 to the rejection subspace, i.e.,

ρ
′
7

def
=

(
1− Π̃acc

)
ρ7

(
1− Π̃acc

)
Tr
(

ρ7

(
1− Π̃acc

)) .

From Lemma 2.10 and Theorem 2.11, we have that

1− 1
4n ≤ F

(
ρ7,ρ

′
7
)2 ≤ 1−d

(
ρ7,ρ

′
7
)2
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from which it follows that
d
(
ρ7,ρ

′
7
)
≤ 1

2n .

Now suppose that before entering step 8 the state of the system is ρ ′7 instead of ρ7. This will
result in an additional bias of at most 2−n in the trace distance in the rest of the states that we
calculate. Since ρ ′7 lies in the rejection subspace,((

1−2Πacc⊗|1〉〈1|S1

)
⊗1S′1⊗S2⊗S′2

)
ρ
′
7

((
1−2Πacc⊗|1〉〈1|S1

)
⊗1S′1⊗S2⊗S′2

)
= ρ

′
7,

which means that step 8 doesn’t change the state. So the state of the system before entering
step 9 is ρ ′7. Let us change the state again, at this time from ρ ′7 back to ρ7. This will result in
another bias of at most 2−n. If the state of the system is ρ7 before entering step 9 then the state
after step 9 will be(

V∗x⊗1S1⊗S′1⊗S2⊗S′2

)
ρ7

(
Vx⊗1S1⊗S′1⊗S2⊗S′2

)
=
∣∣0̄〉〈0̄∣∣

A
⊗ρ5.

From Lemma 3.4, together with the assumption we made about the success probability of
the SWAP Test, we get that there exists a set of states {|ϕi〉 : |ϕi〉 ∈W+ or |ϕi〉 ∈W−} such
that

d

(
TrP
(
ρ
′
2
)
,

m

∑
i=1

pi (|ϕi〉〈ϕi|)⊗2

)
≤ 6
√

ε. (11)

This implies that
d(TrP(ρ5) ,ρ9)≤ 6

√
ε ,

where

ρ9
def
=

m

∑
i=1

pi (T |ϕi〉〈ϕi|T∗)⊗|ϕi〉〈ϕi| , ρ9 ∈ D
(
S1⊗S′1⊗S2⊗S′2

)
.

Now let us change the state of (S1,S′1,S2,S′2) from TrP(ρ5) to ρ9. This will result in another
bias of at most 6

√
ε . (Note that P is not touched by the algorithm after step 9, so we don’t keep

track of its state.) From Eqs. (9), (10), and (11), it follows that

d

(
TrS1⊗S2

(
m

∑
i=1

pi (|ϕi〉〈ϕi|)⊗2

)
,
1S′1⊗S′2

4

)
≤
√

32
N

+6
√

ε <
1
8
.

So ρ9 satisfies the requirements of Lemma 3.3 below. This means that Algorithm 1 in step 10
succeeds with probability at least 2−20, in which case we continue to step 14.

We now argue that, conditioned on Algorithm 1 being successful, the measurement in step 14
outputs 0̄ with certainty. This will finish the proof. Note that Algorithm 1 can’t change the state
of A as it was independent of (S2,S′2,S1) before executing Algorithm 1. So before entering
step 14, the state of A is still

∣∣0̄〉. Now we argue that after successfully executing Algorithm 1,
the state of S2 will be |0〉. Let us take some |ϕ〉 ∈ S1⊗S′1 that belongs to either W+ or W−.
Here we only argue about the case when |ϕ〉 ∈W+ as the other case can be proven by exactly
the same way. We can write |ϕ〉 as

|ϕ〉= a
∣∣Φ+

〉
+b
∣∣Ψ+

〉
, a,b ∈ C, |a|2 + |b|2 = 1.

It is easy to see that after applying T to |ϕ〉, the resulting state on S1 will be a |0〉 − b |1〉.
Suppose that the state of (S2,S′2) is |ϕ〉 and the state of S1 is a |0〉−b |1〉. It can be shown by
direct calculation that(

|1〉〈1|S2
⊗
∣∣Φ+

〉〈
Φ

+
∣∣
S′2⊗S1

)
|ϕ〉⊗ (a |0〉−b |1〉) = 0.
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This means that if Algorithm 1 is executed with the above input and the measurement in the
algorithm results in |Φ+〉, then the state of S2 will be |0〉. Similarly to the above, it can also be
shown that (

|0〉〈0|S2
⊗
∣∣Ψ+

〉〈
Ψ

+
∣∣
S′2⊗S1

)
|ϕ〉⊗ (a |0〉−b |1〉) = 0.

This means that if the measurement in Algorithm 1 results in |Ψ+〉 then the state of S2 will be
|1〉. In this case, Algorithm 1 applies X on S2 so the state of this register, after the algorithm,
will be |0〉. Since ρ9 is a convex combination of states of the above form, we got that if the state
of (S1,S′1,S2,S′2) is ρ9, before entering step 10, then Algorithm 1 succeeds with probability at
least 2−20 and, conditioned on success, Algorithm 2 rejects in step 16 with certainty.

However, we did modify the state during our analysis four times, so we have to account for
the bias they caused, which is at most

1
2n−1 +

√
32
N

+6
√

ε.

So the real rejection probability, with the original input, is at least

1
220 −

(
1

2n−1 +

√
32
N

+6
√

ε

)
=

1
221 −

1
2n−1 ≥

1
222 ,

where the last inequality is true for n≥ 23.

Lemma 3.3. Suppose that before entering step 10 of Algorithm 2, the state of (S1,S′1,S2,S′2) is

ρ
def
=

m

∑
i=1

pi (TσiT∗)⊗σi,

for some m ∈ Z+, probability distribution {pi : i = 1, . . . ,m}, and states σi ∈ D(S2⊗S′2)
∼=

D(S1⊗S′1). Further assume that

d

(
TrS1⊗S2

(
m

∑
i=1

piσi⊗σi

)
,
1S′1⊗S′2

4

)
≤ 1

8
. (12)

Then Algorithm 1, in step 10, will succeed with probability at least 2−20.

The idea behind the proof of Lemma 3.3 is very simple. We show that if the measurement
in Algorithm 1 fails with high probability on a state of the form TrS2 (σi)⊗ζ , where ζ ∈ D(S1)
is an arbitrary state, then TrS2 (σi) must be close to either |φ+〉 or |φ−〉. But then the convex
combination of the states TrS1 (σi)⊗TrS2 (σi) won’t be close to the maximally mixed state.

Proof of Lemma 3.3. Let us group the states in ensemble ρ with respect to their reduced state
on S′2 being close to |φ+〉, or to |φ−〉, or being far from both. Formally, let ε1

def
= 2−9,

A+ def
=
{

i : 1≤ i≤ m, d
(
TrS2 (σi) ,

∣∣φ+
〉〈

φ
+
∣∣)≤ ε1

}
,

A− def
=
{

i : 1≤ i≤ m, d
(
TrS2 (σi) ,

∣∣φ−〉〈φ−∣∣)≤ ε1
}

,

B def
= {1,2, . . . ,m}\

(
A+∪A−

)
.

Since d(|φ+〉 , |φ−〉) = 1 and ε1 < 1/2, from the triangle inequality we have that A+∩A− = /0.
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We first show that if the probability of B is at least ε2
def
= 1/4 then we are done. So assume

for now that ε2 ≤ ∑i∈B pi. For all i ∈ B we have that√
〈φ+|TrS2 (σi) |φ+〉= F

(
TrS2 (σi) ,

∣∣φ+
〉〈

φ
+
∣∣) (13)

≤
√

1−d(TrS2 (σi) , |φ+〉〈φ+|)2 (14)

<
√

1− ε2
1 , (15)

where (13) follows from (2), (14) follows from Theorem 2.11, and (15) is from the definition of
B. The above implies that〈

φ
+
∣∣TrS2 (σi)

∣∣φ+
〉
< 1− ε

2
1 and similarly

〈
φ
−∣∣TrS2 (σi)

∣∣φ−〉< 1− ε
2
1 .

From the above and using the fact that〈
φ
+
∣∣TrS2 (σi)

∣∣φ+
〉
+
〈
φ
−∣∣TrS2 (σi)

∣∣φ−〉= Tr(TrS2 (σi)) = 1,

we get that

ε
2
1 <

〈
φ
+
∣∣TrS2 (σi)

∣∣φ+
〉

and ε
2
1 <

〈
φ
−∣∣TrS2 (σi)

∣∣φ−〉 .
Let us take an arbitrary state

|ψ〉 def
= a

∣∣φ+
〉
+b
∣∣φ−〉 ∈ S1, a,b ∈ C, |a|2 + |b|2 = 1.

If the state of (S′2,S1), in the input to Algorithm 1, is TrS2 (σi)⊗|ψ〉〈ψ| then the algorithm will
succeed with probability

Tr
(
(TrS2 (σi)⊗|ψ〉〈ψ|)Π

+
)
= |a|2 ·

〈
φ
+
∣∣TrS2 (σi)

∣∣φ+
〉
+ |b|2 ·

〈
φ
−∣∣TrS2 (σi)

∣∣φ−〉
> ε

2
1

(
|a|2 + |b|2

)
= ε

2
1 ,

where the first equality follows from direct calculation using∣∣Φ+
〉
=
|φ+〉⊗ |φ+〉+ |φ−〉⊗ |φ−〉√

2
and

∣∣Ψ+
〉
=
|φ+〉⊗ |φ+〉− |φ−〉⊗ |φ−〉√

2
.

This implies that if the state of (S′2,S1) is TrS2 (σi)⊗ζ , for any ζ ∈ D(S1), then the probability
that Algorithm 1 succeeds is at least ε2

1 . We got that if ε2 ≤ ∑i∈B pi then Algorithm 1 succeeds
with probability at least ε2

1 ε2 = 2−20, in which case we are done.
So, from now on, assume that ∑i∈B pi < ε2. We will show that this assumption leads to a

contradiction, which will finish the proof. Lemma 2.12 implies that

∀i ∈ A+, ∃τi ∈ D(S2) : d
(
σi,τi⊗

∣∣φ+
〉〈

φ
+
∣∣)≤√2ε1,

∀i ∈ A−, ∃τi ∈ D(S2) : d
(
σi,τi⊗

∣∣φ−〉〈φ−∣∣)≤√2ε1.

We now replace σi with τi⊗|φ+〉〈φ+| or τi⊗|φ−〉〈φ−| in ρ . Formally, let us define

µB
def
= ∑

i∈B
pi (TσiT∗)⊗σi,

ρ
′ def
= ∑

i∈A+

pi
(
T
(
τi⊗

∣∣φ+
〉〈

φ
+
∣∣)T∗

)
⊗ τi⊗

∣∣φ+
〉〈

φ
+
∣∣

+ ∑
i∈A−

pi
(
T
(
τi⊗

∣∣φ−〉〈φ−∣∣)T∗
)
⊗ τi⊗

∣∣φ−〉〈φ−∣∣
+µB,
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where Tr(µB)< ε2. Note that d(ρ,ρ ′)< 2
√

2ε1, which, together with (12), implies that

d
(

ξ ,
1S′1⊗S′2

4

)
≤ 2
√

2ε1 +
1
8
=

1
4

, (16)

where
ξ

def
= TrS1⊗S2

((
T∗⊗1S2⊗S′2

)
ρ
′
(

T⊗1S2⊗S′2

))
.

On the other hand, we have that

ξ = p+
(∣∣φ+

〉〈
φ
+
∣∣)⊗2

+ p−
(∣∣φ−〉〈φ−∣∣)⊗2

+νB,

for some νB, where we used the shorthand p+
def
= ∑i∈A+ pi and p−

def
= ∑i∈A− pi. Note that Tr(νB)<

ε2, so Lemma 2.8 implies that

d
(

ξ , p+
(∣∣φ+

〉〈
φ
+
∣∣)⊗2

+ p−
(∣∣φ−〉〈φ−∣∣)⊗2

)
≤ ε2

2
. (17)

The following calculation will lead us to a contradiction.

1
2
≤ 1

2

(∣∣∣∣14 − p+

∣∣∣∣+ ∣∣∣∣14 − p−

∣∣∣∣+ 1
2

)
=

1
2

∥∥∥∥1S′1⊗S′24
−
(

p+
(∣∣φ+

〉〈
φ
+
∣∣)⊗2

+ p−
(∣∣φ−〉〈φ−∣∣)⊗2

)∥∥∥∥
Tr

(18)

= d
(
1S′1⊗S′2

4
, p+

(∣∣φ+
〉〈

φ
+
∣∣)⊗2

+ p−
(∣∣φ−〉〈φ−∣∣)⊗2

)
≤ d
(

ξ ,
1S′1⊗S′2

4

)
+d
(

ξ , p+
(∣∣φ+

〉〈
φ
+
∣∣)⊗2

+ p−
(∣∣φ−〉〈φ−∣∣)⊗2

)
(19)

≤ d
(

ξ ,
1S′1⊗S′2

4

)
+

ε2

2
, (20)

where (18) is because the eigenvalues of
1S′1⊗S

′
2

4 −
(

p+ (|φ+〉〈φ+|)⊗2
+ p− (|φ−〉〈φ−|)⊗2

)
are

1
4 − p+, 1

4 − p−, and 1
4 with multiplicity 2. Eq. (19) follows from the triangle inequality and at

(20) we used (17). Eq. (20) implies that

d
(

ξ ,
1S′1⊗S′2

4

)
≥ 1

2
− ε2

2
=

3
8

,

which contradicts to (16). So we conclude that it must be that ε2 ≤ ∑i∈B pi, in which case
Algorithm 1 succeeds with the desired probability, as argued above.

The following lemma is similar to Proposition 24 of [KLGN13].

Lemma 3.4. Let S1, S′1, S2, S′2 be single-qubit registers and let the state of (S1,S′1,S2,S′2) be

ρ
def
=

m

∑
i=1

piσi⊗σi,

where m ∈ Z+, {pi : i = 1, . . . ,m} is a probability distribution, and σi = Ψ(ξi), for some ξi ∈
D(S1⊗S′1)

∼= D(S2⊗S′2). Let 0 ≤ ε < 1. If the SWAP Test, applied between (S1,S′1) and
(S2,S′2), succeeds with probability at least 1− ε then there exist a set of states{

|ϕi〉 : 1≤ i≤ m, |ϕi〉 ∈W+ or |ϕi〉 ∈W−
}

18



such that

d

(
ρ,

m

∑
i=1

pi |ϕi〉〈ϕi|⊗ |ϕi〉〈ϕi|
)
≤ 6
√

ε.

Proof. On input σi⊗σi the SWAP Test succeeds with probability
(
1+Tr

(
σ2

i
))

/2, by Theo-
rem 2.15. So with input ρ the SWAP Test succeeds with probability

m

∑
i=1

pi
1+Tr

(
σ2

i
)

2
≥ 1− ε.

If ε = 0 it implies that all σi’s are pure and the statement of the lemma follows. So, from now on,
assume that 0 < ε . Then the above inequality intuitively means that for most of the i’s, Tr

(
σ2

i
)

must be close to 1. Formally, let

B def
=
{

i : 1≤ i≤ m, Tr
(
σ

2
i
)
≤ 1−2

√
ε
}

,

A def
= {1,2, . . . ,m}\B.

Suppose towards contradiction that 2
√

ε ≤ ∑i∈B pi. Then the probability that the SWAP Test
fails is

m

∑
i=1

pi
1−Tr

(
σ2

i
)

2
≥∑

i∈B
pi

1−Tr
(
σ2

i
)

2

≥∑
i∈B

pi
1−
(
1−2

√
ε
)

2

≥
√

ε ·∑
i∈B

pi

≥ 2ε ,

which is a contradiction. This implies that ∑i∈B pi < 2
√

ε . For all i ∈ A, let λi be the maximum
eigenvalue of σi and |ϕi〉 be the corresponding eigenstate. Note that either |ϕi〉 ∈W+ or |ϕi〉 ∈
W−. From the definition of A, we have that

1−2
√

ε < Tr
(
σ

2
i
)
≤ ‖σi‖Tr · ‖σi‖∞

= ‖σi‖∞
= λi,

where the second inequality follows from Lemma 2.2. The above calculation, together with
Lemma 2.9, imply that

∀i ∈ A : d(σi, |ϕi〉〈ϕi|)≤ 2
√

ε. (21)

We can now bound the required trace distance.

d

(
ρ,

m

∑
i=1

pi (|ϕi〉〈ϕi|)⊗2

)
≤ d

(
m

∑
i=1

piσ
⊗2
i ,∑

i∈A
piσ
⊗2
i

)
+d

(
∑
i∈A

piσ
⊗2
i ,∑

i∈A
pi (|ϕi〉〈ϕi|)⊗2

)

+d

(
∑
i∈A

pi (|ϕi〉〈ϕi|)⊗2 ,
m

∑
i=1

pi (|ϕi〉〈ϕi|)⊗2

)
(22)

≤ 6
√

ε , (23)

where (22) follows from the triangle inequality and at (23) we used Lemma 2.8 twice and
(21).
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