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Abstract
Newborn babies, especially premature ones, need real-time monitoring of vital parameters such as heart and
respiratory rates and oxygen saturation. Currently, premature infants kept in clinical incubators are continuously
monitored by contact sensors that provide signals for measuring the parameters. The contact sensors have certain
disadvantages including the inconvenience caused to babies and the stress induced in parents. In this paper, we
address the problem of video-based respiratory rate (RR) monitoring and present the initial related results of an
ongoing project aimed at non-contact monitoring of the vital parameters. Different methods for RR estimation are
proposed and discussed.

1. Introduction

Infants born before the 37th week of pregnancy are called
premature. In Hungary, they form about 8–9% of newborn
babies [6]; this rate is typical for European countries, e.g.,
Switzerland.

Potential brain lesions of premature babies frequently
(25%) lead to long-term disabilities. To avoid this, the in-
fants are kept in clinical incubators where they receive the
necessary treatment under continuous monitoring of their vi-
tal parameters including heart rate, respiratory rate (RR), and
oxygen saturation (blood oxygen level).

The traditional, wide-spread monitoring systems are
based on electroencephalogram (EEG) and polysomno-
graphic devices [5]. The vital parameters are measured based
on the signals provided by wired sensors attached to infant
body.

The current monitoring systems are expensive and time-
consuming [5]. They can suffer from motion artifacts and
relatively high false alarm rates. The contact sensors, al-
though moderately invasive, are still inconvenient for babies
and induce stress in parents.

Recently, a national research and development project has
been started whose aim is to substitute the contact sensing
by non-contact video-based one. (See Acknowledgments for

the project data.) The project involves work in three major
areas to monitor the three vital parameters mentioned above.

This paper is devoted to methods for video-based mea-
surement of respiratory rate defined as the number of breath
cycles per minute [19]. For information on breath monitor-
ing with other smart sensors, the reader is referred to [3, 8].

For completeness, let us mention some relevant litera-
ture on the other two areas of the project. A survey on
non-contact heart rate monitoring is available in [11]. Other
studies of non-contact heart rate monitoring can be found
in [2, 13–15]. Finally, the non-contact monitoring of oxygen
saturation is discussed in [2, 7, 10, 18].

The rest of this paper is organized as follow. Section 2 pro-
vides a discussion of previous work on video-based respira-
tion monitoring. In section 3, we discuss the clinical setup
and the challenges of breath monitoring. Section 4 presents
the methods for RR estimation we considered in the initial
phase of the project. Initial test results are shown in section 5
to demonstrate the feasibility of the methods. Finally, con-
clusions and future work are presented in section 6.

2. Previous Work on Respiration Monitoring

Respiratory patterns and rates of adults differ from those of
newborn babies. Respiratory signals measured in (healthy)
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adults are regular, close to periodic, with typical rates of 12–
18 breaths per minute [19]. The signals measured in new-
born babies are much less regular; they contain frequent
pauses and variations, with typical respiratory rates of 30–
40 breaths per minute. Another important difference is that
the respiratory motion of infant’s body is subtle and less vis-
ible, which makes its detection and tracking more difficult
than in case of adults.

Altogether, this means that video-based respiration moni-
toring methods developed for adults are not necessarily ap-
plicable to newborn babies. In particular, signal frequency
analysis approaches such as Fourier Transform may fail in
case of infants because of the lack of a definite dominant
frequency corresponding to the respiratory rate. This low
(quasi-) periodicity of infant’s respiratory signals necessi-
tates counting each single breath event separately.

The early survey [1] of respiration monitoring methods
reviews both contact and non-contact approaches, with more
attention being paid to the former ones. Cases of monitoring
children and adult patients are discussed. For non-contact
methods, the imaging devices considered are video cameras
and thermal cameras. Simple chest motion detection and
measurement algorithms such as interframe difference are
mentioned. These algorithms are not sufficiently robust to
operate in real clinical environment.

In recent years, the persistent development of better and
cheaper cameras as well as powerful portable computers and
graphics cards created new opportunities for more sophisti-
cated, real-time video processing.

A telemedicine-oriented system for respiratory rate mea-
surement of adult patients is proposed in [21]. The pa-
tient sits in front of a near-IR camera sensitive to light
in the visible and near-infrared domain. The upper body
(chest/abdomen) of the patient is selected as the region of
interest (ROI). Brightness variations in the ROI are used as
temporal indicators of respiration events. Fast Fourier Trans-
form is applied to obtain the respiratory rate of the patient.
Although the system [21] is not suitable for newborn moni-
toring, the relation between the brightness variations and the
respiratory rate deserves attention as a potentially useful in-
dicator.

The study [12] addresses the problem of feature point se-
lection and tracking for respiration monitoring, primarily in
telemedicine. A smart phone camera is used whose frame
size is reduced to 1080×720 pixels for faster operation. The
distortion caused by camera motion is compensated by map-
ping each frame to the initial one. The original single-level
implementation of the Kanade-Lucas-Tomasi (KLT) feature
point tracker [16] is applied, and large persistent motions are
selected as indicators of breath. The tests in [12] only check
the breath feature point selection against manually provided
ground truth. No respiratory rate is calculated. However, the
idea of applying the efficient KLT tracker is useful, and we
also use this tracker in our study.

An initial study of video-based monitoring of breath for
adult mobile health control is presented in [15]. The setup
of this study resembles that of [21]: the patient sits in front
of the camera close to it. ROIs for breath monitoring are
parts of the shoulders near the neck. The experimental study
only demonstrates correlation between the respiration and
the motion of the ROIs tracked in a short video, without cal-
culation of the respiratory rate.

The recent study [5] aims at monitoring newborn babies
to detect neonatal clonic seizure (sustained rhythmical jerk-
ing) from limbs’ motion and apnea (suspension of breathing)
from chest motion. The well-known approach [17] is used
for motion area extraction. The limbs are monitored at the
original video resolution to detect periodic motion that in-
dicates clonic seizures. As the chest motion due to breath is
small and subtle, the authors use the method [20] to magnify
the chest video, then extract motion in the magnified video.
The lack of chest motion for a certain period is interpreted
as the indicator of apnea. No respiratory rate estimation is
provided, and it is not clear if the obtained chest motion data
can be used for this purpose.

Note that the method [20] relies on an optical flow algo-
rithm closely related to [16]. In [18], the method [20] is used
to enhance the visibility of face details for pulse visualiza-
tion and counting. In our future work on the project, we con-
sider its application, as well.

3. Environmental Setup, Challenges and Concepts

Ideal conditions for video-based breath monitoring are de-
fined by the nurses taking care of the baby and the techni-
cians operating the monitoring setup. The setup should not
disturb the work of the nurses. The camera should view the
baby from his/her side looking down at an appropriate angle.

The baby should be centered and fill up the majority of
the viewfield. The clothing of the baby should be textured to
reveal motion. The resolution of the camera should be suffi-
cient for reliable motion detection in presence of noise. The
lighting should be adequate so that the baby is clearly visi-
ble.

The key challenges are the ability to handle infants with
different activity level, rhythmicity and intensity of reaction,
as well as the ability to cope with babies placed on their back
or belly. Further challenges are robustness to environmental
changes, including initial start up, temporary occlusions, and
changes in lighting conditions, camera angle, position and
magnification, whether gentle or abrupt. Finally, the moni-
toring system should be able to detect and handle emergency
conditions.

The first concept we use is that of a calibration time win-
dow, where a certain time period is considered sufficient to
observe the data relative to its neighboring data, for both pur-
poses of positive correlation or negative filtering. Motion de-
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tection algorithms which typically use background subtrac-
tion to differentiate foreground and background also use a
history window, which serves the similar purpose of initial
learning.

We assume that changes in intensity and/or location re-
veal respiratory motion. This necessitates light intensity and
distance measurements. The measured signal data must be
normalized over controlled temporal windows to provide a
sufficiently strong signal. The normalization, however, must
not result in noise amplification and false emergency alarms
in periods of stillness.

Temporal smoothing of the data in high frame rate videos
is another useful concept that helps remove noise and de-
crease error rate. Last but not least, we rely on the principle
of fusion of different multiple measurements to provide re-
dundancy and sufficient support for stable calculations and
robust decision-making. In the very beginning of our study,
we only used feature point tracking to select the motion best
representing the respiration activity. Later on, we decided to
consider other cues, as well, in a multi-cue framework. Be-
low, we discuss both options.

4. Methods for RR Estimation

4.1. Tracking-based estimation

The well-known Kanade-Lucas-Tomasi (KLT) method [16]
for feature point selection and tracking can be efficiently
used to select and track features that reveal breathing. Two
versions of tracking-based measurements were developed at
the beginning of our study. In these methods, the KLT im-
plementation [4] was used.

The version developed by Dániel Egyed is presented in his
thesis [6]. In the initialization (learning) phase, the method
uses the KLT tracker to select and track a given number of
prominent feature points. During the learning period, dis-
placements in the horizontal direction are considered and
the point with the largest and persistent motion is selected
to represent the respiration activity.

Then, the method switches to the respiratory rate estima-
tion mode. The signal formed by the horizontal displacement
of the selected point is smoothed and its relevant maxima are
continuously counted as the signal develops. The operation
of this method is illustrated in figure 1 where the boxes show
the selected and tracked features, and the breath counting
signal is also displayed. More technical details are available
in [6]. Note that this version is not rotation-invariant as it is
based on a single coordinate rather than the complete dis-
placement vector.

Another version of tracking-based RR estimator was in-
dependently developed by Dmitry Chetverikov. His version
uses magnitudes of displacement vectors, and it is rotation-
invariant. Similarly to the previous version, a given number

Figure 1: Initialization (top) and breath counting (bottom)
by the method [6].

Figure 2: Breath counting signal produced by Chetverikov’s
method.

of features is tracked. A large number of features is dis-
carded based on the following criteria: (a) the track is too
short (noisy feature); (b) the temporal mean magnitude of
displacement vector is too small (noisy motion or static fea-
ture); (c) the track contains too large displacements (limb
motion, etc.). Then a preset number of features showing dis-
tinct, persistent and coherent motion is selected for RR es-
timation based on the displacement signals. The procedure
is illustrated in figure 2 where the features are marked by
crosses, and the resulting signal is shown in the bottom.

The preliminary single-cue methods demonstrated that
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Figure 3: The first frame with the ROI.

feature tracking can be efficiently applied for RR estimation.
However, it also became clear that the tracking cue should be
supported by other independent cues to enhance the appli-
cability and robustness. Below, we present the fusion-based
method developed by Gregory Morse.

4.2. Fusion of multiple measurements

The region of interest is currently set to a centered ellipse
mask whose height and width are half that of the video. In
the future work, we plan to automatically adapt the ROI to
the position of the infant. Figure 3 shows the first frame of
the processed video with the ROI indicated by the ellipse.
The parameters described below are measured in the ROI.
The gray elliptic area on the right-hand side serves for indi-
cation of the level of activity in the ROI.

The three prior signals fused by the method are measured
based on the following cues:

1. Feature point selection and tracking.
2. Motion detection using background subtraction to find

subtle motion.
3. Brightness monitoring in the motion area.

The prior signals are normalized and smoothed, then fused
into the final combined signal.

The already mentioned Kanade-Lucas-Tomasi algorithm
is used for feature tracking. In this case, the software pro-
vided by OpenCV [9] is used, where the algorithm is called
differently: Lucas-Kanade.

The feature point tracking component of the combined
signal is based on the point displacements with respect to
the reference positions in the ROI. Initially, the reference
positions are the point positions in the first frame. They are
periodically updated to account for lost points.

A reference frame containing these reference points is ini-
tialized to the starting frame. In each frame, the algorithm
selects the points whose displacement vectors w.r.t. the cor-
responding reference points in the reference frame are larger

than is the previous frame. The total number of such ‘posi-
tive’ points is denoted by Np, while the sum of the ‘positive’
displacements in the current frame is denoted by Dp. In a
similar way, Nn and Dn are calculated for the points whose
displacements decreased. Finally, the tracking-based signal
in the current frame is obtained as

Str =
Dp−Dn

max{Np,Nn}

The reference frame is changed to the current frame if
Str is negative, or if the reference frame has exceeded the
calibration time window. The well-known background sub-
traction technique [17] is used to determine a background
model and subtract it to obtain the foreground. The motion
detection signal Smt is calculated as the total number of fore-
ground pixels in the region of interest.

The brightness signal is calculated in the motion area ob-
tained by background subtraction. Similarly to the tracking
signal, the brightness monitoring algorithm sums the ’posi-
tive’ points where the brightness increased and the ’negative’
ones where the brightness decreased relative to a reference
frame which is initialized and updated in the same way as
for the point tracking. The difference between the two sums
forms the brightness signal Sbr.

Each of the three signals is normalized in each frame by
finding its extrema values in the previous 25 frames (1 sec-
ond) and the next 25 frames. After the normalization, the
range of all signals is [0,1]. The signals are then smoothed
by averaging in a moving temporal window whose width is
7 frames. The final combined signal is the sum of the three
normalized and smoothed components.

The peaks and troughs of the fused signal are used to
count breaths and calculate the respiratory rate. If a trough
is detected, the next one can be detected after at least 1 sec-
ond. The larges peak between each two neighboring troughs
is then selected for the counting.

5. Initial Test Results

The main goal of the initial tests was to investigate the fea-
sibility of the proposed multisignal method. To obtain initial
ground truth for the test, an approximately 15-minute video
had been recorded at 25 frames per second (fps) rate, then
processed by the method and simultaneously monitored by
a human observer. The observer had to click the mouse each
time he saw a breath. These counts and the resulting respi-
ration rates, i.e., counts per minute, were compared to the
corresponding numbers obtained by the method.

Figure 4 shows sample frames of the processed video
from its first minute. The three frames were selected so as to
demonstrate the robustness of the method to camera zoom
variation. The first (top) image shows the frame No.502 (20
seconds from the start). This frame was recorded with the
initial zoom. One can see the output signal and two counters,
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Figure 4: Sample frames from the first minute of monitoring.
Growing breath counts are indicated. Top: before zooming.
Middle: during zooming. Bottom: after zooming.

by the proposed method (top) and by the observer (bottom).
The two numbers are quite close. The RR is not obtained yet
since the method starts calculating the RR after one minute
of monitoring.

The second (middle) image of figure 4 is a frame recorded
during the short transitional period of zooming in. The ac-
tivity level indicator shows large values as changes due to
zooming are detected in many parts of the ROI. The ampli-
tude of the output signal increases, but method is not dis-
turbed by the event: the breath counts of the two counters
coincide.

After zooming in, the baby occupies a larger part of the
viewfield. The third (bottom) image of figure 4 shows a
frame recorded after the transitional period. The activity
level decreases, the calculated breath count is again close
to the manual ground truth.

Figure 5: Sample frames after the first minute of monitoring.
Respiratory rates are indicated as breath counts per minute.

After the first minute of monitoring, the method starts
measuring the respiratory rate. Figure 5 shows two exam-
ples of respiratory rate monitoring. The first one (top) was
obtained just after the start of RR monitoring, the second
one almost 50 seconds later. One can see that the calculated
RR is close to, but somewhat higher than, the manual ground
truth.

The processing rate indicated on the screen was 11–15 fps
in the initialization period and 6–8 fps afterwards. Through
all the video, the respiration rate obtained by the proposed
method was close to the manual ground truth. However, we
experienced that the method tends to count more breaths that
the observer. The algorithm can be sensitive to minor mo-
tions (peaks in the signal) which are not perceived by the
observer. As discussed earlier, breath of premature babies is
subtle, non-regular and not easy to sense and perceive. It is
possible that a specialist watching the video would count the
breaths more precisely that the inexperienced observer used
in our test.

A remarkable observation we made in the test is a strong
correlation between feature point and light intensity signals.
This phenomenon will be analyzed and taken into account in
the further development of the multisignal method.

6. Conclusion and Outlook

The results of our initial feasibility study of video-based RR
monitoring of newborn babies support the claim that such
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monitoring is possible. However, many critical issues are
still to be addressed to make the system applicable and ac-
ceptable in clinical environment:

• Developing methods for automatic ROI extraction.
• Analysis of correlation between the signals in order to

modify and enhance them.
• Improving the algorithms for signal normalization and

breath counting based on signal features.
• Analysis of traditional contact sensor data:

– breath-in and breath-out times
– relations between video-based signal and sensor signal
– comparison of RR measurements based on the signals

• Ensuring robustness to varying conditions as discussed in
section 3:

– illumination, visibility and camera setup
– baby activity level, rhythmicity, intensity of reaction
– differently dressed babies placed on their back or belly

• Setting the optimal values of the parameters.
• Large-scale tests with different babies in varying condi-

tions.
• Achieving real-time operation.
• . . .

Due to the critical nature of the task, emergency exception
handling and monitoring and calibration to very accurate and
precise handling of these cases are absolutely needed before
a viable product could result from this project.
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