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Abstract

A novel surface normal estimator is introduced using affine-invariant features extracted and tracked across mul-
tiple views. Normal estimation is robustified and integrated into our reconstruction pipeline that has increased
accuracy compared to the State-of-the-Art. Parameters of the views and the obtained spatial model, including sur-
face normals, are refined by a novel bundle adjustment-like numerical optimization. The process is an alternation
with a novel robust view-dependent consistency check for surface normals, removing normals inconsistent with
the multiple-view track. Our algorithms are quantitatively validated on the reverse engineering of geometrical el-
ements such as planes, spheres, or cylinders. It is shown here that the accuracy of the estimated surface properties
is appropriate for object detection. The pipeline is also tested on the reconstruction of free-form objects.

1. Introduction

One of the fundamental goals of image-based 3D com-
puter vision!7 is to extract spatial geometry using corre-
spondences tracked through at least two images. The recon-
structed geometry may have a number of different repre-
sentations: points clouds, oriented point clouds, triangulated
meshes with/without texture, continuous surfaces, etc. How-
ever, frequently used reconstruction pipelines?® 15227 deal
only with the reconstruction of dense or semi-dense point
clouds. These methods include Structure from Motion (SfM)
algorithms!? for which the input are 2D coordinates of cor-
responding feature points in the images.

These feature points used to be detected and matched
by classical algorithms such as the one proposed by
Kanade-Lucas-Tomasi?> 3, but nowadays affine-covariant
feature?!:7.37 or region?? detectors are frequently used due to
their robustness to viewpoint changes. These detectors pro-
vide not only the locations of the features, but the shapes
of those can be retrieved as well. The features are usu-
ally represented by locations and small patches composed
of the neighboring pixels. The retrieved shapes determine
the warping parameters of the corresponding patches be-
tween the images. The first order approximation of a warp-
ing is an affinity?, there are techniques such as ASIFT?¢ that
can efficiently compute the affinity. Affine-covariant feature
detectors?!-7-37 are invariant to translation, rotation, and scal-

ing. Therefore, features and patches can be matched between
images very accurately.

State-of-the-art 3D reconstruction methods usually resort
only to the location of the region centers. The main purpose
of this paper is to show that Affine Correspondences (ACs)
can significantly enhance the quality of the reconstruction
compared to the case when only 2D locations are consid-
ered. However, the application of ACs does not count as a
novelty in computer vision. Matas et al.>? showed that image
rectification is possible if the affine transformation is known
between two patches, then the rectification can aid further
patch matching. Koser & Koch!? proved that camera pose
estimation is possible if only the affine transformation be-
tween two corresponding patches is known. Epipolar geom-
etry of a stereo image pair can also be determined from affine
transformations of multiple corresponding patches. This is
possible if at least two correspondences are taken as it was
demonstrated by Perdoch er al.?®. Bentolila et al.® proved
that three affine transformations give sufficient information
to estimate the epipole in stereo images. Lakemond et al.?’
discussed that an affine transformation gives additional in-
formation for feature correspondence matching, useful for
wide-baseline stereo reconstruction.

Theoretically, this work is inspired by the recent studyies
of Molnar and Eichhardt>® and Barath er al.b. They
showed that the affine transformation between correspond-
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ing patches of a stereo image pair can be expressed using
the camera parameters and the related normal vector. The
main theoretical value in their works is the deduction of
a general relationship between camera parameters, surface
normals and spatial coordinates. Moreover, they proposed
several surface normal estimators for the two-view case in®,
including an L,-optimal one. In our paper, their work is ex-
tended to the multi-view case, with robust view-dependent
geometric filtering, removing normals inconsistent with the
multiple-view track.

Our research is also inspired by multi-view image-based
algorithms such as Furukawa & Ponce!¢ and Delaunoy &
Pollefeys!!. The former one, similarly to our work, also
has a way to estimate surface normals, however, Bundle
Adjustment* (BA) is not applied after their reconstruction,
and the normal estimation is based on photometric similarity
using normalized cross correlation. The latter study extends
the point-based BA with a photometric error term. In this pa-
per, we propose a complex reconstruction pipeline including
surface point and normal estimation followed by robust BA.

One field of applications of accurate 3D reconstruction is
Reverse Engineering?! (RE)', the proposed reconstruction
pipeline is validated on the RE of geometrical elements. RE
algorithms are usually based on non-contact scanners such
as laser or structured-light equipments, but there are cases
when the object to be scanned is not available at hand, only
images of it. Software to reconstruct planar surfaces using
solely camera images already exist, e.g. Insight3Dli, how-
ever, ours is the first study, to the best of our knowledge, that
deals with the reconstruction of spheres and cylinders based
on images.

The contributions of our paper are as follows:

e A novel multi-view normal estimator is proposed. To the
best of our knowledge, only stereo algorithms® 19 exist to
estimate surface normals.

e A novel Bundle Adjustment (BA) algorithm is intro-
duced that simultaneously optimizes the camera parame-
ters, with an alternating step that removes outlying surface
normals.

e It is showed that the quality of the surface points and nor-
mals resulted by the proposed AC-based reconstruction is
satisfactory for object fitting algorithms. In other words,
image-based reconstruction and reverse engineering can
be integrated.

e The proposed algorithm can cope with arbitrary central
projective cameras, not only perspective ones are consid-
ered, providing surface normals using a wide range of
cameras.

T Reverse engineering, also called back engineering, is the pro-
cesses of extracting knowledge or design information from anything
man-made and re-producing it or re-producing anything based on
the extracted information. Definition by Wikipedia.

i Insight3D is an open-source images-based 3D modeling software.

Figure 1: Illustration of cameras represented by projection
functions p;, i = 1, 2. A; is the local mapping between the
surface S(u,v) and its projection onto image i. Relative affine
transformation between images is denoted by matrix A.

2. Surface Normal Estimation.

An Affine Correspondence (AC) is a triplet (A,xy,x3) of a
2 x 2 relative affine transformation matrix A and the cor-
responding point pair X;,Xp. A is a mapping between the
infinitesimally small environments of x; and x; on the im-
age planes. ACs can be extracted from an image pair using
affine-covariant feature detectors?!-726.37,

Let us consider S (u,v) € R?, a continuously differen-
tiable parametric surface and function p; : R — R2, the
camera model, projecting points of S in 3D onto image ‘i’:

x; = pi (S (uo,v0)), )

for a point (ug,vp) € dom (S). Assume that the pose of view
i is included in the projection function p;. The Jacobian of
the right hand side of Eq. (1) is obtained using the chain rule
as follows:

Ai = Vip[xi] = Vpi(Xo) VS (ug,v0), ()

where Xo = S (ug,vp) is a point of the surface. A; can be
interpreted as a local relative affine transformation between
small environments of the surface S at the point (ug,vp) and
its projection at the point x;. Remark that the size of matrices
Vpi(Xo) and VS (up,vo) are 2 x 3 and 3 x 2. See Fig. 1 for
the explanation of the parameters.

Matrix A, the relative transformation part of ACs, can also
be expressed using the Jacobians defined in Eq. (2) as fol-
lows

—1_ 4 _ lann a2
AsA; _A_Lm m}. 3)

Two-view Surface Normal Estimation The relationship®
of the surface normals and affine transformations are as fol-
lows:

WwWir-n WwWio-n

—1
ArA;  ~ |W;i-n|. .=
284 [ 2 }L,j Wor-n Wpo-m

} )
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where

. T T
wij = §; <32—j+1 Xbi)7

s _ [ irG=n
T i G=2),
[;] = Vp1(Xo),
b
[b;] = Vp2(Xo),
[Su Sy = VS(ug,vo).

Operator ~ denotes equality up to a scale.

The above relation in Eq. (4) is deduced through a se-
ries of equivalent and up-to-a-scale transformations, using a

property?* of differential geometry [n], ~ (Svsg - Svsg)
with |n|| = I:

A=AA7" ~Ayadj(A)) =

=[wijn], ;. ®)

The relation between the measured relative transformation
A and the formulation (4) is as follows:

arp ~ Wi

apg ~ Wi

azy ~ Wwap-

5 2 B B

azpy ~ W ©)
To remove the common scale ambiguity we divide these up-
to-a-scale equations in all possible combinations:

app _ wWip-moapp . wip-noapp . wypen
- - b - b
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Wi2-n axg Wai-n
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b)
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The surface normal n can be estimated by solving the fol-
lowing homogeneous system of linear equations:

appwi2 —apwil
apiwar —a21wii
W2 =W o 0 gt ln|| = 1. ®)
apwa] —a1wi2
ajpWwop —anwin
a1 Wap —axwyi

3. Proposed Reconstruction Pipeline

In this section, we describe our novel reconstruction pipeline
that provides a sparse oriented point cloud as a reconstruc-
tion from photos shot from several views.

Our approach to surface normal estimation is a novel
multiple-view extension of a previous work®, combined with
a robust approach to estimate surface normals consistent
with all the views available for the observed tangent plane.
The reconstruction is finalized by a bundle-adjustment-like
numerical method, for the integrated refinement of all pro-
jection parameters, 3D positions and surface normals. Our
approach is able to estimate normals of surfaces viewed by
arbitrary central-projective cameras.

Multiple-view Surface Normal Estimation The two-
view surface normal estimator (see Sec. 2) is extended to
multiple views and arbitrary central projective cameras: if
more than two images are given, multiple ACs may be es-
tablished between pairs of views that multiplies the number
of equations. The surface normal is the solution of the fol-
lowing problem:

)
ay Wy —a'w
.

L Wy —ap W
1 (1 (D)
a | —d W

1 1

n=0stln=1, ©

iz~ vy
N
WUR TR
B w% N
a % 2 (2 — Ay Wiy

3
L1 sz) - a(zz) W(Zl)

where (1)... (k) are indices of AC-s (i.e., pairs of views).

Eliminating Dependence on Triangulation Considering
central-projective views, Xo can be replaced by p;” Y(x),
that is the direction vector of the ray projecting Xg to the
2D image point x;. In this case, dependence on prior trian-
gulation of the 3D point Xg, with a possible source of error
vanishes, as the equivalent (=) and up-to-scale (~) transfor-
mations in Eq. (5) still hold. In Eq. (4) a1, a, by and by,
thus w;; are redefined as follows:

a]

a

b;

by
since the statement Vp; (Xo) ~ Vp; (pl_ ! (X,)) is valid for
all central projective cameras.

Vpi <Pf1 (X|)> ;

V2 (py ! (x2)). (10)
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Bundle Adjustment using Affine Correspondences Let us
consider all observed surface points with corresponding sur-
face normals as the set ‘Surflets’. An element of this set is
a pair S = (Xgs, ng) of a 3D point and a surface normal,
has multiple-view observations constructed from ACs as fol-
lows: corresponding image points x;, € Obsg (S) of the k-th
view and relative affine transformations Ay, 4, € Obs; (S)
between the ki-st and the kp-nd views, k| # k.

Our novel bundle adjustment scheme minimizes the fol-
lowing cost, refining structure (surface points and normals)
and motion (intrinsic and extrinsic camera parameters):

( Z cost’;}s (xx) + 11
SeSurflets \x;,€0bsy(S)

ki ,k
A ) costns” (Ag, k) | -
Ay, k, EODbs (S)

where the following cost functions based on equations (1)
and (3) ensure that the reconstruction remains faithful to
point observations and ACs as follows:

SN T
(12)
costy . (x¢) = [[xx — pi (X))

Note that if A is set to zero in Eq. (12) the problem reduces
to the original point-based bundle adjustment problem, with-
out the additional affine correspondences. In our tests A is
always set to 1. Ceres-Solver? is used to solve the optimiza-
tion problem. The Huber and Soft-L1 norms are applied as
loss functions for costﬁ‘S’]<2 and costl)‘( - respectively.

Bundle adjustment is followed by, in an alternating
scheme, a geometric outlier filtering step described below,
removing surface normals inconsistent with the multiple-
view track. See Fig. 2 as an overview of the successive steps
in the pipeline.

Geometric Outlier Filtering This step removes all sur-
face normals that do not fulfill multiple-view geometric re-
quirements. Suppose that the 3D center of a tangent plane
(S) is observed from multiple views. It is clear that this sur-
face cannot be observed ‘from behind’ from any of the views
so the estimated surface is removed from the reconstruction
if the following is satisfied:

ng is an outlier,
if 3x;,X; € Obs (S),i# j : (m,v;)-(m,v;) <0, (13)

where vy is the direction of the ray projecting the observed
3D point on the image plane of the k-th view.

Outlier filtering is always followed by a BA-step, if more
than 10 surface normals were removed in the process.

Overview of the Pipeline Our reconstruction pipeline
(see Fig. 2) is the modified version of OpenMVG?7-28, the

reconstructed scene, using the proposed approach, is en-
hanced by surface normals, and additional steps for robustifi-
cation are included. At first, we extracted Affine Correspon-
dences using TBMR3¢ and further refined them by a simple
gradient-based method, similarly to32. Multiple-view match-
ing resulted in sets ‘Obsgp’ and ‘Obs;’, as described above.
An incremental reconstruction pipeline?’ provides camera
poses and an initial point cloud without surface normals. Our
approach now proceeds by multiple-view surface normal es-
timation as presented in Sec. 2.

The obtained oriented point cloud and the camera param-
eters can be further refined by our bundle adjustment ap-
proach. Since some of the estimated surface normals may
be outliers, we apply an iterative method which has two in-
ner steps: (i) bundle adjustment and (ii) outlier filtering. The
latter discards surflets not facing all of the cameras. The pro-
cess is repeated until no outlying surface normals are left in
the point cloud.

4. Fitting Geometrical Elements to 3D Data

This section shows how standard geometrical elements can
be fitted on oriented point clouds obtained by our image-
based reconstruction pipeline.

Plane. For plane fitting, only the spatial coordinates are
used. Considering its implicit form, the plane is parameter-
ized by four scalars P = [a,b,c,d]”. Then a spatial point
x given in homogeneous form is on the plane if P'x =0.
Moreover, if the plane parameters are normalized as a® +
b2 + 3= 1, formula P”x is the Euclidean distance of the
point w.r.t the plane. The estimation of a plane by mini-
mizing the plane-point distances is relatively simple. It is
well-known in geometry!? that the center of gravity ¢ of
spatial points x : i = 0, i € [1...N], is the optimal choice:
c¢=Y,x;/N, where N denotes the number of points. The nor-
mal n of the plane can be optimally estimated as the eigen-
vector of matrix AT A corresponding to the least eigenvalue,
where matrix A is generated as A =Y ; (x; — ¢) (x; — ol

Sphere. Fitting sphere is a more challenging task since
there is no closed-form solution when the square of the L,-
norm (Euclidean distance) is minimized. Therefore, iterative
algorithms'? can be applied for the fitting task. However,
if alternative norms are introduced?, the problem becomes
simpler.

In our implementation, a simple trick is used in order to
get a closed-form estimation: the center of the sphere is es-
timated first, then two points of the sphere are selected and
connected, and a line section is obtained. The perpendicular
bisector of this section is a 3D plane. If the point selection
and bisector forming is repeated, the common point of these
planes gives the center of the sphere. However, the measured
coordinates are noisy, therefore there is no common point of
all the planes. If the j-th plane is denoted by P; and the circle
center by C, the latter is obtained as C = argminc ) Pij.
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Figure 2: Reconstruction pipeline. The input is a set of photos of a scene, the output is a reconstructed point cloud with accurate

normals. The central novelty of this work is highlighted in purple.

The radius of the circle is yielded as the square root of the
average of the squared distances of the points and the center
C.

Cylinder. The estimation of a cylinder is a real challenge.
The cylinder itself can be represented by a center point C,
the unit vector w representing the direction of the axis, and
the radius r. The cost function of the cylinder fitting is as fol-
lows: ) ; (u,z + viz — r2> ? , where the unit vectors u, v, and w
form an orthonormal system, and the scalar values u; and v;
are obtained as u; = u! (x; —C) and v; = v/ (x; — C). This
problem is nonlinear, therefore a closed-form solution does
not exist to the best of our knowledge. However, it can be
solved by alternating three steps!2. It is assumed that the pa-

rameters of the cylinder are initialized.

1. Radius. It is trivial that the radius of the cylinder is
yielded as the root of the mean squared of the distances
between the points and the cylinder axis.

2. Axis point. The axis point C is updated as Cyew = Cpjq +
kiu+ kpv, where the vectors u, v, and the axis form an or-
thonormal system. The parameters k| and k; are obtained
by solving the following inhomogeneous system of linear

equations:
2
2 2402)
u;y Ui ki (”z +Vz> Ui
2 1 (A8} —
X,"{ W vy } { ka } Z

2
! i <”z2 + Vlz) Vi

3. Axis direction. It is given by a unit vector w represented
by two parameters. The estimation of those are obtained
by a simple exhaustive search.

Before running the alternation, initial values are required.
If the surface normals n; are known at the measured loca-
tions x;, then the axis w of the cylinder can be computed
as the vector perpendicular to the normals. Thus all normal
vectors are stacked in the matrix N, and the perpendicular
direction is given by the nullvector of the matrix. As the nor-
mals are noisy, the eigenvector of N ™N corresponding to the
least eigenvalue is selected as the estimation for the nullvec-
tor. The other two direction vectors u and v are given by the

other two eigenvectors of matrix N T'N. The initial value for
the axis point is simply initialized as the center of gravity of
the points.

5. Experimental Results

The proposed reconstruction pipeline is tested on 3D recon-
struction using real images. Firstly, the quality of the recon-
structed point cloud and surface normals are quantitatively
tested. High-quality 3D reconstruction is presented in the
second part of this section.

5.1. Quantitative Comparison of Reconstructed Models

In the first test, the quality of the obtained surfaces are com-
pared. Three test sequences are taken as it is visualized in
Fig. 3: a plane, a sphere, and a cylinder. Our reconstruction
pipeline is applied to compute the 3D model of the observed
scenes including point clouds and corresponding normals.
Then the fitting algorithms discussed in Sec. 4 are applied.
First, the fitting is combined with a RANSAC!#-like robust
model selection by minimal point sampling§ to detect the
most dominant object in the scene. Object fitting is then ran
only on the inliers corresponding to the dominant object. Re-
sults are visualized in Fig. 4.

The quantitative results are listed in Tab. 1. The errors are
computed for both 3D positions and surface normals except
for the reconstruction of the plane where the point fitting
is very low and there is no significant difference between
the methods. The ground truth values are provided by the
fitted 3D geometric model. The angular errors are given in
degrees. The least squared (LSQ), mean, and median val-
ues are calculated for both types of errors. Three surflet-
based methods are compared: the PMVS algorithmq116 and
the proposed one with and without the BA refinement. The

8 At least three points are required for plane fitting, four points are
needed for cylinders and spheres.

9 The implementation of PMVS included in VisualSFM library is
applied. See http://ccwu.me/vsfm/.
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Figure 3: Test objects for quantitative comparison of surface points and normals. Top: One out of many input images used
for 3D reconstruction. Middle: Reconstructed point cloud returned by proposed pipeline. Bottom: Same models with surface

nort ved in color.

Figure 4: Reconstructed sphere (left) and two views of the cylinder (middle and right). Inliers, outliers, and fitted models are
denoted by red, gray, and green, respectively. In the case of cylinder fitting, blue color denotes the initial model computed by
RANSAC!. Inliers correspond to the RANSAC minimal model. Best viewed in color.

proposed pipeline outperforms the rival PMVS algorithm,
with and without the additional BA step of our pipeline: the
initial 3D point locations are more accurate than the result of
PMVS. The difference is significant especially for the cylin-
der fitting: PMVS is unable to find the correct solution in this
case. This example is the only one where the surface normals
are required for the object fitting, the quality of the resulting
normals of PMVS do not reach the desired level contrary to
ours.

The proposed method and PMVS estimate surface nor-
mals at distinct points in space, however, surface normals
can also be estimated by fitting tangent planes to the sur-
rounding points. This is a standard technique in RE?!, a pos-
sible algorithm is written in Sec. 4. We used MeshLab'° to
estimate the normals given the raw point cloud. Two vari-
ants are considered: tangent planes are computed using 10
and 50 Nearest Neighboring (NN) points. The latter yields
surface normals of better quality: our method computing for
a distinct point in space is always outperformed by the 50

NNs-based algorithm. However, our approach outperforms
the result provided by MeshLab for 10NNs for the cylin-
der. Moreover, the returned point locations are more accu-
rate when the proposed method is applied. A possible future
work is to estimate the normals using nearby surflets. This is
out of the scope of this paper. Note that our method has the
upper hand over all spatial neighborhood-based approaches
for isolated points (i.e., neighboring 3D points are distant in
a non-uniform point cloud).

To conclude the tests, one can state that the proposed al-
gorithm is more accurate than the rival PMVS method!®.
Image-based RE of geometrical elements is possible by ap-
plying our reconstruction pipeline. Median of the angular er-
rors are typically between 5 and 10 degrees.

5.2. 3D Reconstruction of Real-world Objects.

Our reconstruction pipeline is qualitatively tested on images
taken of real-world objects.
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Table 1: Point (Pts.) and angular (Ang.) error of reconstructed surface normals for plane, sphere, and cylinder. Ground truth
normals computed by robust sphere fitting based on methods described in Sec. 4. DNF: Did Not Find correct model.

Metrics PMVS!o Ours Ours+BA MeshLab (1I0NNs)  MeshLab (S0NNs)

2 Ang. Error (LSQ) 19.85 14.54 13.86 11.23 1.98
E Ang. Error (Mean) 13.14 9.39 9.16 7.43 1.71
Ang. Error (Median) 6.72 591 5.90 5.07 1.55
Pts Error (LSQ) 0.38 (DNF) 0.03 0.010 0.029 0.011

° Pts Error (Mean) 0.31 (DNF)  0.0083 0.0076 0.0095 0.0079

_3:‘3 Pts Error (Median) 0.3 (DNF) 0.0056 0.0062 0.0068 0.0062
o Ang. Error (LSQ) 84.1 (DNF) 19.43 18.41 12.50 2.18
Ang. Error (Mean) 77.09 (DNF) 14.54 13.72 7.66 2.36
Ang. Error (Median)  79.58 (DNF) 11.74 10.83 5.50 1.75
Pts Error (LSQ) 0.70 0.69 0.77 0.76 0.77
5 Pts Error (Mean) 0.53 0.51 0.57 0.56 0.57
2 Pts Error (Median) 0.42 0.37 0.42 0.41 0.42
5 Ang. Error (LSQ) 29.76 22.48 18.41 22.01 4.23
Ang. Error (Mean) 23.15 14.39 13.72 14.89 3.22
Ang. Error (Median) 17.62 7.33 5.68 9.13 2.60

Figure 5: Reconstruction of real buildings. From left to right: selected regions in first image; regions with reconstructed normals;

two different views of the reconstructed and textured 3D scene.

Reconstruction of Buildings. The first qualitative test is
based on images taken of buildings. The final goal is to com-
pute the textured 3D model of the object planes. The novel
BA method is successfully applied on two test sequences of
the database of the University of Szeged**. This database
contains images and the intrinsic parameters of the cameras.
For the sake of the quality, the planar regions are manually
segmented in the images. Results can be seen in Fig. 5.

Free-form Surface Reconstruction. The proposed BA
method is also applied to the dense 3D reconstruction of
free-form surfaces as it is visualized in Figures 6 and 7. The
first two examples come from the dense multi-view stereo
database® of CVLABI. The reconstruction of a painted
plastic bear also demonstrates the applicability of our recon-
struction pipeline as well as a reconstructed face model with
surface normals in Fig. 7.

Finally, our 3D reconstruction method is qualitatively
compared to PMVS of Furukawa er al.'o. The Fountain
dataset is reconstructed both by PMVS and our method.

[ http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
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Figure 6: Reconstruction of real-world free-form objects.

Figure 7: Reconstructed 3D face with surface normals col-
ored by blue.

Figure 8: 3D reconstructed model obtained by Furukawa et
al.'® (left) and proposed pipeline (right). Out method yields
a more connected surface with less holes.

Then from the 3D point cloud with surface normals the
scene is obtained using the Screened Poisson surface
reconstruction'® for both methods. The comparison can be
seen in Fig. 8. The proposed method extracts significantly
finer details as it is visualized. As a consequence, walls and
objects of the scene form a continuous surface, and the result
of our method does not contain holes.

6. Conclusions and Future Work

Two novel algorithms are presented in this paper: (i) a
closed-form multiple-view surface normal estimator and a
(i) bundle adjustment-like numerical refinement scheme,
with a robust multi-view outlier filtering step. Both ap-
proaches are based on ACs detected in image pairs of a
multi-view set. The proposed estimator, to the best of our
knowledge, is the first multiple-view method for computing
surface normal using ACs. It is validated that the accuracy of
the resulting oriented point cloud is satisfactory for reverse
engineering even if the normals are estimated based on dis-
tinct points in space.

A possible future work is to enhance the reconstruction
accuracy by considering the spatial coherence of the surflets.
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