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Abstract
Deep learning in computer vision has been applied to many domains such as image classification, handwritten
character classification, pedestrian detection, automatic colorization of grayscale image, content-based image
retrieval, etc. While the advantages of deep architectures are widely accepted, the limitations and theoretical
background are not satisfactorily researched. In this paper, we provide an evaluation of seven state-of-the-art
Convolutional Neural Networks for image classification under different visual distortion types. Namely, we con-
sider nine types of quality distortions: salt & pepper noise, median filtering, average filtering, disk filtering, pe-
riodic noise in x- and y-direction, zero-mean Gaussian noise, JPEG compression, and JPEG2000 compression.
Our results indentify the distortion types that deteriorate heavily the classification performance. Furthermore, the
published results may provide good funds for developing neural networks that are robust to quality distortions.

1. Introduction

Deep learning is part of machine learning algorithms that
utilize a cascade of multiple layers of nonlinear processing
units for feature extraction and transformation. Each succes-
sive layer applies the output from the previous layer as input.
Comparing with other “shallow” methods, a deep architec-
ture has more levels of nonlinear operations. Most modern
deep architectures are based on an artificial neural network,
although they can also consist of latent variables such as
Deep Belief Networks1 or Deep Boltzmann Machines2.

Deep learning has gained a continously increasing popu-
larity since AlexNet11 was introduced by Krizhevsky et al.
Consequently, deep learning has been sweeping across the
research and the industry, as evidenced by the success of
different deep architectures in various domains such as com-
puter vision, natural language processing, speech recogni-
tion, audio recognition, bioinformatics, etc. In computer vi-
sion, deep learning techniques have captured severe attention
because they have produced state-of-the-art results in many
domains such as image classification3, handwritten character
classification4, pedestrian detection5, automatic colorization
of grayscale images6, content-based image retrieval7, etc.

While the advantages of deep architectures are widely ac-
cepted, the limitations and theoretical background are not

well researched. In this paper, we introduce an evaluation of
seven state-of-the-art deep learning models for image clas-
sification under different visual distortions (salt & pepper
noise, median filtering, average filtering, disk filtering, pe-
riodic noise, zero-mean Gaussian noise, JPEG compression,
JPEG2000 compression). The published results may provide
good funds for developing neural networks that are robust to
quality distortions.

The remaining parts of this paper is organized as follows.
We begin with an overview of seven state-of-the-art deep
learning models in Section 2. Data processing and exper-
imental setup are described in Section 3. Furthermore, in
this section we introduce the results and analysis. Finally,
we draw the conclusions in Section 4.

2. Background

In this section we give an overview about the evaluated neu-
ral networks. A neural network is a network of simple ele-
ments called neurons, which receive input, change their in-
ternal state (activation) according to that input, and produce
output depending on the input and activation. The network
forms by connecting the output of certain neurons to the in-
put of other neurons forming a directed, weighted graph. The
weights as well as the functions that compute the activation
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can be modified by a process called learning which is gov-
erned by a learning rule8.

Starting with LeNet-59, CNNs have had a standard archi-
tecture. It is composed of one or more convolutional lay-
ers with fully connected layers on top. Furthermore, it cap-
italizes on tied weights and pooling layers. This type of ar-
chitecture allows CNN to process two- or three-dimensional
data such as grayscale and RGB images. Unfortunately, this
concept did not take off in the 1980s and 90s because it could
not produce a competitive performance due to various rea-
sons such as lack of training data and computing power. In
addition, the advent of Support Vector Machines10 (SVM)
for learning tasks, accompanied by solid theoretical founda-
tions and a convex optimization formulation, seemed to be a
better solution.

a) AlexNet: Krizhevsky et al.11 revived the interest
in CNNs by winning the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012 and by introduc-
ing AlexNet. AlexNet was trained on a subset of ImageNet
database which consists of 1.2 million 256× 256 RGB im-
ages belonging to 1,000 categories. AlexNet has five convo-
lutional layers, three pooling layers, and two fully-connected
layers with approximately 60 million free parameters. Fur-
thermore, Krizhevsky et al.11 introduced the Rectified Linear
Unit (ReLU) activation function and they found that ReLU
decreases the training time since it is faster than the conven-
tional sigmoid or tanh function. Moreover dropout layers12

were implemented in order to avoid overfitting. The whole
architecture were trained using batch stochastic gradient de-
scent, with specific values for momentum and weight decay.

b) VGG16 and VGG19: The Oxford Visual Geometry
Group (VGG) proposed the VGG network in 20143. In con-
trast to AlexNet’s 11×11 filters in the first layer, this model
strictly used 3×3 filters with stride and pad of 1, along with
2× 2 maxpooling layers with stride 2. The reasoning in the
paper3 was that the combination of two 3× 3 convolutional
layers has an effective receptive field of one 5× 5 convolu-
tional layer. The authors utilized the ReLU activation func-
tion and trained using batch gradient descent.

c) GoogleNet: It adopted several ideas from the Network
in Network (NIN) concept13 and is based on the Incep-
tion modules. GoogleNet14 was the first model that devi-
ated from the general approach of simply stacking convo-
lutional and pooling layers on top of each other in a sequen-
tial structure. Furthermore, the authors14 also emphasized
that they put special attention to memory and power usage.
Namely, stacking of convolutional and fully-connected lay-
ers and adding huge numbers of filters has a computational
and memory cost, as well as an increased chance of overfit-
ting.

e) Inception V3: As we mentioned, the “Inception” micro-
architecture was introduced by Szegedy et al.14 and the orig-
inal architecture was called GoogleNet. On the other hand,

subsequent releases have been called Inception vN where N
stands for the version number determined by Google15.

e) Residual Network (ResNet): It16 won the 2015 cham-
pionship on three ImageNet competitions - image classifica-
tion, object localization and object detection. The main chal-
lenge in training deep neural networks is that accuracy de-
teriorates with the increasing depth of the network. ResNet
introduced the so-called residual learning approach in order
to overcome the difficulty of training deep networks. The
main idea behind a residual block is that an input x goes
through a convolution - ReLU - convolution series. Subse-
quently this result is then added to the original input x. The
authors pointed out in their paper16 that “it is easier to op-
timize the residual mapping than to optimize the original,
unreferenced mapping”. Another advantage of the residual
block is that during the backward pass of backpropagation17,
the gradient flows easily through the computational graph
because there are addition operations which distributes the
gradient information in the network.

In order to compare these models, we collected the ac-
curacy values reported in the literature and determined the
number of parameters. The results reported in the literature
can be seen in Table 1. The output of a network is a proba-
bility for each class. These probabilities can be arranged to
deliver a vector of predicted classes with decreasing prob-
ability. The top-1 accuracy measures the accuracy by com-
paring the best prediction with the proper class. The top-5
accuracy labels a prediction as correct if the correct class is
in the best five predicted classes. The reason that top-5 accu-
racy is often reported is that for some images in the dataset
there are multiple objects in the image.

3. Experimental results

We consider nine types of distortions: salt & pepper noise,
median filtering, average filtering, disk filtering, periodic
noise in x-direction, periodic noise in y-direction, zero-mean
Gaussian noise, JPEG compression, and JPEG2000 com-
pression.

Salt-and-pepper noise is considered, for which a certain
amount of the pixels in the image are either black or white.
Given the noise density (0 ≤ d ≤ 1) as probability that a
pixel is corrupted. In our experiments the noise density was
varied from 0.0005 to 0.195. The main idea of median filter
is to run through the image pixel by pixel, replacing each
pixel with the median of neighboring pixels. On the other
hand, average filter replaces each pixel with the average of
neighboring pixels. In our experiments the kernel size was
varied from 3× 3 to 17× 17 in case of median and average
filtering. A disk filter is a circular averaging filter (pillbox)
within the square matrix of size 2 · r+ 1 where r stands for
radius. We varied the radius from 1 to 11 in the experiments.
An image affected by periodic noise looks like a repeating
pattern had been added to the original image. In this survey,
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Table 1: Comparison of the examined Convolutional Neural Networks.

Model Top-1 accuracy Top-5 accuracy Input size Number of parameters Depth

AlexNet11 0.625 0.83 227×227×3 60,965,224 8
VGG163 0.715 0.901 224×224×3 138,344,128 23
VGG193 0.727 0.910 224×224×3 143,667,240 26

GoogleNet14 0.79 0.93 224×224×3 11,193,984 21
Inception v315 0.78 0.94 299×299×3 23,851,784 159
ResNet-5016 0.759 0.929 224×224×3 25,636,712 50

ResNet-10116 0.775 0.94 224×224×3 45,765,453 101

we applied sinusoidial pattern with amplitude A in x- and
y-direction. The amplitude was varied from 0.01 to 50. For
JPEG compression, the quality parameter was varied from
1% to 99%. A quality value of 100% is equivalent to the
original uncompressed image. For JPEG2000 compression,
the compression ratio was varied from 5 to 500. A compres-
sion ratio of 1 represents the original uncompressed image.
Figures 1 - 9 show samples of corrupted images.

The test was carried out on a subset of ImageNet 2014
database’s validation set. Namely, we randomly chose 20
categories from the available 1,000 categories. Furthermore,
we selected 20 images from the examined categories. For
each image we generated additional images with varying
levels of quality distortions as described in the previous para-
graph.

We consider two types of measure: top-1 accuracy and
top-5 accuracy. If the classifier’s top guess is the correct an-
swer (e.g., the highest score is for the “cat” class, and the
test image is actually of a cat), then the correct answer is
said to be in the top-1. If the correct answer is at least among
the classifier’s top 5 guesses, it is said to be in the top-5. The
top-1 accuracy is the percentage of the time that the classifier
gave the correct class as the highest score. The top-5 accu-
racy is the percentage of the time that the classifier included
the correct class among its top five guesses.

Figure 10 and 11 show the results of our experiment. Ta-
ble 2 shows top-1 and top-5 acc. measured on the undistorted
images. All of the networks are very sensitive to salt & pep-
per noise, median filtering, average filtering, disk filtering,
and Gaussian noise. Even low amount of these noise and dis-
tortion types can reduce the classification performance sig-
nificantly. This decrease is due to the fact that these distor-
tion types removes the texture of the images. Furthermore,
CNNs look for texture to classify images. On the other hand,
the networks are robust to moderate periodic noise. Surpris-
ingly, all networks are very robust to JPEG and JPEG2000
compression. In the case of JPEG compression, we have
to set the quality to 15% in order to produce significant
degradation in the classification performance. In the case of
JPEG2000 compression, we have to set the compression rate
to 400 (very high level of compression) to halve the classifi-

cation performance. This means that the user can be sure that
deep architectures will perform well on JPEG or JPEG2000
compressed images assuming that quality level or compres-
sion is not in the extremely low range.

Inception v315 appears to be more robust and resilient than
the other state-of-the-art networks. One obvious solution to
increase the robustness of networks is to put low quality im-
ages into the training database. Actually, GoogleNet14 and
Inception v315 were trained on images with slight color per-
turbations to add a plus regularization to the networks. In
spite of this, the classification performance of GoogleNet14

deteriorates at the same rate as VGG163 or ResNet5016. On
the other hand, we experienced stronger robustness by In-
ception v315 than by the other state-of-the-art networks. To
sum it up, our results showed that Inception v315 had the best
classification accuracy and robustness to all types of noises
except for JPEG2000 compression.

4. Conclusions

In this paper, we introduced an evaluation of seven state-
of-the-art Convolutional Neural Networks for image classi-
fication under different visual distortion types. To this end,
we took seven state-of-the-art networks and considered nine
types of quality distortions such as salt & pepper noise, me-
dian filtering, average filtering, disk filtering, periodic noise
in x- and y-direction, zero-mean Gaussian noise, JPEG com-
pression, and JPEG2000 compression. Our results showed
that Inception v315 had the best performance both on undis-
torted and distorted images. Furthermore, all networks show
significant robustness to JPEG and JPEG2000 compression
and they are all sensitive to filtering, salt & pepper noise, and
Gaussian noise.

In our future work we plan to investigate other im-
portant state-of-the-art networks in a similar way such as
DenseNet18 and MobileNet19. Furthermore, we want to in-
vestigate the possible benefits of training on low quality im-
ages.
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(a) Undistorted. (b) d = 0.01. (c) d = 0.05. (d) d = 0.15.

Figure 1: Salt & pepper noise added to images where d denotes the noise density. This affects d ×#Pixels.

(a) Undistorted. (b) k = 5. (c) k = 11. (d) k = 17.

Figure 2: Median filtering performed on images with k× k sized kernels.

(a) Undistorted. (b) k = 5. (c) k = 11. (d) k = 17.

Figure 3: Average filtering performed on images with k× k sized kernels.

(a) Undistorted. (b) r = 2. (c) r = 6. (d) r = 10.

Figure 4: Disk filtering performed on images with radius r.
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(a) Undistorted. (b) A = 2. (c) A = 10. (d) A = 30.

Figure 5: Periodic noise in x direction with amplitude A.

(a) Undistorted. (b) A = 2. (c) A = 10. (d) A = 30.

Figure 6: Periodic noise in y direction with amplitude A.

(a) Undistorted. (b) σ = 0.02. (c) σ = 0.07. (d) σ = 0.1.

Figure 7: Zero-mean Gaussian noise.

(a) Undistorted. (b) q = 90%. (c) q = 40%. (d) q = 10%.

Figure 8: JPEG compressed.

(a) Undistorted. (b) CR = 20. (c) CR = 100. (d) CR = 330.

Figure 9: JPEG2000 compressed.
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Table 2: Top-1 Accuracy & Top-5 Accuracy measured on the undistorted images.

AlexNet11 VGG163 VGG193 ResNet-5016 ResNet-10116 GoogleNet14 Inception v315

Top-1 Accuracy 0.66 0.745 0.74 0.785 0.815 0.755 0.825
Top-5 Accuracy 0.74 0.85 0.85 0.875 0.87 0.875 0.895

Figure 10: Top-1 accuracy rates under different visual distortions.
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Figure 11: Top-5 accuracy rates under different visual distortions.
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