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Abstract—Wireless sensor networks and ad-hoc networks are
gaining popularity rapidly due to their ability to solve challeng-
ing problems and the fact that thanks to recent technological
advancements it is now possible to build smarter and denser
networks. For example, they serve as the basis of the Internet
of Things. Naturally, it is in the users best interest to develop
increasingly secure networks. In some cases, the sensors are used
in unknown or hostile environments. This and the vulnerability
of the wireless communication channels used by arbitrary mobile
communication networks means that they are exposed to various
kinds of attacks. One of the most severe threats is the wormhole
attack because an adversary can start the attack without com-
promising sensors or breaking through cryptographic defense
mechanisms. In this paper, we propose a novel method for
detecting wormhole attacks and identifying the affected sensors.
Our approach does not rely on using any special measurement,
only the connectivity information of the network.

Index Terms—sensor networks, wormhole, security, network
theory

I. INTRODUCTION

Recent developments in the fields of wireless communi-
cation and distributed processing led to a rapid increase in
the use of wireless and ad-hoc sensor networks. Today they
are widely used with a variety of applications in surveillance,
environmental monitoring, security and military technologies.
The sensors rely on some kind of wireless communication and
the networks are often set up in an open environment that is
usually unexplored or hostile. This makes security and privacy
an enormous challenge.

One of the most serious security threats is the so called
wormhole attack, first defined in [1], [2] and [3]. An adversary
can perform this kind of attack with limited resources: without
compromising any sensors in the network or bypassing any
cryptographic defense. In order to launch the attack, the
intruder places two radio receivers connected by a high-speed,
high-capacity channel in distant parts of the network. Signals
captured by the receivers are sent through the ’wormhole
link’ to the other endpoint and there they are replayed (See
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Fig. 1: Example of a wormhole attack. A; and As denote the
areas directly affected by the two receivers. As a result of the
attack, new connections are established between all nodes in
A; and all nodes in As.

figure 1). This radically changes the network topology and
connectivity: it causes the sensor nodes around the receivers
to recognize each other as direct neighbors and as a result
they communicate through these wormhole links. This makes
connectivity-based localization algorithms unreliable, causing
any application that rely on geographic information to be
deceptive (See figure 2). Furthermore, the wormhole tunnel
draws a large amount of data traffic, so the attacker can
launch other kinds of attacks, such as selectively modifying
and dropping packets sent through the wormhole link or
forwarding them out of order, etc. The adversary can also use
the wormhole in a passive manner: eavesdropping, gathering
packets and analyzing network traffic. Thus the wormhole
attack can act as an instrument for orchestrating other more
aggressive attacks to destroy and control different network
protocols.

In this paper, we introduce a new method for detecting
wormbhole attacks. Our idea is based on the fact that wormhole
links often provide the new shortest paths between distant
sensors in the network. This means that if we isolate a
neighborhood of sensors that are directly affected by the
wormhole, the change in the length of the shortest paths from
an arbitrarily chosen sensor node and the rest of the nodes
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Fig. 2: (a) shows a sensor network under a wormhole attack.
The gray circles show the affected areas, the red dots mark the
compromised sensor nodes. (b) shows the result of running
the As-rigid-as-possible localization algorithm (ARAP) [4]
on the network in the presence of the wormhole. The red
lines show new connections introduced by the wormhole, and
the red dots mark the influenced nodes. We can see that
the wormhole connections mislead the localization algorithm,
causing incorrect position estimates for most of the sensors.

will show a big variance. In other words, the paths to nodes
that are closer to the farther endpoint of the wormhole will
change, however, the rest of the paths will be unaffected.

The rest of this article is organized as follows. In Section
2 we discuss prior works. In Section 3 we introduce our
approach in detail. In Section 4 we present simulation results
and Section 5 contains our conclusions.

II. RELATED WORK

In recent times the problem of detecting wormhole attacks
received substantial attention. As a result, various protocols
and countermeasures have been proposed.

A number of solutions aim to expose wormhole attacks with
the help of distance or timing analysis. These methods attach
the location of the sender node or some time information to
the packets sent through the network. This way, after each
received packet the sensors can verify it. If the transmission
is not feasible according to the physical characteristics of the
network, the presence of a wormhole is very likely. However,
these approaches rely on extremely precise, synchronized
clocks [3], [5], or they require special hardware such as GPS
to obtain the geographical locations of the nodes [3], [6].
This leads to increasing hardware costs. Hu and Evans [7]
propose another approach relying on special hardware. They
use a cooperative protocol between the sensors with the help
of directional antennas to identify false neighbors.

Some techniques [8]-[10] use special nodes called guard
nodes. These nodes are aware of their geographical location
and they benefit from higher transmit power and different
antenna characteristics. Naturally, the dependence on guard
nodes greatly limits the applicability of these methods.

Other approaches build on the assumption that at one point
the network is attack free and the sensors can obtain valid

connectivity information. Buttyan et al. [11] detect changes
in the lengths of the shortest paths in the network in order
to identify wormholes. Similarly, in [12] statistical analysis of
the distortions in multi-path routing is used.

The method described in [13] uses connectivity information
to look for ’forbidden structures’ in the connectivity graph.
However, it requires knowledge of the communication model
and the node distribution. Otherwise, the algorithm shows a
significant decline in precision.

Some other solutions rely solely on network topology
and connectivity information. MDS-VOW [14] reconstructs
the network layout with multi-dimensional scaling [15] and
surface smoothing. Then it detects wormholes by identifying
anonymities on the assembled network. However, this method
runs in a centralized manner and only works in the cases
when the wormhole attack inserts just a single false edge
into the network. Dong et al. introduce WormCircle [16], a
fully distributed connectivity based method. The idea is based
on wave propagation. For every node, they examine its k-
hop neighborhood. Generally, a subgraph like this has a circle
shaped boundary, but in the presence of a wormhole the bound-
ary forms two circles. WormCircle works well in networks
with high density, but if the nodes have a small average degree
WormCircle’s detection rate drops significantly. Ban et al. [17]
apply local connectivity tests on each node, on the premise
that with the removal of wormhole it’s neighborhood breaks
down into multiple components. After they acquired a group
of candidate nodes, they search for maximal complete bipartite
graphs amongst these candidates using the algorithm from
[18]. Similarly, [19] uses MDS-MAP [15] locally and checks
for distortions in the network in order to obtain candidates.
Afterwards, it uses the scheme from [18] as fine-graining to
reduce the number of false positives. These last two methods
work well for wormholes with large radius due to the fact that
large wormholes introduce large complete bipartite subgraphs,
but if the wormhole endpoints only directly influence a few
sensors, they have a tendency to be unsuccessful.

III. OUR CONTRIBUTION

We introduced several state-of-art methods created to deal
with the problem of wormhole attacks. However, all these
methods have limitations. Many of them rely on special
hardware, or special guard nodes. Some methods are based
on the assumption that a wormhole only inserts a single false
edge into the network. Others are solely reliable for wormholes
that introduce large complete bipartite subgraphs.

Now, we present the detailed description of our approach.
We use only the connectivity information of the network to
find and isolate nodes under a wormhole attack. Our idea is
based on the presumption that the removal of the wormhole
edges causes sizable changes in the lengths of shortest paths
between some of the nodes in the network, while other shortest
paths remain unchanged. In order to monitor the changes, we
run breadth-first searches from some selected nodes called
’root nodes’ while we iteratively isolate other sensors and their
neighborhoods.



Breadth-first search can be run in a distributed manner. The
source node can send out a starting signal or packet containing
its depth (0). Next, receiving nodes add 1 to the depth and
forward the changed packet etc. After every node determines
their distance, they can send it to the source node on the
route designated by the now completed spanning tree. We
can use this feature to make our algorithm almost completely
decentralized. Although, the root nodes have to do some
additional but trivial calculations (See Algorithm 2).

A. Selecting the root nodes

The number and distribution of the root nodes affects the
accuracy of the algorithm. Choosing just one root node can be
insufficient because there is no guarantee that we pick a node
with the right position in the network. Root nodes that are
directly affected by one of the endpoints will fail to detect it.
Similarly, if a root node’s distance is roughly the same from
the two wormhole endpoints, or it is too far from them, we
are less likely to observe the substantial changes caused by
the removal of the wormhole. On the other hand, choosing
too many roots can significantly increase the runtime of our
algorithm. To tackle this problem we use Algorithm 1. First,
we add every node to the set of possible root nodes. Then
we iteratively run the following steps until this set is empty:
We choose the node with the smallest ID as the first root.
Next, this node floods the network with the message that it is
now a root node and every node within k-hop distance will
be removed from the set. It is easy to see that the parameter
k introduces a trade-off. A small %k leads to a large number
of root points. This boosts the accuracy but also increases
the runtime. The number of root nodes also depends on the
density of the network. Let us denote the number of nodes in
a network by n and the density of the graph by d. Based on
our measurements we decided to choose k = . This way
our algorithm outperforms many of the other algorithms in
runtime and efficiency.

Algorithm 1: Selecting roots for spanning trees

1 function get_roots (Con, L, k);
Input : Con: the connectivity matrix of a network, L:
the list of nodes, k: integer
Output: R: a list containing the root points
2 S = empty set
3 add every node from L to S
4 R = empty list
s while S is not empty do

6 v = the element with the smallest ID from S

7 add v to R

8 remove v from S

9 run a BFS with max depth k to obtain the nodes
within k-hop distance from v

10 N = nodes within k-hop distance from v

1 S=5-N

12 end

13 return R

B. Identifying affected nodes

Algorithm 2: Finding wormhole nodes

1 function find affected nodes (Con, R, \);
Input : Con: the connectivity matrix of a network, R:
the list of root nodes, \: float
Output: C': the list candidates
2 npoints = number of nodes
3 nroots = number of roots
4 VarMat = npoints X nroots dimensional matrix
containing zeros
s for Every r root node in R do

6 D = npoints dimensional vector of zeros
7 run a BFS from r and store the distances to all nodes
in D
8 F' = list containing the direct neighbors of r and r
itself

9 for Every v node in F' do

10 | VarMat[v,r] = -1

11 end

12 for Every v node not in F' do

13 Ddif = empty list

14 D’ = npoints dimensional vector of zeros

15 Con' = a copy of Con

16 T = list containing the direct neighbors of v and
v itself

17 remove every edge from Con’ that connects
nodes in T to the rest of the network

18 run a BFS from r using Con’ and store all the
distances in D’

19 for Every w node in the network do

20 if D'[w] < infinity then

21 | append (D'[w] — D[w]) to Ddif

22 end

23 end

24 VarMat[v,r] = variance of Ddif

25 end

26 end

27 Avgs = npoints dimensional vector of zeros
28 for Every v node in the network do
29 ‘ Avgs[v] = the average of all positive values in the

vth row of the VarMat matrix
30 end

31 m = the mean of Avgs

32 for Every v node in the network do
33 if Avgs[v] > m = A then

3 | append v to C

35 end

36 end

37 return C

Once we determined which sensors will serve as roots, we
can launch our detection algorithm. First, we create a matrix
VarMat with size n X r where n is the number of nodes
and 7 is the number of roots. Then, for every root node 7;,



we repeat the following steps. We run a breadth-first search

to determine the distance from r; to every other node in the

network, and we store these in a vector D;, where D;[j] is

the distance from r; to the jth node.

Then for every node v, if v is not r; or any of r;’s neighbors,

we run the following test:

(1) we remove v and its neighborhood

(2) we run an other BFS to determine the distance of every
node w in the modified graph

(3) if a w is not reachable from r; we ignore it. Else, we
add the D!, [w] — D;[w] to a container Ddif;,, where
Dj [w] is the distance from r; to w after removing v and
its neighbors.

Finally, we measure the variance of Ddif;, and store it in
the VarMat matrix: VarMat[i,v] = Var(Ddif;,). In this
iteration we skipped the cases when v = r; or one of r;’s
neighbors. We will examine these nodes from other roots. As
an indicator we write —1 into VarMat[i, v].

After we inspected every possible node from every root,
we calculate the average of variances for every node v, that is
the average of the positive values in the vth row of VarMat.
Then, we compute the average of these averages: m. If the
average variance for a node is higher than Am we add the
node to the list of candidates. A is the second parameter of
our algorithm. It introduces a trade-off between the detection
rate and the number of false positives. If we choose a larger A
we reduce the number of false positives, but we might fail to
detect some wormholes. Algorithm 2 shows the pseudo-code
for the algorithm described above.

After the algorithm is finished and we obtained the candi-
dates nodes, we can further lower the number of false positives
by examining the subgraph inducted by these nodes. If a node
is isolated in this inducted graph, then it is certainly not a
wormhole and we can remove it from the list of candidates.
Finally, in order to shut off the wormhole, we turn off all the
sensors in the candidate list, or prohibit every communication
between them.

IV. RESULTS

In this section, we evaluate our method under different
circumstances, including different node deployments, commu-
nication models, and network density.

We use two deployment models: random placement and
perturbed grid. In random placement, we choose the coordi-
nates for the nodes uniformly and independently from a given
area. In the perturbed grid model, we place the sensors on
an n X m grid, and perturb them from their initial positions
(x x y): their new coordinates will be selected uniformly from
[x —pd, x4+ pd] X [y — pd, y + pd], where p is the displacement
parameter and d is the length of the squares’ sides in the
original grid, in our tests we used p = 0.75. Deploying the
network with random placement results in an uneven network
with irregularities, while the perturbed grid is often used to
simulate a manual deployment.

We apply unit disk graph (UDG) and quasi-UDG commu-
nication models to establish the connections in the network.
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Fig. 3: Results on a network with 900 nodes, using UDG
communication model and random placement. We adjusted the
radius of the sensors the achieve different network densities.
(a) shows the average number of false positives, and (b)
displays the average recall. Each point corresponds to the
average of 30 simulations with the same average degree. We
ran our algorithm with A\ = 5,6,7, to demonstrate how this
parameter influences the outcome.

In UDG model, two nodes are connected if and only if
their distance is shorter than the communication radius R.
In the quasi-UDG model, there is a link between two nodes
if their distance is shorter than r, and there is a link with
some probability if their distance is between r and R, in our
experiments we used » = 0.5* R, and we adjusted R to obtain
networks with various densities.

Another important factor is the distance between the centers
of the examined wormhole. A wormhole with distant endpoints
produces larger distortion for localization algorithms and it
can draw more data traffic. A shorter wormhole causes less
damage, but it is harder to detect. During our experiments, we
focused on the detection of longer wormholes: we generated
wormbholes in such way that the hop distance between the two
sets of wormhole nodes in the original network is at least 8.

Since the A parameter in our algorithm offers a trade-off
between the number of false positives and the detection rate,
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Fig. 4: Results on a network with 900 nodes, using Quasi-UDG
communication model and random placement. We adjusted the
radius of the sensors the achieve different network densities.
(a) shows the average number of false positives, and (b)
displays the average recall. Each point corresponds to the
average of 30 simulations with the same average degree. We
ran our algorithm with A\ = 5,6,7, to demonstrate how this
parameter influences the outcome.

we ran our tests with A = 5,6,7. We generated 30 networks
with 900 nodes for every deployment model, communication
model and network density. We monitored how the algorithm
performs under these circumstances by measuring the average
number of false positives and the average recall over these test
cases.

Figures 3, 4, 5, 6 show our results. The tests clearly
demonstrate the effectiveness of our algorithm. It achieves
close to 1.0 recall on networks with random deployment and
1.0 recall using perturbed grid. The number of false positives
is relatively low especially for perturbed grid and for random
placement with an average degree larger than 8.

V. CONCLUSION

In this work, we introduced a novel approach for worm-
hole detection in sensor networks. Our approach does not
rely on special hardware, special guard nodes or on statis-
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Fig. 5: Results on a network with 900 nodes, using UDG
communication model and perturbed grid deployment. We
adjusted the radius of the sensors the achieve different network
densities. (a) shows the average number of false positives, and
(b) displays the average recall. Each point corresponds to the
average of 30 simulations with the same average degree. We
ran our algorithm with A\ = 5,6,7, to demonstrate how this
parameter influences the outcome.

tics/information about the network prior to the attack. We use
only the network’s connectivity information. The algorithm
runs in a distributed manner, the communication costs are
roughly the same for every sensor in the network, and no costly
calculations are required. Furthermore, the accuracy of the
proposed algorithm is not affected by the number of wormhole
nodes. We verified the effectiveness of our algorithm through
vigorous tests in scenarios with different communication mod-
els, deployment methods and network density.
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