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ABSTRACT

The challenge of high-mix low-volume production has
reshaped manufacturing systems causing increased
complexity in processes and growing sensitivity to the
mix and temporal distribution of demand. Efficient
evaluation and experimenting for decision support in
such an environment is of key importance, however it is
also extremely difficult as the complex interrelation
between the affecting factors and the size of the input
domain would require a large number of experiments to
get reliable results. The paper introduces a method based
on advanced data analysis for defining typical input
scenarios, aiming to reduce the computational
complexity of Discrete Event Simulation (DES) analysis.
The presented approach was tested in a real-life
combined (manufacturing and assembly) production line
and the results showed that using scenarios for
representing the typical input allowed reducing
significantly the number of experiments required to
execute sensitivity analysis of the structural (e.g. buffer
size or workforce) and the operational (i.e. sequencing)
parameters.

Keywords: Simulation, data analysis, robust planning,
sensitivity analysis

1. INTRODUCTION

Today’s manufacturing companies have to face
increasing product variability and decreasing lot sizes at
the same time. This results in a growing complexity both
for all planning as well as execution levels of the
production.

The challenge of high-mix low-volume production has
reshaped manufacturing systems and having efficient
evaluation techniques for decision support in such an
environment is of key importance. However, it is also
extremely difficult as the complex interrelation between
the affecting factors and the size of the input domain
would require a large number of experiments to get
reliable results.

The DES approach, available for modelling productions
systems’ behaviour on a detailed level, has been applied
for decades mainly for the evaluation and support of
decisions in planning and control (Banks 1998; Law and
Kelton 2015; O’Rielly and Lilegdon 1999). The
simulation models that are used for making or evaluating
these decisions (e.g., by projecting the values of different
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key performance indicators, KPIs in time) generally
represent the flow of materials to and from processing
machines and the operations of machines themselves
(Rabelo et al. 2003).

In the paper research results of an in-depth investigation
and improvement of the delivery performance of
manufacturing plants with a special focus on high mix—
low volume production are presented.

The suggested novel top-down process modelling
methods are validated and verified by simulation
experiments.

2. PROPOSED NOVEL DELIVERY PROCESS
STABILIZATION METHOD
2.1. Factors affecting delivery performance related
KPI-s
Competitiveness of manufacturing companies is defined
in general by three Key Performance Indicators (KPIs):
e cost efficiency;
e quality of products and production processes;
e delivery performance.
If these KPIs are in line with the worldwide benchmark
figures produced by manufacturing companies of similar
type, then the profitability of the company should be on
a level expected by the investors as well.
When assessing delivery performance, one should
distinguish between two related KPIs: the fulfilment of
the requested delivery date (RDD) and the confirmed
delivery date (CDD). Our focus will be set on CDD
which is depending on a number of factors such as raw
material inventory level, total supply chain lead-time,
manufacturing  /machining capability, suppliers’
capability, as well as quality of planning (this list is not
exhaustive).

1. Manufacturing/machining capability: The
availability of manufacturing and machining
capacities clearly affect CDD. Here, a number of
various factors have to be considered, such as the
machines’ age and condition, the efficiency of
implemented total productive maintenance (TPM)
policy, the flexibility, changeability and
compatibility of resources, the skill and availability
of maintenance personnel, the change-over time
applied in high mix — low volume environment, the
capability of moving a product from one machine
center to another one in case of machine break-
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down, and the utilization of the machines in
general. Investments in new capacities, personnel
or maintenance, or flexibility and changeability will
definitely incur extra costs on the one hand, but
have a positive impact on the delivery performance
on the other hand.

2. Raw material inventory level: Material availability
determines when the product order can be launched
in production. The probability to have raw material
always available in production can be increased
with higher stock levels. However, inventories
incur costs as well: typically, the cost of capital of
raw material inventory is calculated with a given
percentage level defined by each company
internally (obviously, this figure is always higher
than the actual banking interest rate).

3. Suppliers’ capability: Performance of suppliers is a
key influencing factor in the CDD of a plant.
Supply channels are controlled by contracts
referring to minimum order quantity (MOQ),
required quality, item prices and transportation
cost, tooling, as well as supplier’s flexibility. While
having a reduced supplier network may result in
more efficient and frequent deliveries, lower
transportation costs and overall prices, it makes, at
the same time, the plant more dependable (and
vulnerable) to supplier contingencies.

4. Total supply chain lead-time: The shorter the total
supply chain lead-time, the better are the chances to
deliver products at CDD. Production and supply
planning have a key role in lead-time reduction. In
an ideal case instead of the manufacturing
processes, the real bottleneck is the lead-time of raw
materials from suppliers. Note that lead-time
reduction on the supplier side will not only improve
CDD performance of the plant but, at the same time,
reduce also the required (safety) stock level.

5. Quality of planning: While the requested delivery
date (RDD) is an exogenous factor in managing
production, the CDD is the result of planning. If the
promise confirmation is given to the customer on
the basis of careful and principled planning that
takes into consideration future load, resource and
material availability, and does it in a robust way,
then the chances of keeping this promise are clearly
better. On the cost side, however, advance planning
requires precise and up-to-date status information,
appropriate  information and communication
technologies (ICT), disciplined and orchestrated
management of a number of planning functions,
and sophisticated decision-making mechanism.

2.2. Delivery process stabilization method

The above (far from exhaustive) list of issues show that
the CDD performance is determined by a number of
internal and external factors. Some of the factors are
cross-correlated, and efforts in improving delivery
performance in any way may easily deteriorate other
KPIs, most importantly, cost. With other words, CDD
improvement is never for free, and a trade-off has to be
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fund when setting target levels of attainable KPIs. Since
in our actual problem domain product quality is not
negotiable, the key problem boils down to finding ways
to improve CDD performance at an acceptable cost that
warrants both customer satisfaction and profitability of
production.

Hence, the method is articulated around the following —
closely related — stages, formulating a top-down
approach:

1. Scope setting and characterization: Classify
situations in high mix—low volume production,
delimit those cases where CDD performance
can be warranted by traditional techniques of
production managements (e.g., by inventory
control, or capacity planning). Make an in-
depth investigation of cases which are critical,
determine the main factors — both internal and
external — that affect CDD performance.

2. Sensitivity analysis and selection of factors:
Make a sensitivity analysis for assessing the
impact of the above factors on CDD
performance. Select those factors for further
investigation whose influence — both positive
and negative —on CDD are the most significant.

3. CDD improvement techniques: By relying on
the selected factors, define those techniques that
are implementable in a given production
environment and contribute to the improvement
of CDD without deteriorating product quality
(which is taken as a non-violable requirement).

4. Delivery performance — cost trade-off: Assess
the cost impacts of the selected (most
promising) delivery performance improvement
policies and find a balanced trade-off between
meeting these two main KPIs. Results expected
in form of an implementable method for
measuring cost implications of CDD
improvement  techniques, waging CDD
performance against cost and finding an
acceptable trade-off.

In the paper methods related to the second item
(sensitivity analysis and selection of most influencing
factors) are introduced via the analysis of large-scale
real-life datasets generated from the archives of a high
mix—low volume production facility by applying
simulation and data analysis techniques.

3. SCENARIO-BASED EXPERIMENT DESIGN
APPROACH

Handling all the influencing factors within one
experimental scenario, as described in the previous
section, it can be considered as a problem of intractable
complexity in the simulation domain. Therefore, the
factors have to be separated, moreover, the number of
factors and the number of resulting scenarios have to be
reduced. In the following section a novel method is
proposed for supporting scenario definition for
simulation studies having significantly less number of
experiments with the same expected output quality.
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Classical Design of Experiment (DoE) techniques
enables reducing computational efforts by selecting and
focusing on the factors affecting most significantly the
output variable (KPI). A well-known method is factorial
experiment design, when assigning a possible/usual low
and high value to all factors defined. After identifying the
most significant factors, a more comprehensive study by
the combination of the remaining factors are required.
Note that for categorical (qualitative) factors (e.g.,
dispatching rule for jobs entering the system) the number
of possible values 1s limited. However, non-categorical
(quantitative) factors may have “infinite” values to be
assigned with. The categorization of these values may
reduce the number of scenarios when designing the
experiments and not to lose diversity of input degrading
modelling accuracy.

The proposed approach introduced here focuses on
identifying the similarity between several values of
Demand (Figure 1), taken as the main categorized input
factor.
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Fig. 1. Influencing factors of a manufacturing system on
the production control level.

External factors are covered/modelled by the input factor
Demand (Figure 1). Demand represents SKU (product
code) of products, quantity to be produced and CDD,
defined at the production planning level in form of a daily
mput-mix of products to be produced in the system.
Product-related features are only considered in the
simulation model.

5. Structure, internal: structural parameters, e.g.,
buffer sizes, availability of operators and machines.

6. Behaviour, internal: control parameters, e.g.,
selected routings, sequence of jobs, lot-sizing.

7. Output: lead-time and lead-time variance.

The purpose of the experiments is twofold:

a. Validate if the methods are applicable for the
reduction of the number of scenarios needed for a
comprehensive simulation analysis on system-
sensitivity (reducing lead-time variance and so,
improving CDD).

b. Categorization of the input factor Demand could
result in assigning situation-related sequencing and
lot-sizing rules to a finite number of demand
patterns. This would support the planner in creating
production schedules/sequences by applying a
formalized method, considering the reduction of
lead-time variance, as a primary target.

Proc. of the Int. Conference on Modeling and Applied Simulation 2018,

4. COMPUTATIONAL EXPERIMENTS

4.1. Case study

The production line under analysis 1s for making
complex products, which includes both machining of raw
materials and assembly of the final product. In general
machinery and assembly areas and operations are
separated in the production environment, as in machining
usually the equipment is in the centre of decisions, while
in assembly the focus of the process analysis is on the
human workforce. This combined production line,
therefore can be viewed as a factory within the factory,
which also creates complex interrelated connections
between the KPIs and the structural and operational
parameters of the line.

Model building and abstraction is essential for any kind
of analysis and decision support process. For sensitivity
analysis in such a complex environment, where
analytical solution is probably out of the scope, the
application of declarative tools such as Discrete Event
Simulation (DES) of material flow 1s widely accepted.

4.2. Description of the material flow

The machining area contains four CNC machine centres
and two CNC turning machines and a conveyor line. The
washing operation for machined parts is positioned
between the machining and assembly area. There 1is a
machine operator for each machine.

The process starts with the aluminium tube cutting,
followed by the machining of the tubes — according to the
production schedule. The piston rod manufacturing is
done in parallel with the machining of the tubes. After
these operations, the tubes and piston rods belonging to
the same order are sent to be washed. After the washing
operation these parts are put in a box. These boxes are in
line, waiting for the final assembly operation.

Conveyor belts transport the cut material to four milling
and two turning machines where the machined surfaces
are finished. Each machine requires human operators for
the change-overs and setups before the processes, served
by a pool of machinery workers in the area, which also
means that no dedicated workforce 1s assigned to any of
the machines. Accordingly, the list of assigned tasks is
defined by rules for each worker. The final step in the
machinery is a washing station with manual material
transport.

The machinery area provides supply to the preassembly
area, where semi-finished products required in multiple
product families are assembled. The final assembly and
test of the finished products are performed in two
assembly work cells, each one operated by one or two
dedicated workers in a one-piece-tflow production with
manual material transport. Most equipment used in the
assembly are designed especially for the products,
however —n order to handle multiple product families
and variants— there is a wide variety of applied fixtures
and tools, which require manual change-over.

The conveyor belt has a length-dependent buffer-
capacity and each station has a specified buffer area as a
fixed-size number butfer.

175

ISBN 978-88-85741-07-2; Bruzzone, De Felice, Frydman, Longo, Massei and Solis, Eds.



Cylinder manufacturing Rod manufacturing Assembly + Test
Milling Milling ™ Turning | — Turning Assembly
i TN i [
ik 1] s L1
s il |
i 1
e T q Pre- | | .
Milling Milling Washing — assembly Assembly

Fig. 2. Overview of the material flow in the production
line.

4.3. Simulation modelling

The simulation model of the production line was created
in the Plant Simulation DES software. The processes
durations are modelled as product-dependent, stochastic
cycle times, while the change-over times are given by a
4-dimensions matrix, characterized by the following
product parameters: product family, diameter and stroke
length. The sequence of the daily product mix is given as
an input for the model.

The goal of the simulation experiments is fo analyse the
sensitivity of the output to the key structural parameters
and to the input. These can be divided into two
categories, namely structural and operational parameters.
The operational parameters are the essential input
product sequence of the model. The structural parameters
define aspects of how the elements of the simulation
model behave. The following were identified as
structural parameters: size of buffers, machine
availability and workers availability.

In order to execute the sensitivity analysis, the ultimate
outputs of the simulation model are the completion date
of the orders and the total throughput time for the daily
production executed in 3 shifts.

4.4. Preliminary simulation experiments

Analysing the structural parameters is a typical
application of DES tools and despite the possibly large
domain of the variables such experiments can be handled
efficiently. The domain of the structural parameters are
summarized in Table 1.

Min Max | Values
Buffer size 0 o) 6
Human availability | 60% 100% |4
Machine availability |85% 100% |11

Table 1. The domain of the structural simulation
parameters.

The average runtime of an experiment is below 5
seconds, which means that —based on the defined values
of the domain—the structural parameters can be evaluated
in ~4000 seconds (assuming 3 experiments with each
setting). This is well within the usual time requirement
of complex simulation experiments; however, this
assumes only one product sequence along every
experiment. Unfortunately, the operational parameters
have a significant impact on the analysed structural
parameters and therefore they cannot be studied
separately. Another consequence is that, due to the larger
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domain of the input sequence (a daily product mix can
contain over 40 items) evaluating every combination is
no longer feasible in the available time.

Fig. 3. shows the results of a preliminary simulation
study, executed on experimentally defined scenarios,
using baseline data as input. It can be stated that the same
structural parameters resulted in completely different
outcome showing it is important to include the effect of
the product sequence (compared to exp! as baseline) into
the sensitivity analysis (denoted as expl/9-exp21 in Fig.
3).

A possible solution for handling this complexity is to
aggregate the input domain into a set of input scenarios,
which contain defined settings of both structural and
operational parameters.
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Fig. 3. Experiment settings (horizontal axis) exp16-21
deal with buffer sizes (structural parameters) and
sequences of jobs, showing significant relevance on
output (makespan, vertical axis, in hours).

4.5. Reducing the domain size of the input mix
The first step in handling the complexity is to reduce the
domain size defined by the daily input mixes. A daily
input mix is defined by the number of each product type
planned to be in production on a given day. Thus, it can
be formalized as a feature vector where each product type
is described by its planned daily amount. Collecting data
from a one-year time frame resulted in data for 243
workdays, where 39 different types of products were in
production. It is an important assumption that this period
is considered as representative for analyzing the behavior
of the system and, therefore, it is set as the baseline of the
analysis. The p=39 different products define the length
of the feature vector, with n=243 observations.
The aim of the reduction here is to define a set of
representative input mixes with a smaller cardinality than
n, which can provide a similar behavior of the system.
The system’s behavior is evaluated by using the
simulation model and comparing the following KPIs at
each experiment:

e  The average net lead-time (LT) of products.

e  The total makespan (MS) required to finish the

production of the input-mix.
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Fig. 4. Fluctuating daily workload

In order to create the reduced cardinality sets of input
mixes the baseline data was analyzed using unsupervised
learning, specifically clustering techniques. In this
approach the only features or descriptors applied during
the analysis were the above-mentioned daily workload of
each product type. Therefore, the same feature vectors
were used for measuring the dissimilarity between the
daily input mixes. In order to eliminate the distortion
caused by the fluctuation of the daily workload the
baseline data is normalized at each day (Fig. 4 shows the
fluctuation of the total daily workload).

On the normalized baseline data, the cluster analysis is
performed by hierarchical clustering as —by using
dendrogram— it provides an adequate visualization of the
dissimilarity even with a considerable number of features
without specifying the number of clusters beforehand.
The dendrogram is created by applying the average or
UPGMA algorithm. Fig. 5 shows the results of the
hierarchical clustering. Note that-because of the
normalization—the min (0) and max (1) values denote the
largest and smallest workload calculated for each day,
respectively.

Using the maxclust criteria the observations (i.e. the daily
input mixes) are grouped into a set of clusters, with the
following (decreasing) cardinality: 100, 50, 20, 10, 5.
This means that the original n observations were
represented by 100, 50, 20, 10, 5 cluster centroids each
of which is obtained by the geometric mean of the
observations assigned to each cluster. An example result
of the clustering, where the applied number of clusters is
10, is shown in Fig. 5.

Fig. 6. illustrates how the observations are assigned to
clusters in each case. Note, that for lower number of
clusters the majority of observations lie in one cluster.
Compared this with Fig 5, it can be concluded that these
major clusters represent days where a single product
rules the majority of the daily workload, while days with
more distributed workload form smaller clusters. The
higher the number of clusters the more distributed they
become over the daily observations.
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Fig. 5. Clustering the daily demands by quantity for
SKU-s

4.6. Discussion of the simulation results

In order to evaluate the results of the clustering the
centroids, which are using the normalized data, were
multiplied by a constant representing the planned
average daily workload, which is given by the company.
The newly calculated daily input mixes then were
evaluated by using the simulation model and compared
to the baseline data. The simulation experiments are
carried out with two settings. In the first run the daily
workload of each product is handled as a single batch,
while in the second run a simple lot splitting rule was
applied, which forms lots with a maximal size of 49 (a
value chosen as a best practice by the company).
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Fig. 6. The distribution of cluster labels for the 5 cluster sets
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Fig. 7. Simulated makespan values for the baseline data
and the five datasets created by clustering without lot-
size control.
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Fig. 8. Simulated makespan values for the baseline data
and the five datasets created by clustering with lot-size
control.

Fig. 7. shows the total makespan of daily input mixes
without lot-size control, and Fig. 8. shows the total
makespan with lot-size control. The figures display the
results by using swarmplots, which are able to show
cardinality of the clusters and the distribution of the
values as well. Note, that the total makespan decreases
when lot-size control is applied. This is probably due to
the fact that large-sized lots can easily block resources
for a long period of time, therefore causing low resource
utilization. It can be concluded that even the low
cardinality clusters represent the spread of the baseline
makespan data well for the majority of the observations.
However, it is also visible that the most extreme values
do not appear in clusters where the domain size reduction
is in the order of magnitude (C50, C20, C10, C5). This
phenomenon is even stronger when lot size control is
applied.

Fig. 9. shows the average lead-time for products in daily
input mixes without lot-size control, and Fig. 10. shows
the average lead-time with lot-size control. In these
cases, the approach appears to perform better, as—without
lot-size control-the spread hardly shrinks until dataset
C50 and only dataset C5 shows significant shrink. When
lot-size control is applied the results are even more
consistent until dataset C5.
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Fig. 9. Simulated average lead-time values for the
baseline data and the five datasets created by clustering
without lot-size control.
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Fig. 10. Simulated average lead-time values for the
baseline data and the five datasets created by clustering
with lot-size control.

5. SUMMARY AND OUTLOOK

The paper introduced a method based on advanced data
analysis for defining typical input scenarios, aiming to
reduce the computational complexity of Discrete Event
Simulation (DES) analysis.

The presented approach was tested in a real-life
combined (manufacturing and assembly) production line
of a high-mix low volume environment. The results
showed that using scenarios for representing the typical
input sets allowed significantly reducing the number of
experiments required to execute sensitivity analysis of
both the structural (e.g. buffer size or workforce) and the
operational (i.e. sequencing) parameters of the line.

A method was introduced, as a possible solution for
handling this complexity, in order to aggregate the input
domain into a set of input scenarios, which contain
defined settings of both structural and operational
parameters. Thus, reduced cardinality sets were provided
by clustering techniques on the input mixes of the
baseline data, formulating a set of representative input
mixes with a smaller cardinality.

In order to evaluate the results of the clustering, the
newly calculated daily input mixes were evaluated by
using the simulation model and compared to the baseline
data.

It can be stated that by applying the proposed methods
even the low cardinality clusters represent the spread of
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the baseline makespan and lead-time data well for the
majority of the observations. However, it is also visible
that the most extreme values do not appear in clusters
where the domain size reduction is in the order of
magnitude

As an outlook, the research work presented in the paper
had two distinct goals. On the one hand, to validate, ifthe
methods are applicable for the reduction of the number
of scenarios needed for a comprehensive simulation
analysis on system-sensitivity. On the other hand,
categorization of the main input factor (Demand) could
result in assigning situation-related sequencing and lot-
sizing rules to a finite number of demand patterns. This
would support the planner in creating production
schedules/sequences by applying a formalized method,
considering the reduction of lead-time variance, as a
primary target.

The proposed solution is intended to be extended by
more comprehensive analysis on applying and
comparing different clustering methods, as well as
introducing new dissimilarity measures for the clustering
algorithms. Moreover, a set of new experiments on
selecting other production related KPIs would be
necessary, by applying the new data available from the
clustering.
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