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Abstract
Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined
as follows: given an n-vertex undirected graph G and a weight function w : V (G) → R+, find a
minimum weight subset S ⊆ V (G) such that G−S belongs to F . This is known as Weighted F
Vertex Deletion problem. In this paper we devise a recursive scheme to obtain O(logO(1) n)-
approximation algorithms for such problems, building upon the classical technique of finding
balanced separators in a graph. Roughly speaking, our scheme applies to those problems, where
an optimum solution S together with a well-structured set X, form a balanced separator of the
input graph. In this paper, we obtain the first O(logO(1) n)-approximation algorithms for the
following vertex deletion problems.

Let F be a finite set of graphs containing a planar graph, and F = G(F) be the family of
graphs such that every graph H ∈ G(F) excludes all graphs in F as minors. The vertex
deletion problem corresponding to F = G(F) is the Weighted Planar F-Minor-Free
Deletion (WPF-MFD) problem. We give randomized and deterministic approximation
algorithms for WPF-MFD with ratios O(log1.5 n) and O(log2 n), respectively. Previously,
only a randomized constant factor approximation algorithm for the unweighted version of the
problem was known [FOCS 2012].
We give an O(log2 n)-factor approximation algorithm for Weighted Chordal Vertex
Deletion (WCVD), the vertex deletion problem to the family of chordal graphs. On the way
to this algorithm, we also obtain a constant factor approximation algorithm for Multicut
on chordal graphs.
We give an O(log3 n)-factor approximation algorithm for Weighted Distance Hereditary
Vertex Deletion (WDHVD), also known as Weighted Rankwidth-1 Vertex Dele-
tion (WR-1VD). This is the vertex deletion problem to the family of distance hereditary
graphs, or equivalently, the family of graphs of rankwidth one.

We believe that our recursive scheme can be applied to obtain O(logO(1) n)-approximation al-
gorithms for many other problems as well.
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1 Introduction

Let F be a family of undirected graphs. Then a natural optimization problem is as follows.

Weighted F Vertex Deletion
Input: An undirected graph G and a weight function w : V (G)→ R+.
Question: Find a minimum weight subset S ⊆ V (G) such that G− S belongs to F .

The Weighted F Vertex Deletion problem captures a wide class of node (or vertex)
deletion problems that have been studied from the 1970s. For example, when F is the
family of independent sets, forests, bipartite graphs, planar graphs, and chordal graphs,
then the corresponding vertex deletion problem corresponds to Weighted Vertex Cover,
Weighted Feedback Vertex Set, Weighted Vertex Bipartization (also called
Weighted Odd Cycle Transversal), Weighted Planar Vertex Deletion and
Weighted Chordal Vertex Deletion, respectively. By a classic theorem of Lewis and
Yannakakis [29], the decision version of the Weighted F Vertex Deletion problem –
deciding whether there exists a set S weight at most k, such that removing S from G results
in a graph with property Π – is NP-complete for every non-trivial hereditary property1 Π.

Characterizing the graph properties, for which the corresponding vertex deletion problems
can be approximated within a bounded factor in polynomial time, is a long standing open
problem in approximation algorithms [43]. In spite of a long history of research, we are still far
from a complete characterization. Constant factor approximation algorithms for Weighted
Vertex Cover are known since 1970s [5, 32]. Lund and Yannakakis observed that the vertex
deletion problem for any hereditary property with a “finite number of minimal forbidden
induced subgraphs” can be approximated within a constant ratio [30]. They conjectured that
for every nontrivial, hereditary property Π with an infinite forbidden set, the corresponding
vertex deletion problem cannot be approximated within a constant ratio. However, it was
later shown that Weighted Feedback Vertex Set, which doesn’t have a finite forbidden
set, admits a constant factor approximation [3, 6], thus disproving their conjecture. On the

1 A graph property Π is simply a family of graphs closed under isomorphism, and it is called non-trivial if
there exists an infinite number of graphs that are in Π, as well as an infinite number of graphs that
are not in Π. A non-trivial graph property Π is called hereditary if G ∈ Π implies that every induced
subgraph of G is also in Π.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.1
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other hand a result by Yannakakis [42] shows that, for a wide range of graph properties Π,
approximating the minimum number of vertices to delete in order to obtain a connected
graph with the property Π within a factor n1−ε is NP-hard. We refer to [42] for the precise
list of graph properties to which this result applies to, but it is worth mentioning the list
includes the class of acyclic graphs and the class of outerplanar graphs.

In this paper, we explore the approximability of Weighted F Vertex Deletion for
several different families F and design O(logO(1) n)-factor approximation algorithms for these
problems. More precisely, our results are as follows.
1. Let F be a finite set of graphs that includes a planar graph. Let F = G(F) be the

family of graphs such that every graph H ∈ G(F) does not contain a graph from F

as a minor. The vertex deletion problem corresponding to F = G(F) is known as
the Weighted Planar F-Minor-Free Deletion (WPF-MFD). The WPF-MFD
problem is a very generic problem and by selecting different sets of forbidden minors
F, one can obtain various fundamental problems such as Weighted Vertex Cover,
Weighted Feedback Vertex Set or Weighted Treewidth η-Deletion. Our first
result is a randomized O(log1.5 n)-factor (deterministic O(log2 n)-factor) approximation
algorithm for WPF-MFD, for any finite F that contains a planar graph.

2. We give an O(log2 n)-factor approximation algorithm for Weighted Chordal Vertex
Deletion (WCVD), the vertex deletion problem corresponding to the family of chordal
graphs. On the way to this algorithm, we also obtain a constant factor approximation
algorithm for Weighted Multicut in chordal graphs.

3. We give an O(log3 n)-factor approximation algorithm for Weighted Distance Hered-
itary Vertex Deletion (WDHVD), also known as the Weighted Rankwidth-1
Vertex Deletion (WR-1VD) problem. It is the vertex deletion problem corresponding
to the family of distance hereditary graphs, or equivalently graphs of rankwidth 1.

All our algorithms follow the same recursive scheme: find “well structured balanced separators”
in the graph by exploiting the properties of the family F , and then use structure of the
balanced separator to obtain a approximate solution. In the following, we first describe
the methodology by which we design all these approximation algorithms. Then, we give a
brief overview, consisting of known results and our contributions, for each problem we study.
Let us also mention that these problems inherit the hardness of approximation of Vertex
Cover via simple reductions. In particular, they don’t admit a PTAS (polynomial time
approximation scheme) unless P = NP.

Our Methods

Multicommodity max-flow min-cut theorems are a classical technique in designing approx-
imation algorithms, which was pioneered by Leighton and Rao in their seminal paper [28].
This approach can be viewed as using balanced vertex (or edge) separators2 in a graph to
obtain a divide-and-conquer approximation algorithm. In a typical application, the optimum
solution S, forms a balanced separator of the graph. Thus, the idea is to find a minimum
cost balanced separator W of the graph and add it to the solution, and then recursively
solve the problem on each of the connected components. This leads to an O(logO(1) n)-factor
approximation algorithm for the problem in question.

2 Roughly speaking, a balanced vertex separator is a set of vertices W , such that any connected component
of G−W contains at most 2

3 of the vertices of G.
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Our recursive scheme is a strengthening of this approach which exploits the structural
properties of the family F . Here the optimum solution S∗ need not be a balanced separator of
the graph. Indeed, a balanced separator of the graph could be much larger than S∗. Rather,
S∗ along with a possibly large but well-structured subset of vertices X, forms a balanced
separator of the graph. We then exploit the presence of such a balanced separator in the
graph to compute an approximate solution. Consider a family F for which Weighted F
Vertex Deletion is amenable to our approach, and let G be an instance of this problem.
Let S be the approximate solution that we will compute. Our approximation algorithm has
the following steps:
1. Find a well-structured set X, such that G−X has a balanced separator W which is not

too costly.
2. Next, compute the balanced separator W of G−X using the known factor O(

√
logn)-

approximation algorithm (or deterministic O(logn)-approximation algorithm) for
Weighted Vertex Separators [12, 28]. Then add W into the solution set S and
recursively solve the problem on each connected component of G−(X∪S). Let S1, · · · , S`

be the solutions returned by the recursive calls. We add S1, · · · , S` to the solution S.
3. Finally, we add X back into the graph and consider the instance (G− S) ∪X. Observe

that, V (G − S) can be partitioned into V ′ ]X, where G[V ′] belongs to F and X is a
well-structured set. We call such instances, the special case of Weighted F Vertex
Deletion. We apply an approximation algorithm that exploits the structural properties
of the special case to compute a solution.

Now consider the problem of finding the structure X. One way is to enumerate all the
candidates for X and then pick the one where G −X has a balanced vertex separator of
least cost – this separator plays the role of W . However, the number of candidates for X in
a graph could be too many to enumerate in polynomial time. For example, in the case of
Weighted Chordal Vertex Deletion, the set X will be a clique in the graph, and the
number of maximal cliques in a graph on n vertices could be as many as 3 n

3 [31]. Hence, we
cannot enumerate and test every candidate structure in polynomial time. However, we can
exploit certain structural properties of family F , to reduce the number of candidates for X
in the graph. In our problems, we “tidy up” the graph by removing “short obstructions” that
forbid the graph from belonging to the family F . Then one can obtain an upper bound on
the number of candidate structures. In the above example, recall that a graph G is chordal
if and only if there are no induced cycles of length 4 or more. It is known that a graph G
without any induced cycle of length 4 has at most O(n2) maximal cliques [11]. Observe that,
we can greedily compute a set of vertices which intersects all induced cycles of length 4 in the
graph. Therefore, at the cost of factor 4 in the approximation ratio, we can ensure that the
graph has only polynomially many maximal cliques. Hence, one can enumerate all maximal
cliques in the remaining graph [41] to test for X.

Next consider the task of solving an instance of the special case of the problem. We again
apply a recursive scheme, but now with the advantage of a much more structured graph. By a
careful modification of an LP solution to the instance, we eventually reduce it to instances of
Weighted Multicut. In the above example, for Weighted Chordal Vertex Deletion
we obtain instances of Weighted Multicut on a chordal graph. We follow this approach
for all three problems that we study in this paper. We believe our recursive scheme can be
applied to obtain O(logO(1) n)-approximation algorithms for Weighted F Vertex (Edge)
Deletion corresponding to several other graph families F .

Weighted Planar F-Minor-Free Deletion. Let F be a finite set of graphs containing a
planar graph. The vertex deletion problem corresponding to F is defined as follows.
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Weighted Planar F-Minor-Free Deletion (WPF-MFD)
Input: An undirected graph G and a weight function w : V (G)→ R+.
Question: Find a minimum weight subset S ⊆ V (G) such that G− S does not contain
any graph in F as a minor.

The WPF-MFD problem is a very generic problem that encompasses several known
problems. To explain the versatility of the problem, we require a few definitions. A graph H
is called a minor of a graph G if we can obtain H from G by a sequence of vertex deletions,
edge deletions and edge contractions, and a family of graphs F is called minor closed if G ∈ F
implies that every minor of G is also in F . Given a graph family F , by ForbidMinor(F)
we denote the family of graphs such that G ∈ F if and only if G does not contain any
graph in ForbidMinor(F) as a minor. By the celebrated Graph Minor Theorem of Robertson
and Seymour, every minor closed family F is characterized by a finite family of forbidden
minors [39]. That is, ForbidMinor(F) has finite size. Indeed, the size of ForbidMinor(F)
depends on the family F . Now for a finite collection of graphs F, as above, we may define
the Weighted F-Minor-Free Deletion problem. And observe that, even though the
definition of Weighted F-Minor-Free Deletion we only consider finite sized F, this
problem actually encompasses deletion to every minor closed family of graphs. Let G be the
set of all finite undirected graphs, and let L be the family of all finite subsets of G. Thus,
every element F ∈ L is a finite set of graphs, and throughout the paper we assume that F is
explicitly given. In this paper, we show that when F ∈ L contains at least one planar graph,
then it is possible to obtain an O(logO(1) n)-factor approximation algorithm for WPF-MFD.

The case where F contains a planar graph, while being considerably more restricted than
the general case, already encompasses a number of the well-studied instances of WPF-MFD.
For example, when F = {K2}, a complete graph on two vertices, this is the Weighted
Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the Weighted
Feedback Vertex Set problem. Another fundamental problem, which is also a special
case of WPF-MFD, is Weighted Treewidth-η Vertex Deletion or Weighted η-
Transversal. Here the task is to delete a minimum weight vertex subset to obtain a graph
of treewidth at most η. Since any graph of treewidth η excludes a (η + 1) × (η + 1) grid
as a minor, we have that the set F of forbidden minors of treewidth η graphs contains a
planar graph. Treewidth-η Vertex Deletion plays an important role in generic efficient
polynomial time approximation schemes based on Bidimensionality theory [16, 17]. Other
examples of Planar F-Minor-Free Deletion problems that can be found in the literature
on approximation and parameterized algorithms, are the cases of F being {K2,3,K4}, {K4},
{θc}, and {K3, T2}, which correspond to removing vertices to obtain an outerplanar graph, a
series-parallel graph, a diamond graph, and a graph of pathwidth 1, respectively.

Apart from the case of Weighted Vertex Cover [5, 32] and Weighted Feedback
Vertex Set [3, 6], there was not much progress on approximability/non-approximability
of WPF-MFD until the work of Fiorini, Joret, and Pietropaoli [13], which gave a constant
factor approximation algorithm for the case of WPF-MFD where F is a diamond graph,
i.e., a graph with two vertices and three parallel edges. In 2011, Fomin et al. [14] considered
Planar F-Minor-Free Deletion (i.e. the unweighted version of WPF-MFD) in full
generality and designed a randomized (deterministic) O(log1.5 n)-factor (O(log2 n)-factor)
approximation algorithm for it. Later, Fomin et al. [15] gave a randomized constant factor
approximation algorithm for Planar F-Minor-Free Deletion. Our algorithm for WPF-
MFD extends this result to the weighted setting, at the cost of increasing the approximation
factor to logO(1) n.

APPROX/RANDOM 2018
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I Theorem 1. For every set F ∈ L, WPF-MFD admits a randomized (deterministic)
O(log1.5 n)-factor (O(log2 n)-factor) approximation algorithm.

We mention some recent related works. Bansal et al. [4] have studied the edge deletion
version of the Treewidth-η Vertex Deletion problem, under the name Bounded
Treewidth Interdiction Problem, and gave a bicriteria approximation algorithm. In
particular, for a graph G and an integer η > 0, they gave a polynomial time algorithm
that finds a subset of edges F ′ of G such that |F ′| ≤ O((logn log logn) · opt) and the
treewidth of G−F ′ is O(η log η). In our setting where η is a fixed constant, this immediately
implies a factor O(logn log logn) approximation algorithm for the edge deletion version of
WPF-MFD.3 However, it is not immediately clear if their approach can be extended to
WPF-MFD.4 Very recently, Gupta et al. [22] have given O(log `) approximation algorithm
for (unweighted) Planar F-Minor-Free Deletion, where ` is the maximum number of
vertices in any planar graph in F.

Weighted Chordal Vertex Deletion. This problem is defined as follows.

Weighted Chordal Vertex Deletion (WCVD)
Input: An undirected graph G and a weight function w : V (G)→ R+.
Question: Find a minimum weight subset S ⊆ V (G) such that G − S is a chordal
graph.

The class of chordal graphs is a natural class of graphs that has been extensively studied
from the viewpoints of Graph Theory and Algorithm Design. Many important problems
that are NP-hard on general graphs, such as Independent Set, and Graph Coloring
are solvable in polynomial time once restricted to the class of chordal graphs [21]. Recall
that a graph is chordal if and only if it does not have any induced cycle of length 4 or more.
Thus, Chordal Vertex Deletion (CVD) can be viewed as a natural variant of the
classic Feedback Vertex Set (FVS). Indeed, while the objective of FVS is to eliminate
all cycles, the CVD problem only asks us to eliminate induced cycles of length 4 or more.
Despite the apparent similarity between the objectives of these two problems, the design of
approximation algorithms for WCVD is very challenging. In particular, chordal graphs can
be dense – indeed, a clique is a chordal graph. As we cannot rely on the sparsity of output,
our approach must deviate from those employed by approximation algorithms from FVS.
That being said, chordal graphs still retain some properties that resemble those of trees,
and these properties are utilized by our algorithm. Prior to our work, only two non-trivial
approximation algorithms for CVD were known. The first one, by Jansen and Pilipczuk [26],
is a deterministic O(opt2 log opt logn)-factor approximation algorithm, and the second one,
by Agrawal et al. [1], is a deterministic O(opt log2 n)-factor approximation algorithm. The
second result implies that CVD admits an O(

√
n logn)-factor approximation algorithm.5 In

this paper we obtain the first O(logO(1) n)-approximation algorithm for WCVD.

I Theorem 2. CVD admits a deterministic O(log2 n)-factor approximation algorithm.

3 One can run their algorithm first and remove the solution output by their algorithm to obtain a
graph of treewidth at most O(η log η). Then one can find an optimal solution using standard dynamic
programming.

4 We thank Nikhil Bansal and Seeun William Umboh for several discussions and for pointing us that their
algorithm does not work for WPF-MFD.

5 If opt ≥
√
n/ logn, we output a greedy solution to the input graph, and otherwise we have that

opt log2 n ≤
√
n logn, hence we call the O(opt log2 n)-factor approximation algorithm.
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While this approximation algorithm follows our general scheme, it also requires us to
incorporate several new ideas. In particular, to implement the third step of the scheme, we
need to design a different O(logn)-factor approximation algorithm for the special case of
WCVD where the vertex-set of the input graph G can be partitioned into two sets, X and
V (G)\X, such that G[X] is a clique and G[V (G)\X] is a chordal graph. This approximation
algorithm is again based on recursion, but it is more involved. At each recursive call, it
carefully manipulates a fractional solution of a special form. Moreover, to ensure that its
current problem instance is divided into two subinstances that are independent and simpler
than their origin, we introduce multicut constraints. In addition to these constraints, we
keep track of the complexity of the subinstances, which is measured via the cardinality of
the maximum independent set in the graph. Our multicut constraints result in an instance
of Weighted Multicut, which we ensure is on a chordal graph.

Weighted Multicut
Input: An undirected graph G, a weight function w : V (G) → R+ and a set T =
{(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G.
Question: Find a minimum weight subset S ⊆ V (G) such that for any pair (si, ti) ∈ T ,
G− S does not have any path between si and ti.

For Weighted Multicut on chordal graphs, no constant-factor approximation algorithm
was previously known. We remark that Weighted Multicut is NP-hard on trees [19], and
hence it is also NP-hard on chordal graphs. We design the first such algorithm, which our
main algorithm employs as a black box.

I Theorem 3. Weighted Multicut admits a constant-factor approximation algorithm on
chordal graphs.

This algorithm is inspired by the work of Garg, Vazirani and Yannakakis on Weighted
Multicut on trees [19]. Here, we carefully exploit the well-known characterization of the
class of chordal graphs as the class of graphs that admit clique forests. We believe that this
result is of independent interest. The algorithm by Garg, Vazirani and Yannakakis [19] is a
classic primal-dual algorithm. A more recent algorithm, by Golovin, Nagarajan and Singh
[20], uses total unimodularity to obtain a different algorithm for Multicut on trees.

Weighted Distance Hereditary Vertex Deletion. Let us start with the formal definition.

Weighted Distance Hereditary Vertex Deletion (WDHVD)
Input: An undirected graph G and a weight function w : V (G)→ R+.
Question: Find a minimum weight subset S ⊆ V (G) such that G − S is a distance
hereditary graph.

A graph G is a distance hereditary graph (also called a completely separable graph [23])
if the distances between vertices in every connected induced subgraph of G are the same as
in the graph G. Distance hereditary graphs were named and first studied by Hworka [25].
However, an equivalent family of graphs was earlier studied by Olaru and Sachs [40] and
shown to be perfect. It was later discovered that these graphs are precisely the graphs of
rankwidth one [33].

Rankwidth is a graph parameter introduced by Oum and Seymour [36] to approximate
yet another graph parameter called Cliquewidth. The notion of cliquewidth was defined by
Courcelle and Olariu [9] as a measure of how “clique-like” the input graph is. This is similar
to the notion of treewidth, which measures how “tree-like” the input graph is. One of the

APPROX/RANDOM 2018



1:8 Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems

main motivations was that several NP-complete problems become tractable on the family of
cliques (complete graphs), the assumption was that these algorithmic properties extend to
“clique-like” graphs [8]. However, computing cliquewidth and the corresponding cliquewidth
decomposition seems to be computationally intractable. This then motivated the notion of
rankwidth, which is a graph parameter that approximates cliquewidth well while also being
algorithmically tractable [36, 34]. For more information on cliquewidth and rankwidth, we
refer to the surveys by Hlinený et al. [24] and Oum [35].

As algorithms for Treewidth-η Vertex Deletion are applied as subroutines to solve
many graph problems, we believe that algorithms for Weighted Rankwidth-η Vertex
Deletion (WR-ηVD) will be useful in this respect. In particular, Treewidth-η Vertex
Deletion has been considered in designing efficient approximation, kernelization and fixed
parameter tractable algorithms for WPF-MFD and its unweighted counterpart Planar
F-Minor-Free Deletion [4, 14, 16, 17, 18]. Along similar lines, we believe that WR-
ηVD and its unweighted counterpart will be useful in designing efficient approximation,
kernelization and fixed parameter tractable algorithms for Weighted F Vertex Deletion
where F is characterized by a finite family of forbidden vertex minors [33].

Recently, Kim and Kwon [27] designed an O(opt2 logn)-factor approximation algorithm
for Distance Hereditary Vertex Deletion (DHVD). This result implies that DHVD
admits an O(n2/3 logn)-factor approximation algorithm. In this paper, we take first step
towards obtaining a good approximation algorithm for WR-ηVD by designing a O(logO(1) n)-
factor approximation algorithm for WDHVD.

I Theorem 4. WDHVD or WR-1VD admits an O(log3 n)-factor approximation algorithm.

We note that several steps of our approximation algorithm for WR-1VD can be generalized
for an approximation algorithm for WR-ηVD and thus we believe that our approach should
yield an O(logO(1) n)-factor approximation algorithm for WR-ηVD. We leave that as an
interesting open problem for the future.

Organization of the paper

Due to space constraints, we only present the details of Weighted Planar F-Minor-Free
Deletion in this extended abstract. The details of the algorithms for Weighted Chordal
Vertex Deletion and Weighted Distance Hereditary Vertex Deletion will appear
in the full version of the paper (see [2]). Graph theoretic preliminaries have been deferred to
the appendix.

2 Approximation Algorithm for WPF-MFD

In this section we prove Theorem 1. We can assume that the weight w(v) of each vertex
v ∈ V (G) is positive, else we can insert v into any solution. Below we state a result from [37],
which will be useful in our algorithm.

I Proposition 5 ([37]). Let F be a finite set of graphs such that F contains a planar graph.
Then, any graph G that excludes any graph from F as a minor satisfies tw(G) ≤ c = c(F).

We let c = c(F) to be the constant returned by Proposition 5. The approximation
algorithm for WPF-MFD comprises of two components. The first component handles the
special case where the vertex set of input graph G can be partitioned into two sets C and X
such that |C| ≤ c+ 1 and H = G[X] is an F-minor free graph. We note that there can be
edges between vertices in C and vertices in H. We show that for these special instances, in
polynomial time we can compute the size of the optimum solution and a set realizing it.
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The second component is a recursive algorithm that solves general instances of the
problem. Here, we gradually disintegrate the general instance until it becomes an instance of
the special type where we can resolve it in polynomial time. More precisely, for each guess of
c+ 1 sized subgraph M of G, we find a small separator S (using an approximation algorithm)
that together with M breaks the input graph into two graphs significantly smaller than their
origin. It first removes M ∪ S, and solves each of the two resulting subinstances by calling
itself recursively; then, it inserts M back into the graph, and uses the solutions it obtained
from the recursive calls to construct an instance of the special case which is then solved by
the first component.

2.1 Constant sized graph + F-minor free graph
We first handle the special case where the input graph G consists of a graph M of size at
most c+ 1 and an F-minor free graph H. We refer to this algorithm as Special-WP. More
precisely, along with the input graph G and the weight function w, we are also given a graph
M with at most c+ 1 vertices and an F-minor free graph H such that V (G) = V (M)∪V (H),
where the vertex-sets V (M) and V (H) are disjoint. Note that the edge-set E(G) may contain
edges between vertices in M and vertices in H. We will show that such instances may be
solved optimally in polynomial time. We start with the following easy observation.

I Observation 6. Let G be a graph with V (G) = X ] Y , such that |X| ≤ c+ 1 and G[Y ] is
an F-minor free graph. Then, the treewidth of G is at most 2c+ 1.

I Lemma 7. Let G be a graph of treewidth t with a non-negative weight function w on the
vertices, and let F be a finite family of graphs. Then, one can compute a minimum weight
vertex set S such that G− S is F-minor free, in time f (q, t) · n, where n is the number of
vertices in G and q is a constant that depends only on F.

Proof. This follows from the fact that finding such a set S is expressible as an MSO-
optimization formula φ whose length, q, depends only on the family F [15]. Then, by
Theorem 7 [7], we can compute an optimal sized set S in time f (q, t) · n. J

Now, we apply the above lemma to the graph G and the family F, and obtain a minimum
weight set S such that G− S is F-minor free.

2.2 General Graphs
We proceed to handle general instances by developing a d · log2 n-factor approximation
algorithm for WPF-MFD, Gen-WP-APPROX, thus proving the correctness of Theorem 1.
The exact value of the constant d will be determined later.

Recursion. We define each call to our algorithm Gen-WP-APPROX to be of the form (G′, w′),
where (G′, w′) is an instance of WPF-MFD such that G′ is an induced subgraph of G, and
we denote n′ = |V (G′)|.

Goal. For each recursive call Gen-WP-APPROX(G′, w′), we aim to prove the following.

I Lemma 8. Gen-WP-APPROX returns a solution that is at least opt and at most d
2 · log2 n′ ·

opt. Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.
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At each recursive call, the size of the graph G′ becomes smaller. Thus, when we prove that
Lemma 8 is true for the current call, we assume that the approximation factor is bounded by
d
2 · log2 n̂ · opt for any call where the size n̂ of the vertex-set of its graph is strictly smaller
than n′.

Termination. In polynomial time we can test whether G′ has a minor F ∈ F [38]. Further-
more, for each M ⊆ V (G) of size at most c+ 1, we can check if G−M has a minor F ∈ F.
If G−M is F-minor free then we are in a special instance, where G−M is F minor free and
M is a constant sized graph. We optimally resolve this instance in polynomial time using
the algorithm Special-WP. Since we output an optimal sized solution in the base cases, we
thus ensure that at the base case of our induction Lemma 8 holds.

Recursive Call. For the analysis of a recursive call, let S∗ denote a hypothetical set that
realizes the optimal solution opt of the current instance (G′, w′). Let (F, β) be a forest
decomposition of G′−S∗ of width at most c, whose existence is guaranteed by Proposition 5.
Using standard arguments on forests we have the following observation.

I Observation 9. There exists a node v ∈ V (F ) such that β(v) is a balanced separator for
G′ − S∗.

From Observation 9 we know that there exists a node v ∈ V (F ) such that β(v) is a
balanced separator for G′ − S∗. This together with the fact that G′ − S∗ has treewidth at
most c results in the following observation.

I Observation 10. There exist a subset M ⊆ V (G′) of size at most c + 1 and a subset
S ⊆ V (G′) \M of weight at most opt such that M ∪ S is a balanced separator for G′.

This gives us a polynomial time algorithm as stated in the following lemma.

I Lemma 11. There is a deterministic (randomized) algorithm which in polynomial-time
finds M ⊆ V (G′) of size at most c + 1 and a subset S ⊆ V (G′) \M of weight at most
q · logn′ · opt (q∗ ·

√
logn′ · opt) for some fixed constant q (q∗) such that M ∪ S is a balanced

separator for G′.

Proof. Note that we can enumerate everyM ⊆ V (G′) of size at most c+1 in time O(nc). For
each such M , we can either run the randomized q∗ ·

√
logn′-factor approximation algorithm

by Feige et al. [12] or the deterministic q · logn′-factor approximation algorithm by Leighton
and Rao [28] to find a balanced separator SM of G′ −M . Here, q and q∗ are fixed constants.
By Observation 10, there is a set S in {SM : M ⊆ V (G′) and M ≤ c + 1} such that
w(S) ≤ q · logn′ · opt (w(S) ≤ q∗ ·

√
logn′ · opt). Thus, the desired output is a pair (M,S)

where M is one of the vertex subset of size at most c+ 1 such that SM = S. J

We call the algorithm in Lemma 11 to obtain a pair (M,S). Since M ∪ S is a balanced
separator for G′, we can partition the set of connected components of G′ − (M ∪ S) into
two sets, A1 and A2, such that for V1 =

⋃
A∈A1

V (A) and V2 =
⋃

A∈A2
V (A) it holds that

n1, n2 ≤ 2
3n
′ where n1 = |V1| and n2 = |V2|. We remark that we use different algorithms for

finding a balanced separator in Lemma 11 based on whether we are looking for a randomized
algorithm or a deterministic algorithm.

Next, we define two inputs of (the general case of) WPF-MFD: I1 = (G′[V1], w′|V1) and
I2 = (G′[V2], w′|V2). Let opt1 and opt2 denote the optimal solutions to I1 and I2, respectively.
Observe that since V1 ∩ V2 = ∅, it holds that opt1 + opt2 ≤ opt. We solve each of the
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subinstances by recursively calling algorithm Gen-WP-APPROX. By the inductive hypothesis,
we thus obtain two sets, S1 and S2, such that G′[V1]− S1 and G′[V2]− S2 are F-minor free
graphs, and w′(S1) ≤ d

2 · log2 n1 · opt1 and w′(S2) ≤ d
2 · log2 n2 · opt2.

We proceed by defining an input of the special case of WPF-MFD: J = (G′[(V1 ∪ V2 ∪
M) \ (S1 ∪ S2)], w′|(V1∪V2∪M)\(S1∪S2)). Observe that G′[V1 \ S1] and G′[V2 \ S2] are F-minor
free graphs and there are no edges between vertices in V1 and vertices in V2 in G′ −M , and
M is of constant size. Therefore, we resolve this instance by calling algorithm Special-WP.
We thus obtain a set, Ŝ, such that G′[(V1 ∪ V2 ∪M) \ (S1 ∪ S2 ∪ Ŝ)] is a F-minor graph, and
w′(Ŝ) ≤ opt (since |(V1 ∪ V2 ∪M) \ (S1 ∪ S2)| ≤ n′ and the optimal solution of each of the
special subinstances is at most opt).

Observe that any obstruction in G′ − S is either completely contained in G′[V1], or
completely contained in G′[V2], or it contains at least one vertex from M . This observation,
along with the fact that G′[(V1 ∪ V2 ∪M) \ (S1 ∪ S2 ∪ Ŝ)] is a F-minor free graph, implies
that G′ − T is a F-minor free graph where T = S ∪ S1 ∪ S2 ∪ Ŝ. Thus, it is now sufficient to
show that w′(T ) ≤ d

2 · (logn′)2 · opt.
By the discussion above, we have that

w′(T ) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ)
≤ q · logn′ · opt + d

2 · ((logn1)2 · opt1 + (logn2)2 · opt2) + opt

Recall that n1, n2 ≤ 2
3n
′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T ) < q · logn′ · opt + d
2 · (log 2

3n
′)2 · opt + opt

< d
2 · (logn′)2 · opt + logn′ · opt · (q + 1 + d

2 · (log 3
2 )2 − d

2 · 2 · log 3
2 ).

Overall, we conclude that to ensure that w′(T ) ≤ d
2 ·log2 n′·opt, it is sufficient to ensure that

q+1+ d
2 ·(log 3

2 )2− d
2 ·2 · log 3

2 ≤ 0, which can be done by fixing d = 2
2 log 3

2 − (log 3
2 )2 · (q + 1).

If we use the O(
√

logn)-factor approximation algorithm by Feige et al. [12] for finding
a balance separator in Lemma 11, then we can do the analysis similar to the deterministic
case and obtain a randomized factor-O(log1.5 n)approximation algorithm for WPF-MFD.

3 Conclusion

In this paper, we designed O(logO(1) n)-approximation algorithms for Weighted Planar
F-Minor-Free Deletion, Weighted Chordal Vertex Deletion and Weighted
Distance Hereditary Vertex Deletion (or Weighted Rankwidth-1 Vertex Dele-
tion). These algorithms are the first ones for these problems whose approximation factors are
bounded by O(logO(1) n). Along the way, we also obtained a constant-factor approximation
algorithm for Weighted Multicut on chordal graphs. All our algorithms are based on the
same recursive scheme. We believe that the scope of applicability of our approach is very
wide. We would like to conclude our paper with the following concrete open problems.

Does Weighted Planar F-Minor-Free Deletion admit a constant-factor approx-
imation algorithm? Furthermore, studying families F that do not necessarily contain a
planar graph is another direction for further research.
Does Weighted Chordal Vertex Deletion admit a constant-factor approximation
algorithm?
Does Weighted Rankwidth-η Vertex Deletion admit a O(logO(1) n)-factor approx-
imation algorithm?
On which other graph classes Weighted Multicut admits a constant-factor approxim-
ation?
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A Preliminaries

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}. Given a function
f : A→ B and a subset A′ ⊆ A, we let f |A′ denote the function f restricted to the domain
A′.

Graphs. Given a graph G, we let V (G) and E(G) denote its vertex-set and edge-set,
respectively. In this paper, we only consider undirected graphs. We let n = |V (G)| denote the
number of vertices in the graph G, where G will be clear from context. The open neighborhood,
or simply the neighborhood, of a vertex v ∈ V (G) is defined as NG(v) = {w | {v, w} ∈ E(G)}.
The closed neighborhood of v is defined as NG[v] = NG(v) ∪ {v}. The degree of v is
defined as dG(v) = |NG(v)|. We can extend the definition of the neighborhood of a vertex
to a set of vertices as follows. Given a subset U ⊆ V (G), NG(U) =

⋃
u∈U NG(u) and

NG[U ] =
⋃

u∈U NG[u]. The induced subgraph G[U ] is the graph with vertex-set U and
edge-set {{u, u′} | u, u′ ∈ U, and {u, u′} ∈ E(G)}. Moreover, we define G−U as the induced
subgraph G[V (G) \ U ]. We omit subscripts when the graph G is clear from context. For
graphs G and H, by G ∩H, we denote the graph with vertex set as V (G) ∩ V (H) and edge
set as E(G) ∩ E(H). An independent set in G is a set of vertices such that there is no edge
in G between any pair of vertices in this set. The independence number of G, denoted by
α(G), is defined as the cardinality of the largest independent set in G. A clique in G is a set
of vertices such that there is an edge in G between every pair of vertices in this set.

A path P = (x1, x2, . . . , x`) inG is a subgraph ofG where V (P ) = {x1, x2, . . . , x`} ⊆ V (G)
and E(P ) = {{x1, x2}, {x2, x3}, . . . , {x`−1, x`}} ⊆ E(G), where ` ∈ [n]. The vertices x1 and
x` are called the endpoints of the path P and the remaining vertices in V (P ) are called the
internal vertices of P . We also say that P is a path between x1 and x` or connects x1 and x`.
A cycle C = (x1, x2, . . . , x`) in G is a subgraph of G where V (C) = {x1, x2, . . . , x`} ⊆ V (G)
and E(C) = {{x1, x2}, {x2, x3}, . . . , {x`−1, x`}, {x`, x1}} ⊆ E(G), i.e., it is a path with an
additional edge between x1 and x`. The graph G is connected if there is a path between every
pair of vertices in G, otherwise G is disconnected. A connected graph without any cycles is
a tree, and a collection of trees is a forest. A maximal connected subgraph of G is called
a connected component of G. Given a function f : V (G)→ R and a subset U ⊆ V (G), we
denote f(U) =

∑
v∈U f(v). Moreover, we say that a subset U ⊆ V (G) is a balanced separator

for G if for each connected component C in G − U , it holds that |V (C)| ≤ 2
3 |V (G)|. We

refer the reader to [10] for details on standard graph theoretic notations and terminologies
that are not explicitly defined here.

Forest Decompositions. A forest decomposition of a graph G is a pair (F, β) where F is
forest, and β : V (T )→ 2V (G) is a function that satisfies the following:
1.

⋃
v∈V (F ) β(v) = V (G);

2. for any edge {v, u} ∈ E(G), there is a node w ∈ V (F ) such that v, u ∈ β(w);
3. for any v ∈ V (G), the collection of nodes Tv = {u ∈ V (F ) | v ∈ β(u)} is a subtree of F .
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For v ∈ V (F ), we call β(v) the bag of v, and for the sake of clarity of presentation, we
sometimes use v and β(v) interchangeably. We refer to the vertices in V (F ) as nodes. A
tree decomposition is a forest decomposition where F is a tree. For a graph G, by tw(G) we
denote the minimum over all possible tree decompositions of G, the maximum size of a bag
minus one in that tree decomposition.

Minors. Given a graph G and an edge {u, v} ∈ E(G), the graph G/e denotes the graph
obtained from G by contracting the edge {u, v}, that is, the vertices u, v are deleted from G

and a new vertex uv? is added to G which is adjacent to the all the neighbors of u, v previously
in G (except for u, v). A graph H that is obtained by a sequence of edge contractions in
G is said to be a contraction of G. A graph H is a minor of a G if H is the contraction of
some subgraph of G. We say that a graph G is F -minor free when F is not a minor of G.
Given a family F of graphs, we say that a graph G is F-minor free, if for all F ∈ F , F is
not a minor of G. It is well known that if H is a minor of G, then tw(H) ≤ tw(G). A graph
is planar if it is {K5,K3,3}-minor free [10]. Here, K5 is a clique on 5 vertices and K3,3 is a
complete bipartite graph with both sides of bipartition having 3 vertices.

Chordal Graphs. Let G be a graph. For a cycle C on at least four vertices, we say that
{u, v} ∈ E(G) is a chord of C if u, v ∈ V (C) but {u, v} /∈ E(C). A cycle C is chordless if it
contains at least four vertices and has no chords. The graph G is a chordal graph if it has no
chordless cycle as an induced subgraph. A clique forest of G is a forest decomposition of G
where every bag is a maximal clique. The following lemma shows that the class of chordal
graphs is exactly the class of graphs which have a clique forest.

I Lemma 12 ([21]). A graph G is a chordal graph if and only if G has a clique forest.
Moreover, a clique forest of a chordal graph can be constructed in polynomial time.

Given a subset U ⊆ V (G), we say that U intersects a chordless cycle C inG if U∩V (C) 6= ∅.
Observe that if U intersects every chordless cycle of G, then G− U is a chordal graph.
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