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Abstract21

In this paper we study recently introduced conflict version of the classical Feedback Vertex22

Set (FVS) problem. For a family of graphs F , we consider the problem F-CF-Feedback23

Vertex Set (F-CF-FVS, for short). The F-CF-FVS problem takes as an input a graph G, a24

graph H ∈ F (where V (G) = V (H)), and an integer k, and the objective is to decide if there25

is a set S ⊆ V (G) of size at most k such that G − S is a forest and S is an independent set in26

H. Observe that if we instantiate F to be the family of edgeless graphs then we get the classical27

FVS problem. Jain, Kanesh, and Misra [CSR 2018] showed that in contrast to FVS, F-CF-FVS28

is W[1]-hard on general graphs and admits an FPT algorithm if F is the family of d-degenerate29

graphs. In this paper, we relate F-CF-FVS to the Independent Set problem on special30

classes of graphs, and obtain a complete dichotomy result on the Parameterized Complexity of31

the problem F-CF-FVS, when F is a hereditary graph family. In particular, we show that32

F-CF-FVS is FPT parameterized by the solution size if and only if F+Cluster IS is FPT33

parameterized by the solution size. Here, F+Cluster IS is the Independent Set problem34

in the (edge) union of a graph G ∈ F and a cluster graph H (G and H are explicitly given).35

Next, we exploit this characterization to obtain new FPT results as well as intractability results36

for F-CF-FVS. In particular, we give an FPT algorithm for F+Cluster IS when F is the37

family of Ki,j-free graphs. We show that for the family of bipartite graph B, B-CF-FVS is38

W[1]-hard, when parameterized by the solution size. Finally, we consider, for each 0 < ε < 1, the39

family of graphs Fε, which comprise of graphs G such that |E(G)| ≤ |V (G)|2−ε, and show that40

Fε-CF-FVS is W[1]-hard, when parameterized by the solution size, for every 0 < ε < 1.41
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1 Introduction49

Feedback Vertex Set (FVS) is one of the classical NP-hard problems that has been50

subjected to intensive study in algorithmic paradigms that are meant for coping with NP-hard51

problems, and particularly in the realm of Parameterized Complexity. In this problem, given52

a graph G and an integer k, the objective is to decide if there is S ⊆ V (G) of size at most k53

such that G−S is a forest. FVS has received a lot of attention in the realm of Parameterized54

Complexity. This problem is known to be in FPT, and the best known algorithm for it runs55

in time O(3.618knO(1)) [8, 13]. Several variant and generalizations of Feedback Vertex56

Set such as Weighted Feedback Vertex Set [2, 7], Independent Feedback Vertex57

Set [1, 14], Connected Feedback Vertex Set [15], and Simultaneous Feedback58

Vertex Set [3, 6] have been studied from the viewpoint of Parameterized Complexity.59

Recently, Jain et al. [12] defined an interesting generalization of well-studied vertex60

deletion problems – in particular for FVS. The CF-Feedback Vertex Set (CF-FVS, for61

short) problem takes as input graphs G and H, and an integer k, and the objective is to62

decide if there is a set S ⊆ V (G) of size at most k such that G− S is a forest and S is an63

independent set in H. The graph H is also called a conflict graph. Observe that the CF-FVS64

problem generalizes classical graph problems, Feedback Vertex Set and Independent65

Feedback Vertex Set. A natural way of defining CF-FVS will be by fixing a family F66

from which the conflict graph H is allowed to belong. Thus, for every fixed F we get a new67

CF-FVS problem. In particular we get the following problem.68

F-CF-Feedback Vertex Set (F-CF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F (where V (G) = V (H)), and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k, such that G− S is a forest and S
is an independent set in H?

69

Jain et al. [12] showed that F -CF-FVS is W[1]-hard when F is a family of all graphs and70

admits FPT algorithm when the input graph H is from the family of d-degenerate graphs71

and the family of nowhere dense graphs. The most natural question that arises here is the72

following.73

Question 1: For which graph families F, F-CF-FVS is FPT?74

Our Results: Starting point of our research is Question 1. We obtain a complete75

dichotomy result on the Parameterized Complexity of the problem F -CF-FVS (for hereditary76

F) in terms of another well-studied problem, namely, the Independent Set problem –77

the wall of intractability. Towards stating our results, we start by defining the problem78

F+Cluster IS, which is of independent interest. A cluster graph is a graph formed from79

the disjoint union of complete graphs (or cliques).80

F+Cluster Independent Set (F+Cluster IS) Parameter: k

Input: A graph G ∈ F , a cluster graph H (where V (G) = V (H)), and an integer k,
such that H has exactly k connected components.
Question: Is there a set S ⊆ V (G) of size k, such that S is an independent set in both
G and in H?

81
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We note that F+Cluster IS is the Independent Set problem on the edge union of82

two graphs, where one of the graphs is from the family of graphs F and the other one is a83

cluster graph. Here, additionally we know the partition of edges into two sets, E1 and E284

such that the graph induced on E1 is in F and the graph induced on E2 is a cluster graph.85

We note that F+Cluster IS has been studied in the literature for F being the family86

of interval graphs (with no restriction on the number of clusters) [18]. They showed the87

problem to be FPT. Recently, Bentert et al. [4] generalized the result from interval graphs to88

chordal graphs. This problem arises naturally in the study of scheduling problems. We refer89

the readers to [18, 4] for more details on the application of F+Cluster IS.90

We are now ready to state our results. We show that F -CF-FVS is in FPT if and only if91

F+Cluster IS is in FPT, where F is a family of hereditary graphs. We obtain a complete92

characterization of when the F -CF-FVS problem is in FPT, for hereditary graph families. To93

prove the forward direction, i.e., showing that F+Cluster IS is in FPT implies F -CF-FVS94

is in FPT, we design a branching based algorithm, which at the base case generates instances95

of F+Cluster IS, which is solved using the assumed FPT algorithm for F+Cluster IS.96

Thus, we give “fpt-turing-reduction” from F-CF-FVS to F+Cluster IS. It is worth to97

note that there are very few known reductions of this nature. To show that F-CF-FVS98

is in FPT implies that F+Cluster IS is in FPT, we give an appropriate reduction from99

F+Cluster IS to F-CF-FVS, which proves the statement. We note that our result that100

F-CF-FVS is in FPT implies F+Cluster IS is in FPT, holds for all families of graphs.101

Next, we consider two families of graphs. We first design FPT algorithm for the corres-102

ponding F+Cluster IS problem. For the second class we give a hardness result. First, we103

consider the problem Ki,j-free+Cluster IS, which is the F+Cluster IS problem for the104

family of Ki,j-free graphs. We design an FPT algorithm for Ki,j-free+Cluster IS based on105

branching together with solving the base cases using a greedy approach. This adds another106

family of graphs, apart from interval and chordal graphs, such that F+Cluster IS is FPT.107

We note that Ki,j-free graphs have at most n2−ε edges, where n is the number of vertices108

in the input graph and ε = ε(i, j) > 0 [17, 11]. We complement our FPT result on Ki,j-109

free+Cluster IS with the W[1]-hardness result of the F+Cluster IS problem when110

F is the family of graphs with at most n2−ε edges. This result is obtained by giving an111

appropriate reduction from the problem Multicolored Biclique, which is known to be112

W[1]-hard [8, 10]. We also show that the F+Cluster IS problem is W[1]-hard when F is the113

family of bipartite graphs. Again, this result is obtained via a reduction from Multicolored114

Biclique.115

2 Preliminaries116

In this section, we state some basic definitions and terminologies from Graph Theory that117

are used in this paper. For the graph related terminologies which are not explicitly defined118

here, we refer the reader to the book of Diestel [9].119

Graphs. Consider a graph G. By V (G) and E(G) we denote the set of vertices and120

edges in G, respectively. When the graph is clear from the context, we use n and m to121

denote the number of vertices and edges in the graph, respectively. For X ⊆ V (G), by122

G[X] we denote the subgraph of G with vertex set X and edge set {uv ∈ E(G) | u, v ∈ X}.123

Moreover, by G−X we denote graph G[V (G) \X]. For v ∈ V (G), NG(v) denotes the set124

MFCS 2018
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{u | uv ∈ E(G)}, and NG[v] denotes the set NG(v) ∪ {v}. By degG(v) we denote the size125

of NG(v). A path P = (v1, . . . , vn) is an ordered collection of vertices, with endpoints v1126

and vn, such that there is an edge between every pair of consecutive vertices in P . A cycle127

C = (v1, . . . , vn) is a path with the edge v1vn. Consider graphs G and H. We say that G is128

an H-free graph if no subgraph of G is isomorphic to H. For u, v ∈ V (G) ∩ V (H), we say129

that u and v are in conflict in G with respect to H if uv ∈ E(H).130

3 W-hardness of F-CF-FVS Problems131

This section is devoted to showing W-hardness results for F-CF-FVS problems for certain132

graph classes, F . In Section 3.1, we show one direction of our dichotomy result. That is, if133

for a family of graphs F , F+Cluster IS is not in FPT when parameterized by the size of134

solution then F -CF-FVS is also not in FPT when parameterized by the size of solution. This135

result is obtained by giving a parameterized reduction from F+Cluster IS to F -CF-FVS.136

Next, we show that the problem F-CF-FVS is W[1]-hard, when parameterized by the size137

of solution, where F is the family of bipartite graphs (Section 3.2) or the family of graphs138

with sub-quadratic number of edges (Section 3.3). These results are obtained by giving an139

appropriate reduction from the problem Multicolored Biclique, which is known to be140

W[1]-hard [8, 10].141

3.1 F+Cluster IS to F-CF-FVS142

In this section, we show that, for a family of graphs F , if F+Cluster IS is not in FPT,143

then F -CF-FVS is also not in FPT (where the parameters are the solution sizes). To prove144

this result, we give a parameterized reduction from F+Cluster IS to F-CF-FVS.145

Let (G,H, k) be an instance of F+Cluster IS. We construct an instance (G′, H ′, k′)146

of F-CF-FVS as follows. We have H ′ = G, k′ = k, and V (G′) = V (H). Let C be the set147

of connected components in H. Recall that we have |C| = k. For each C ∈ C, we add a148

cycle (in an arbitrarily chosen order) induced on vertices in V (C) in G′. This completes the149

description of the reduction. Next, we show the equivalence between the instance (G,H, k)150

of F+Cluster IS and the instance (G′, H ′, k′) of F-CF-FVS.151

I Lemma 1. (G,H, k) is a yes instance of F+Cluster IS if and only if (G′, H ′, k′) is a152

yes instance of F-CF-FVS.153

Proof. In the forward direction, let (G,H, k) be a yes instance of F+Cluster IS, and S154

be one of its solution. Since H ′ = G, therefore, S is an independent set in H ′. Let C be the155

set of connected components in H. As S is a solution, it must contain exactly one vertex156

from each C ∈ C. Moreover, G′ comprises of vertex disjoint cycles for each C ∈ C. Thus S157

intersects every cycle in G′. Therefore, S is a solution to F-CF-FVS in (G′, H ′, k′).158

In the reverse direction, let (G′, H ′, k′) be a yes instance of F -CF-FVS, and S be one of159

its solution. Recall that G′ comprises of k vertex disjoint cycles, each corresponding to a160

connected component C ∈ C, where C is the set of connected components in H. Therefore,161

S contains exactly one vertex from each C ∈ C. Also, H ′ = G, and therefore, S is an162

independent set in G. This implies that S is a solution to F+Cluster IS in (G,H, k).163

J164

Now we are ready to state the main theorem of this section.165
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I Theorem 2. For a family of graphs F , if F+Cluster IS is not in FPT when parameterized166

by the solution size, then F-CF-FVS is also not in FPT when parameterized by the solution167

size.168

3.2 W[1]-hardness on Bipartite Graphs169

In this section, we show that for the family of bipartite graphs, B, the B-CF-FVS problem is170

W[1]-hard, when parameterized by the solution size. Throughout this section, B will denote171

the family of bipartite graphs. To prove our result, we give a parameterized reduction from172

the problem Multicolored Biclique to B-CF-FVS. In the following, we formally define173

the problem Multicolored Biclique.174

Multicolored Biclique (MBC) Parameter: k

Input: A bipartite graph G, a partition of A into k sets A1, A2, · · · , Ak, and a partition
of B into k sets B1, B2, · · · , Bk, where A and B are a vertex bipartition of G.
Question: Is there a set S ⊆ V (G) such that for each i ∈ [k] we have |S ∩Ai| = 1 and
|S ∩Bi| = 1, and G[S] is isomorphic to Kk,k?

175

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-176

struct an instance (G′, H ′, k′) of B-CF-FVS as follows. We have V (G′) = V (H ′) = V (G),177

and E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}. Next, for each i ∈ [k], we178

add a cycle (in an arbitrary order) induced on vertices in Ai in G′. Similarly, we add for179

each i ∈ [k], a cycle induced on vertices in Bi in G′. Notice that G′ comprises of 2k vertex180

disjoint cycles, and H ′ is a bipartite graph. Finally, we set k′ = 2k. This completes the181

description of the reduction.182

I Lemma 3. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if183

and only if (G′, H ′, k′) is a yes instance of B-CF-FVS.184

Now we are ready to sate the main theorem of this section.185

I Theorem 4. B-CF-FVS parameterized by the solution size is W[1]-hard, where B is the186

family of bipartite graphs.187

3.3 W[1]-hardness on Graphs with Sub-quadratic Edges188

In this section, we show that F -CF-FVS is W[1]-hard, when parameterized by the solution189

size, where F is the family of graphs with sub-quadratic edges. To formalize the family of190

graphs with subquadratic edges, we define the following. For 0 < ε < 1, we define Fε to191

be the family comprising of graphs G, such that |E(G)| ≤ |V (G)|2−ε. We show that for192

every 0 < ε < 1, the Fε-CF-FVS problem is W[1]-hard, when parameterized by the solution193

size. Towards this, for each (fixed) 0 < ε < 1, we give a parameterized reduction from194

Multicolored Biclique to Fε-CF-FVS.195

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-196

struct an instance (G′, H ′, k′) of Fε-CF-FVS as follows. Let n = |V (G)|, m = |E(G)|, and197

X be a set comprising of n
2

2−ε − n (new) vertices. The vertex set of G′ and H ′ is X ∪ V (G).198

For each i ∈ [k], we add a cycle (in arbitrary order) induced on vertices in Ai in G′. Similarly,199

we add for each i ∈ [k], a cycle induced on vertices in Bi in G′. Also, we add a cycle induced200

on vertices in X to G′. We have E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}.201

Finally, we set k′ = 2k + 1. Notice that since |V (H ′)| = n
2

2−ε , and |E(H ′)| < n2, therefore,202

H ∈ Fε.203
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I Lemma 5. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if204

and only if (G′, H ′, k′) is a yes instance of Fε-CF-FVS.205

Now we are ready to state the main theorem of this section.206

I Theorem 6. For 0 < ε < 1, Fε-CF-FVS parameterized by the solution size is W[1]-hard.207

4 FPT algorithms for F-CF-FVS for Restricted Conflict Graphs208

For a hereditary (closed under taking induced subgraphs) family of graphs F , we show that209

if F+Cluster IS is FPT, then F-CF-FVS is FPT. Throughout this section, whenever210

we refer to a family of graphs, it will refer to a hereditary family of graphs. To prove our211

result, for a family of graphs F , for which F+Cluster IS is FPT, we will design an FPT212

algorithm for F -CF-FVS, using the (assumed) FPT algorithm for F+Cluster IS. We note213

that this gives us a Turing parameterized reduction from F-CF-FVS to F+Cluster IS.214

Our algorithm will use the technique of compression together with branching. We note that215

the method of iterative compression was first introduced by Reed, Smith, and Vetta [16],216

and in our algorithm, we (roughly) use only the compression procedure from it.217

In the following, we let F to be a (fixed hereditary) family of graphs, for which218

F+Cluster IS is in FPT. Towards designing an algorithm for F-CF-FVS, we define219

another problem, which we call F -Disjoint Conflict Free Feedback Vertex Set (to220

be defined shortly). Firstly, we design an FPT algorithm for F-CF-FVS using an assumed221

FPT algorithm for F-Disjoint Conflict Free Feedback Vertex Set. Secondly, we222

give an FPT algorithm for F -Disjoint Conflict Free Feedback Vertex Set using the223

assumed algorithm for F+Cluster IS. In the following, we formally define the problem224

F-Disjoint Conflict Free Feedback Vertex Set (F-DCF-FVS, for short)225

F-Disjoint Conflict Free Feedback Vertex Set (F-DCF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F , an integer k, a set W ⊆ V (G), a set R ⊆ V (H) \W ,
and a set C, such that the following conditions are satisfied: 1) V (G) ⊆ V (H), 2) G−W
is a forest, 3) the number of connected components in G[W ] is at most k, and 4) C is a
set of vertex disjoint subsets of V (H).
Question: Is there a set S ⊆ V (H) \ (W ∪ R) of size at most k, such that G− S is a
forest, S is an independent set in H, and for each C ∈ C, we have |S ∩ C| 6= ∅?

226

We note that in the definition of F-DCF-FVS, there are three additional inputs (i.e.227

W,R and C). The purpose and need for these sets will become clear when we describe the228

algorithm for F-DCF-FVS. In Section 4.1, we will prove the following theorem.229

I Theorem 7. Let F be a hereditary family of graphs for which there is an FPT algorithm for230

F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the input231

graph. Then, there is an FPT algorithm for F-DCF-FVS running in time 16kf(k)nO(1),232

where n is the (total) number of vertices in the input graphs.233

In the rest of the section, we show how we can use the FPT algorithm for F-DCF-FVS234

to obtain an FPT algorithm for F-CF-FVS.235

An Algorithm for F-CF-FVS using the algorithm for F-DCF-FVS. Let I =236

(G,H, k) be an instance of F-CF-FVS. We start by checking whether or not G has a237

feedback vertex set of size at most k, i.e. a set Z of size at most k, such that G − Z is238

a forest. For this we employ the algorithm for Feedback Vertex Set running in time239

O(3.619knO(1)) of Kociumaka and Pilipczuk [13]. Here, n is the number of vertices in240

the input graph. Notice that if G does not have a feedback vertex set of size at most k,241
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then (G,H, k) is a no instance of F-CF-FVS, and we can output a trivial no instance of242

F-DCF-FVS. Therefore, we assume that (G, k) is a yes instance of Feedback Vertex243

Set, and let Z be one of its solution. We note that such a set Z can be computed using the244

algorithm presented in [13]. We generate an instance IY of F-DCF-FVS, for each Y ⊆ Z,245

where Y is the guessed (exact) intersection of the set Z with an assumed (hypothetical)246

solution to F-CF-FVS in I. We now formally describe the construction of IY . Consider247

a set Y ⊆ Z, such that Y is an independent set in H. Let GY = G − Y , HY = H − Y ,248

kY = k − |Y |, WY = Z \ Y , RY = (NH(Y ) \WY ) ∩ V (HY ), and CY = ∅. Furthermore, let249

IY = (GY , HY , kY ,WY , RY , CY ), and notice that IY is a (valid) instance of F-DCF-FVS.250

Now we resolve IY using the (assumed) FPT algorithm for F-DCF-FVS, for each Y ⊆ Z,251

where Y is an independent set in H. It is easy to see that I is a yes instance of F -CF-FVS252

if and only if there is an independent set Y ⊆ Z in H, such that IY is a yes instance of253

F-DCF-FVS. From the above discussions, we obtain the following lemma.254

I Lemma 8. Let F be a family of graphs for which F-DCF-FVS admits an FPT algorithm255

running in time f(k)cknO(1), where n is the (total) number of vertices in the input graph.256

Then F-CF-FVS admits an FPT algorithm running in time f(k)(1 + c)knO(1), where n is257

the number of vertices in the input graphs.258

Using Theorem 7 and Lemma 8, we obtain the main theorem of this section.259

I Theorem 9. Let F be a hereditary family of graphs for which there is an FPT algorithm260

for F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the261

input graph. Then, there is an FPT algorithm for F-CF-FVS running in time 17kf(k)nO(1),262

where n is the number of vertices in the input graphs of F-CF-FVS.263

4.1 FPT Algorithm for F-DCF-FVS264

The goal of this section is to prove Theorem 7. Let F be a (fixed) hereditary family of265

graphs, for which F+Cluster IS admits an FPT algorithm. We design a branching based266

FPT algorithm for F-DCF-FVS, using the (assumed) FPT algorithm for F+Cluster IS.267

Let I = (G,H, k,W,R, C) be an instance of F-DCF-FVS. In the following we describe268

some reduction rules, which the algorithm applies exhaustively, in the order in which they269

are stated.270

I Reduction Rule 1. Return that (G,H, k,W,R, C) is a no instance of F -DCF-FVS if one of271

the following conditions are satisfied:272

1. if k < 0,273

2. if k = 0 and G has a cycle,274

3. k = 0 and C 6= ∅,275

4. G[W ] has a cycle,276

5. if |C| > k, or277

6. there is C ∈ C, such that C ⊆ R.278

I Reduction Rule 2. If k = 0, G is acyclic, and C = ∅, then return that (G,H, k,W,R, C) is a279

yes instance of F-DCF-FVS.280

In the following, we state a lemma, which is useful in resolving those instances where the281

graph G has no vertices.282

I Lemma 10. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where Reduction Rules 1283

is not applicable and G −W has no vertices. Then, in polynomial time, we can generate284

an instance (G′, H ′, k′) of F+Cluster IS, such that (G,H, k,W,R, C) is a yes instance of285

F-DCF-FVS if and only if (G′, H ′, k′) is a yes instance of F+Cluster IS.286
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Lemma 10 leads us to the following reduction rule.287

I Reduction Rule 3. If G − W has no vertices, then return the output of algorithm for288

F+Cluster IS with the instance generated by Lemma 10.289

I Reduction Rule 4. If there is a vertex v ∈ V (G) of degree at most one in G, then return290

(G− {v}, H, k,W \ {v}, R, C).291

The safeness of Reduction Rule 4 follows from the fact that a vertex of degree at most one292

does not participate in any cycle.293

I Reduction Rule 5. Let uv ∈ E(G) be an edge of multiplicity greater than 2 in G, and G′294

be the graph obtained from G by reducing the multiplicity of uv in G to 2. Then, return295

(G′, H, k,W,R, C).296

The safeness of Reduction Rule 5 follows from the fact that for an edge, multiplicity of 2 is297

enough to capture multiplicities of size larger than 2.298

I Reduction Rule 6. Let v ∈ R be a degree 2 vertex in G with u and w being its neighbors in299

G. Furthermore, let G′ be the graph obtained from G by deleting v and adding the (multi)300

edge uw. Then, return (G′, H − {v}, k,W,R \ {v}, C).301

The safeness of Reduction Rule 6 follows from the fact that a vertex in R cannot be part of302

any solution and any cycle (in G) containing v must contain both u and w.303

I Reduction Rule 7. If there is v ∈ (V (G) ∩ R), such that v has at least two neighbors in304

the same connected component of W , then return that (G,H, k,W,R, C) is a no instance of305

F-DCF-FVS.306

I Reduction Rule 8. If there is v ∈ V (G) \ (W ∪R), such that v has at least two neighbors in307

the same connected component of W , then return (G−{v}, H −{v}, k− 1,W,R∪NH(v), C).308

I Reduction Rule 9. Let v ∈ V (G)∩R, such that NG(v)∩W 6= ∅. Then, return (G,H, k,W ∪309

{v}, R \ {v}, C).310

Let η be the number of connected components in G[W ]. In the following, we define the311

measure we use to compute the running time of our algorithm.312

µ(I) = µ((G,H, k,W,R, C)) = k + η − |C|

Observe that none of the reduction rules that we described increases the measure, and a313

reduction rule can be applied only polynomially many time. When none of the reduction314

rules are applicable, the degree of each vertex in G is at least two, multiplicity of each edge315

in G is at most two, degree two vertices in G do not belong to the set R, and G[W ] and316

G−W are forests. Furthermore, for each v ∈ V (G) \W , v has at most 1 neighbor (in G) in317

a connected component of G[W ].318

In the following, we state the branching rules used by the algorithm. We assume that319

none of the reduction rules are applicable, and the branching rules are applied in the order320

in which they are stated. The algorithm will branch on vertices in V (G) \W .321

I Branching Rule 1. If there is v ∈ V (G) \W that has at least two neighbors (in G), say322

w1, w2 ∈W . Since Reduction Rule 7 and 8 are not applicable, w1 and w2 belong to different323

connected components of G[W ]. Also, since Reduction Rule 9 is not applicable, we have324

v /∈ R. In this case, we branch as follows.325

(i) v belongs to the solution. In this branch, we return (G− {v}, H − {v}, k − 1,W,R ∪326

NH(v), C).327

(ii) v does not belongs to the solution. In this branch, we return (G,H, k,W ∪ {v}, R, C).328
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In one branch when v belongs to the solution, k decreases by 1, and η and |C| do not change.329

Hence, µ decreases by 1. In other branch when v is moved to W , number of components in330

η decreases by at least one, and k and |C| do not change. Therefore, µ decreases by at least331

1. The resulting branching vector for the above branching rule is (1, 1).332

If Branching Rule 1 is not applicable, then each v ∈ V (G) \W has at most one neighbor333

(in G) in the set W . Moreover, since Reduction Rule 4 is not applicable, each leaf in G−W334

has a neighbor in W .335

In the following, we introduce some notations, which will be used in the description of336

our branching rules. Recall that G−W is a forest. Consider a connected component T in337

G−W . A path Puv from a vertex u to a vertex v in T is nice if u and v are of degree at338

least 2 in G, all internal vertices (if they exist) of Puv are of degree exactly 2 in G, and v is a339

leaf in T . In the following, we state an easy proposition, which will be used in the branching340

rules that we design.341

I Proposition 1. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where none of342

Reduction Rule 1 to 9 or Branching Rule 1 apply. Then there are vertices u, v ∈ V (G) \W ,343

such that the unique path Puv in G−W is a nice path.344

Consider u, v ∈ V (G)\W , for which there is a nice path Puv in T , where T is a connected345

component of G−W . Since Reduction Rule 4 is not applicable, either u has a neighbor in346

W , or u has degree at least 2 in T . From the above discussions, together with Proposition 1,347

we design the remaining branching rules used by the algorithm. We note that the branching348

rules that we describe next is similar to the one given in [3].349

I Branching Rule 2. Let v ∈ V (G) \W be a leaf in G −W for which the following holds.350

There is u ∈ V (G) \W , such that NG(u) ∩W 6= ∅ and there is a nice path Puv from u351

to v in G −W . Let C = V (Puv) \ {u}, u′ and v′ be the neighbors (in G) of u and v in352

W , respectively. Observe that since Reduction Rule 9 is not applicable, we have u, v /∈ R.353

We further consider the following cases, based on whether or not u′ and v′ are in the same354

connected component of G[W ].355

Case 2.A. u′ and v′ are in the same connected component of G[W ]. In this case, G[V (Puv)∪356

W ] contains exactly one cycle, and this cycle contains all vertices of V (Puv) (consecutively).357

Since vertices in W cannot be part of any solution, either u belongs to the solution or a358

vertex from C belongs to the solution. Moreover, any cycle in G containing v must contain359

all vertices in V (Puv), consecutively. This leads to the following branching rule.360

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪361

NH(u), C).362

(ii) u does not belong to the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).363

In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases364

by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore, µ365

decreases by 1. The resulting branching vector for the above branching rule is (1, 1).366

Case 2.B. u′ and v′ are in different connected component of G[W ]. In this case, we branch367

as follows.368

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u},W, k − 1, R ∪369

NH(u), C).370

(ii) A vertex from C is in the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).371

(iii) No vertex in {u} ∪ C is in the solution. In this branch, we add all vertices in {u} ∪ C372

to W . That is, we return (G,H, k,W ∪ ({u} ∪ C), R \ ({u} ∪ C), C).373

In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases374

by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore, µ375
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decreases by 1. In the third branch, η decreases by one, and k and |C| do not change. The376

resulting branching vector for the above branching rule is (1, 1, 1).377

v

v′ u′

u v

v′ u′

u

W T

V (G) \W

WT1 T2

V (G) \W

(a) (b)

Figure 1 The cases handled by Branching Rule 2, (a) T is a connected component in G[W ],
similarly in (b) T1, T2 are connected components in G[W ].

I Branching Rule 3. There is u ∈ V (G) \W which has (at least) two nice paths, say Puv1 and378

Puv2 to leaves v1 and v2 (in G−W ). Let C1 = V (Puv1) \ {u} and C2 = V (Puv2) \ {u}. We379

further consider the following cases depending on whether or not v1 and v2 have neighbors380

(in G) in the same connected component of G[W ] and u ∈ R.381

Case 3.A. v1 and v2 have neighbors (in G) in the same connected component of G[W ]382

and u ∈ R. In this case, G[W ∪ {u} ∪ C1 ∪ C2] contains (at least) one cycle, and u cannot383

belong to any solution. Therefore, we branch as follows.384

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪385

{C1}).386

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪387

{C2}).388

Notice that in both the branches µ decreases by 1, and therefore, the resulting branching389

vector is (1, 1).390

Case 3.B. v1 and v2 have neighbors (in G) in the same connected component of G[W ]391

and u /∈ R. In this case, G[W ∪ {u} ∪ C1 ∪ C2] contains (at least) one cycle. We branch as392

follows.393

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪394

NH(u), C).395

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪396

{C1}).397

(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪398

{C2}).399

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching400

vector is (1, 1, 1).401

Case 3.C. If v1 and v2 have neighbors in different connected components of G[W ] and402

u ∈ R. In this case, we branch as follows.403

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪404

{C1}).405

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪406

{C2}).407
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(iii) No vertex from C1 ∪ C2 belongs to the solution. In this case, we add all vertices in408

{u}∪C1∪C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u}∪C1∪C2), R \409

({u} ∪ C1 ∪ C2), C).410

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching411

vector is (1, 1, 1).412

Case 3.D. If v1 and v2 have neighbors in different connected components of G[W ] and413

u /∈ R. In this case, we branch as follows.414

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪415

NH(u), C).416

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪417

{C1}).418

(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪419

{C2}).420

(iv) No vertex from {u} ∪ C1 ∪ C2 belongs to the solution. In this case, we add all vertices421

in {u} ∪ C1 ∪ C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u} ∪ C1 ∪422

C2), R \ ({u} ∪ C1 ∪ C2), C).423

Notice that in all the four branches µ decreases by 1, and therefore, the resulting branching424

vector is (1, 1, 1, 1).425

v1

w′ w

v2

u

v1

w′ w

v2

u

W T

V (G) \W

WT1 T2

V (G) \W

(a) (b)

Figure 2 The cases handled by Branching Rule 3, In (a) T is a connected component in G[W ],
similarly in (b) T1, T2 are connected components in G[W ].

This completes the description of the algorithm. By showing the correctness of the426

presented algorithm, together with computation of the running time of the algorithm427

appropriately, we obtain the proof of Theorem 7.428

5 FPT Algorithm for Ki,j-free+Cluster IS429

In this section, we give an FPT algorithm forKi,j-free+Cluster IS, which is the F+Cluster430

IS where F is family of Ki,j-free graphs. Here, i, j ∈ N, 1 ≤ i ≤ j. In the following we431

consider a (fixed) family of Ki,j-free graphs. To design an FPT algorithm for F+Cluster432

IS, we define another problem called Large Ki,j-free+Cluster IS. The problem Large433

Ki,j-free+Cluster IS is formally defined below.434
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Large Ki,j-free+Cluster IS Parameter: k

Input: A Ki,j-free graph G, a cluster graph H (G and H are on the same vertex set),
and an integer k, such that the following conditions are satisfied: 1) H has exactly k
connected components, and 2) each connected component of H has at least kk vertices.
Question: Is there a set S ⊆ V (G) of size k such that S is an independent set in both
G and in H?

435

In Section 5.1, we design a polynomial time algorithm for the problem Large Ki,j-436

free+Cluster IS. In the rest of this section, we show how to use the polynomial time al-437

gorithm for LargeKi,j-free+Cluster IS to obtain an FPT algorithm forKi,j-free+Cluster438

IS.439

I Theorem 11. Ki,j-free+Cluster IS admits an FPT algorithm running in time O(kk2
440

nO(1)), where n is the number of vertices in the input graph.441

Proof. Let (G,H, k) be an instance of Ki,j-free+Cluster IS, and let C = {C1, C2, · · · , Ck}442

be the set of connected components in H. If k ≤ 0, we can correctly resolve the instance443

in polynomial time (by appropriately outputting yes or no answer). Therefore, we assume444

k ≥ 1. If for each C ∈ C, we have |V (C)| ≥ kk, then (G,H, k) is also an instance of Large445

Ki,j-free+Cluster IS, and therefore we resolve it in polynomial time using the algorithm446

for Large Ki,j-free+Cluster IS (Section 5.1). Otherwise, there is C ∈ C, such that447

|V (C)| < kk. Any solution to Ki,j-free+Cluster IS in (G,H, k) must contain exactly one448

vertex from C. Moreover, if a vertex v ∈ V (C) is in the solution, then none of its neighbors449

in G and in H can belong to the solution. Therefore, we branch on vertices in C as follows.450

For each v ∈ V (C), create an instance Iv(G− (NH(v)∪NG(v)), H − (NH(v)∪NG(v)), k− 1)451

of Ki,j-free+Cluster IS. If number of connected components in H − N [C] is less than452

k − 1, then we call such an instance Iv as invalid instance, otherwise the instance is a valid453

instance. Notice that for v ∈ V (C), if Iv is an invalid instance, then v cannot belong to any454

solution. Thus, we branch on valid instances of Iv, for v ∈ V (C). Observe that (G,H, k)455

is a yes instance of Ki,j-free+Cluster IS if and only if there is a valid instance Iv, for456

v ∈ V (C), which is a yes instance of Ki,j-free+Cluster IS. Therefore, we output the OR457

of results obtained by resolving valid instances Iv, for v ∈ V (C).458

In the above we have designed a recursive algorithm for the problem Ki,j-free+Cluster459

IS. In the following, we prove the correctness and claimed running time bound of the460

algorithm. We show this by induction on the measure µ = k. For µ ≤ 0, the algorithm461

correctly resolve the instance in polynomial time. This forms the base case of our induction462

hypothesis. We assume that the algorithm correctly resolve the instance for each µ ≤ δ,463

for some δ ∈ N. Next, we show that the correctness of the algorithm for µ = δ + 1. We464

assume that k > 0, otherwise, the algorithm correctly outputs the answer. The algorithm465

either correctly resolves the instance in polynomial time using the algorithm for Large466

Ki,j-free+Cluster IS, or applies the branching step. When the algorithm resolves the467

instance in polynomial time using the algorithm for Large Ki,j-free+Cluster IS, then468

the correctness of the algorithm follows from the correctness of the algorithm for Large469

Ki,j-free+Cluster IS. Otherwise, the algorithm applies the branching step. The branching470

is exhaustive, and the measure strictly decreases in each of the branches. Therefore, the471

correctness of the algorithm follows form the induction hypothesis. This completes the proof472

of correctness of the algorithm.473

For the proof of claimed running time notice that the the worst case branching vector is474

is given by the kk vector of all 1s, and at the leaves we resolve the instances in polynomial475

time. Thus, the claimed bound on the running time of the algorithm follows. J476
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5.1 Polynomial Time Algorithm for Large Ki,j-free+Cluster IS477

Consider a (fixed) family of Ki,j-free graphs, where 1 ≤ i ≤ j. The goal of this section is to478

design a polynomial time algorithm for Large Ki,j-free+Cluster IS. Let (G,H, k) be an479

instance of Large Ki,j-free+Cluster IS, where G is a Ki,j-free graph and H is a cluster480

graph with k connected components. We assume that k > i+ j + 2, as otherwise, we can481

resolve the instance in polynomial time (using brute-force). Let C = {C1, C2, · · · , Ck} be the482

set of connected components in H, such that |V (C1)| ≥ |V (C2)| ≥ · · · ≥ |V (Ck)|.483

We start by stating/proving some lemmata, which will be helpful in designing the484

algorithm.485

I Lemma 12. [5] The number of edges in a Ki,j-free graph are bounded by n2−ε, where486

ε = ε(i, j) ∈ (0, 1].487

I Lemma 13. Let (G,H, k) be an instance of Large Ki,j-free+Cluster IS. There exists488

v ∈ V (C1), such that for each C ∈ C \ {C1}, we have |NG(v) ∩ C| ≤ 2j|C|
k .489

Proof. Consider a connected component C ∈ C \ {C1}, and let x = |C1| and y = |C|.490

Furthermore, let E(C1, C) = {uv ∈ E(G) | u ∈ C1, v ∈ V (C)}. In the following, we prove491

some claims which will be used to obtain the proof of the lemma.492

I Claim 14. |E(C1, C)| ≤ jyi + jx.493

Proof. Consider the partition of V (C1) in two parts, namely, C1
h and C1

` , where C1
h = {v ∈494

V (C1) | |NG(v) ∩ V (C)| ≥ i} and C1
` = V (C1) \ C1

h.495

|E(C1, C)| =
∑
v∈C1

|NG(v) ∩ V (C)| =
∑
v∈C1

h

|NG(v) ∩ V (C)|+
∑
v∈C1

l

|NG(v) ∩ V (C)|.496

497

By construction of C1
` , we have

∑
v∈C1

`
|NG(v) ∩ V (C)| < ix. In the following, we bound498 ∑

v∈C1
h
|NG(v) ∩ V (C)|. Since G is a Ki,j-free graph, therefore, any set of i vertices in499

V (C) can have at most j − 1 common neighbors (in G) from V (C1), and in particular500

from C1
h. Moreover, every v ∈ C1

h has at least i neighbors in NG(v) ∩ V (C). Therefore,501 ∑
v∈C1

h
|NG(v)∩V (C)| ≤ i(j−1)

(
y
i

)
. Hence, |E(C1, C)| ≤ i(j−1)

(
y
i

)
+ ix ≤ i(j−1)y

i

i! + ix ≤502

jyi + jx. �503

Let Adeg(C1, C) denote average degree of vertices in set C1 in G[E(C1, C)]. That is,504

Adeg(C1, C) = |E(C1,C)|
|C1| . In the following claim, we give a bound on Adeg(C1, C).505

I Claim 15. Adeg(C1, C) ≤ 2jy
k2 .506

Proof. From Claim 14, we have |E(C1, C)| ≤ jyi + jx. Therefore, Adeg(C1, C) ≤ j + jyi

x .507

Using Lemma 12, we have Adeg(C1, C) ≤ (x+y)2−ε

x ≤ 4x1−ε. To prove the claim, us consider508

the following cases:509

Case 1. x ≥ k2yi−1. In this case, using the inequality Adeg(C1, C) ≤ j + jyi

x , we have510

Adeg(C1, C) ≤ j + jy
k2 . Since y > k2 (and k > 5), we have Adeg(C1, C) ≤ 2jy

k2 .511

Case 2. x < k2yi−1. In this case, we use the inequality Adeg(C1, C) ≤ 4x1−ε, to obtain512

Adeg(C1, C) < 4k2(1−ε)y(i−1)(1−ε) < 4k2y
y(2−i)+ε(i−1) . Since y ≥ kk, we have y(2−i)+ε(i−1) > 2k4

j .513

Therefore, we have Adeg(C1, C) < 2jy
k2 . �514

In the following, we will give a probabilistic argument on the existence of a vertex with515

the desired properties in the lemma statement. For v ∈ V (C1), let deg(v, C) denote the size516

of |NG(v) ∩ V (C)|. From Claim 15, we have Adeg(C1, C) ≤ 2jy
k2 . Using Markov’s inequality,517

the upper bound on the probability that deg(v, C) ≥ 2jy
k is P (deg(v, C) ≥ 2jy

k ) ≤ 1
k . Using518

Boole’s inequality (the union bound), the probability that deg(v, C) is greater than or equal519
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to 2j|C|
k for at least one C ∈ C \ {C1} is bounded by P (∪C∈C\{C1}deg(v, C) ≥ 2j|C|

k ) ≤520

1
k .(k − 1) < 1. This implies that probability that deg(v, C) ≤ 2j|C|

k , for each C ∈ C \ {C1} is521

greater than 0. This completes the proof. J522

We are now ready to describe our algorithm, which is given in Algorithm 1.

Algorithm 1 (G,H, k) : Greedy algorithm for Large Ki,j-free+Cluster IS
1: t = k and S = ∅;
2: while t > 2j do
3: Let C1, · · · , Ct be the connected components of H, sorted in decreasing order of their

sizes;
4: Let v ∈ V (C1) be a vertex which satisfies the condition of Lemma 13;
5: Add v to S;
6: Decrease t by 1;
7: G = G− (NG(v) ∪NH [v]) and H = H − (NG(v) ∪NH [v]);
8: end while
9: Solve (G,H, t) by a brute force algorithm, as t ≤ 2j;

523

I Lemma 16. Algorithm 1 for Large Ki,j-free+Cluster IS is correct and runs in polyno-524

mial time.525

Proof. We first prove the correctness of the algorithm using induction on, t. The base case526

is when 1 ≤ t ≤ 2j. The algorithm correctly resolve the instance using brute force. For527

the induction hypothesis, we assume that the algorithm is correct for each t ≤ d− 1. Next,528

we show that the algorithm is correct for t = d. Let C1, · · · , Cd be the set of connected529

components in H, sorted in decreasing order of their sizes. By Lemma 13, there is v ∈ C1,530

such that for each C ∈ C \ {C1}, we have deg(v, C) ≤ 2j|C|
d .531

We delete all vertices in NH [v] ∪ NG(v) from G and H. Observe that from each C ∈532

C \ {C1}, we have deleted at most 2j|C|
d vertices, which are neighbors of v in G. Let533

C ′ = C \ (NH [v] ∪NG(v)) = C \NG(v). It is enough to show that |C ′| ≥ (d− 1)(d−1). Note534

that |C ′| ≥ |C| − 2j|C|
d . As base case is not applicable, we can assume that d > 2j. Hence,535

|C ′| ≥ |C|(1− 2j
d ) ≥ dd(1− 2j

d ) ≥ dd−1(d− 2j) ≥ (d− 1)(d−1).536

This concludes the proof of correctness of the algorithm. At each step we either sort the537

components on the basis of their size or find a vertex of lower degree which can be carried538

out in polynomial time, or solve the instance using brute force approach, where the solution539

size we are seeking for is bounded by a constant (at most 2j). Moreover, the algorithm540

terminates after at most k iterations. Thus, the running time of the algorithm is bounded by541

a polynomial in the size of the input. J542

Using Lemma 16, we obtain the following theorem.543

I Theorem 17. The problem Large Ki,j-free+Cluster IS admits a polynomial time544

algorithm.545
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