
Covering a tree with rooted subtrees – parameterized and approximation
algorithms∗

Lin Chen† Daniel Marx ‡

Abstract
We consider the multiple traveling salesman problem on
a weighted tree. In this problem there are m salesmen
located at the root initially. Each of them will visit a
subset of vertices and return to the root. The goal is to
assign a tour to every salesman such that every vertex is
visited and the longest tour among all salesmen is minimized.
The problem is equivalent to the subtree cover problem, in
which we cover a tree with rooted subtrees such that the
weight of the maximum weighted subtree is minimized. The
classical machine scheduling problem can be viewed as a
special case of our problem when the given tree is a star.
We provide approximation and parameterized algorithms for
this problem. We first present a PTAS (Polynomial Time
Approximation Scheme). We then observe that, the problem
remains NP-hard even if tree height and edge weight are
constant, and present an FPT algorithm for this problem
parameterized by the largest tour length. To achieve the
FPT algorithm, we first formulate the problem as an integer
linear program having a certain “tree-fold” structure. Then
we show that an ILP with such a structure is FPT, which
is a generalization of an earlier FPT result for n-fold integer
programming by Hemmecke, Onn and Romanchuk [5]. This
extension of n-fold ILP may be of independent interest.

Keywords: Approximation schemes; Fixed Pa-
rameter Tractable; Integer Programming; Scheduling

1 Introduction

We consider the multiple traveling salesmen problem on
a given tree T = (V,E). In this problem there is a root
r ∈ V where all the m salesmen are initially located.
There is a weight we ∈ Z+ associated with each edge
e ∈ E, which is the time consumed by a salesman if
he passes this edge. Each salesman starts at r, travels
a subset of the vertices and returns to r. The goal is
to determine the tours traveled by each salesman such
that every vertex is visited by some salesman, and the
makespan, i.e., the time when the last salesman returns
to r, is minimized.

We observe that the tour of every salesman is
actually a subtree rooted at r, and the total traveling
time of each salesman is exactly twice the total weight

∗Supported by ERC Starting Grant PARAMTIGHT (No.
280152) and Consolidator Grant SYSTEMATICGRAPH (No.
755978)
†Department of Computer Science, University of Houston.

Email: chenlin198662@gmail.com.
‡Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI). Email: dmarx@cs.bme.hu.

of edges in the subtree. Therefore the problem is
equivalent as the minmax subtree cover problem, where
we aim to find m subtrees Ti = (V (Ti), E(Ti)) for
1 ≤ i ≤ m such that r ∈ V (Ti), V = ∪iV (Ti) and
maxi w(Ti) is minimized, where w(Ti) =

∑
e∈E(Ti)

we.

We call w(Ti) as the weight of the subtree Ti and
maxi w(Ti) the makespan.

The subtree cover problem is a fundamental prob-
lem in computer science and has received many studies
in the literature. Indeed, when the given graph is a
star, the problem is equivalent to the identical machine
scheduling problem P ||Cmax, where the goal is to assign
a set of jobs of processing times w1, w2, · · · , wn onto m
identical parallel machines such the largest load among
machines is minimized. We may view each job as an
edge of weight wj in a star graph, whereas P ||Cmax falls
exactly into the problem of covering a star with m stars.
There exists an FPTAS (fully polynomial time approx-
imation scheme) for the scheduling problem if m is con-
stant [20], and a PTAS (polynomial time approximation
scheme) if m is part of the input [7]. Studies on FPT
algorithms for the scheduling problem is relatively new.
In 2013, Mnich and Wiese [17] provided an FPT (fixed
parameter tractable) algorithm parameterized by the
largest job processing time wmax = max{wj |1 ≤ j ≤ n}.
Very recently, Knop and Koutecký [13] observes that
many scheduling problems can be formulated as an in-
teger program with a special structure called n-fold in-
teger program. Exploiting the FPT algorithm for the
n-fold integer program [5] they are able to show an FPT
algorithm for various scheduling problems.

The problem becomes much more complicated when
the given graph is a tree. Xu et al. [21] showed that
there exists an FPTAS when the number of subtrees, m,
is a constant. However, it is not known whether there
exists a PTAS if m is part of the input. The best-known
approximation algorithm so far has an approximation
ratio of (2 + ε) by Nagamochi and Okada [18]. If
the given graph is a general graph, there exists a 3-
approximation algorithm by Nagamochi and Okada [18].

Our contribution. Our main contribution is to show
that the subtree cover problem admits a PTAS and a
fixed parameter tractable (FPT) algorithm (parameter-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2801

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ized by the makespan). More precisely, we prove the
following theorems.

Theorem 1.1. There exists a PTAS of running time
mO(1/ε4) for the subtree cover problem.

Theorem 1.2. For some computable function f , there
exists an FPT algorithm of running time f(B)m4 for
determining whether there exists a feasible solution for
the subtree cover problem of makespan B.

We remark that, despite the fact that the special
case of covering a star admits an FPT algorithm pa-
rameterized by the largest edge weight, we show in this
paper that the subtree cover problem remains NP-hard
even if the tree is of height 2 and every edge has a unit
weight. Therefore, we restrict our attention to the larger
parameter B.

Indeed, our FPT algorithm relies on an FPT algo-
rithm for a more general integer programming problem,
which extends the existing FPT algorithm for the n-fold
integer programming [5]. We consider the following in-
teger programming:

min{cTx : Ax = b, l ≤ x ≤ u,x ∈ Znt},(1.1)

In the n-fold integer programming, the matrix A
consists of small matrices A1 and A2 as follows (Here
A1 is an s1 × t-matrix and A2 is an s2 × t-matrix).

A =

A1 A1 . . . A1

A2 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . A2

More precisely, the matrix A consists of one row of
(A1, A1, · · · , A1) and a submatrix with A2 being at
the main diagonal. We remark that throughout this
paper 0s that appear in a matrix refer to a submatrix
consisting of the natural number 0.

The n-fold integer programming has received many
studies in the literature. Indeed, the natural ILP
formulation of the scheduling and bin packing problem
falls into an n-fold integer programming, as is observed
by Knop and Koutecký [13]. In 2013, Hemmecke,
Onn and Romanchuk presented an FPT algorithm
for n-fold integer programming with the running time
of f(s1, s2, ||A||∞)n3L where f is some computable
function, ||A||∞ is the largest absolute value among all
entries of A and L is the encoding length of the problem.
This algorithm implies an FPT algorithm parameterized
by the largest job processing time for P ||Cmax and
many other scheduling problems [13]. We further extend

their result by considering a broader class of integer
programming, namely tree-fold integer programming as
we describe as follows.

The structure of an n-fold matrix could be viewed
as a star with the root representing the row of
(A1, A1, · · · , A1) and each leaf representing one of the
rows (0, · · · , 0, A2, 0, · · · , 0). More precisely, we can
view each row i as a vertex i such that vertex i is a
parent of vertex j if row i dominates row j, where by
saying row i dominates row j, we mean row j is more
”sparse” than row i as a vector, i.e., if the k-th coordi-
nate of row j is non-zero, then the k-th coordinate of
row i is also non-zero. Using this interpretation, we can
generalize an n-fold matrix to a tree-fold matrix. The
following is an example (see the matrix at the top of the
next page).

A tree-representation of the matrix above is:

In general, a tree-fold matrix A consists of n copies
of small matrices A1, A2, · · · , Aτ with Ai being an
si × t-matrix. Every row consists of 0’s and some Ai’s
in the form of (0, · · · , 0, Ai, Ai, · · · , Ai, 0, · · · , 0) (i.e.,
Ai appears consecutively). Every column consists of
0’s and exactly one copy of each Ai. Furthermore, if
we call a row containing Ai as an Ai-row, then any
Ai-row is dominated by some Ai−1-row, that is, if at
a certain row Ai appears consecutively from column
` to column k, then there exists some Ai−1-row such
that Ai−1 appears consecutively from `′ to k′ such that
`′ ≤ ` < k ≤ k′. Representing the matrix as a tree,
every row is represented as a vertex and the vertex
corresponding to each Ai−1-row will be the parent of
the vertex corresponding to Ai-row it dominates.

To facilitate the analysis, we further require that the
A1-row contains no 0 and every Aτ -row contains exactly
one copy of Aτ , that is, all rows containing Aτ form a
sub-matrix with Aτ being at the diagonal. Note that
this assumption causes no loss of generality: If it is not
the case, we can always add a set of dummy constraints:
0 · x = 0, whereas A1 and Aτ become a 1 × t-dummy
matrix consisting of 0.

We define ILP (1.1) with A being a tree-fold matrix
as a tree-fold integer programming and establish the

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2802

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1
A2 A2 A2 A2 A2 A2 A2 A2 0 0 0 0
0 0 0 0 0 0 0 0 A2 A2 A2 A2

A3 A3 A3 0 0 0 0 0 0 0 0 0
0 0 0 A3 A3 0 0 0 0 0 0 0
0 0 0 0 0 A3 A3 A3 0 0 0 0
0 0 0 0 0 0 0 0 A3 A3 A3 A3

A4 0 0 0 0 0 0 0 0 0 0 0
0 A4 0 0 0 0 0 0 0 0 0 0
0 0 A4 0 0 0 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0 0 0 0
0 0 0 0 A4 0 0 0 0 0 0 0
0 0 0 0 0 A4 0 0 0 0 0 0
0 0 0 0 0 0 A4 0 0 0 0 0
0 0 0 0 0 0 0 A4 0 0 0 0
0 0 0 0 0 0 0 0 A4 0 0 0
0 0 0 0 0 0 0 0 0 A4 0 0
0 0 0 0 0 0 0 0 0 0 A4 0
0 0 0 0 0 0 0 0 0 0 0 A4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

following FPT result.

Theorem 1.3. For some computable function f ,
there exists an FPT algorithm of running time
f(t, s1, s2, · · · , sτ , ||A||∞)n3L for a tree-fold integer pro-
gramming, where ||A||∞ is the largest absolute value
among all entries of A, and L is the length of the binary
encoding of the vector (c,b, l,u).

Note that ||A||∞ = maxj{||Aj ||∞}, thus the FPT
term f(t, s1, s2, · · · , sτ , ||A||∞) only depends on the
small matrices and does not rely on the structure of
A. We also remark that, by introducing slack variables
for inequalities, our theorem also holds for the integer
programming: min{cTx : Ax ≤ b, l ≤ x ≤ u,x ∈ Znt}.

Related work. As we have mentioned, the problem of
covering a star with stars is exactly the identical ma-
chine scheduling problem P ||Cmax. In terms of approx-
imation algorithms, the first FPTAS (when m is con-
stant) [20] and PTAS (when m is part of the input) [7]
for this problem date back to 1976 and 1987, respec-
tively. In recent years, Jansen et al. [10,11] provided an
FPTAS and a PTAS of improved running times, which
are shown to be essentially the best possible under ex-
ponential time hypothesis by Chen et al. [1]. In terms
of FPT algorithms, Mnich and Wiese [17] showed that
P ||Cmax is FPT parameterized by the largest job pro-
cessing time (edge weight). Very recently, Knop and
Koutecký [13] observes the relationship between the

scheduling problem and n-fold integer programming in
terms of FPT algorithms. Indeed, they show that a va-
riety of scheduling problems, including P ||Cmax, could
be formulated as an n-fold integer programming. Apply-
ing the FPT algorithm for n-fold integer programming
by Hemmecke, Onn and Romanchuk [5], an FPT algo-
rithm for P ||Cmax follows. It is worth mentioning that
parameterized studies for integer programming that has
a sparse structure have received much attention in the
literature, e.g., [9, 14,15].

Covering a tree with subtrees is much more com-
plicated. Even et al. [3] gave a 4-approximation algo-
rithm for the subtree cover problem, which was later
improved by Nagamochi and Okada [18] into a (2 + ε)-
approximation algorithm. In 2013, Xu et al. [21] showed
that if the number of subtrees, m, is a constant, then
the problem admits a pseudo-polynomial time exact al-
gorithm and an FPTAS. It remains an important open
problem whether there exists a PTAS for the subtree
cover problem if m is part of the input. We are not
aware of FPT algorithms for this problem.

An even more general problem is to cover the
vertices of a general graph with trees where each tree is a
subgraph. There exists a 4-approximation algorithm by
Even et al. [3], which was improved later by Nagamochi
and Okada [18] to a 3-approximation algorithm.

In all the related work we mention above, a feasible
solution requires every (sub-)tree to contain a uniform

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2803

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

root. There are other variants of the subtree cover
problem. One variant that also receives many studies
in the literature is the unrooted version of the problem,
where we aim to cover the vertices of a given graph
with trees and do not necessarily require each tree to be
rooted at the same vertex. For this problem, the best-
known result is a 3-approximation algorithm by Khani
and Salavatipour [12].

2 A PTAS

The goal of this section is to give a PTAS for the subtree
cover problem.

2.1 Preliminaries Given two vertices v and v′, if v
is not a descendant of v′, and v′ is not a descendant of
v either, we say the two vertices are incomparable.

We denote by w(u, v) the total weight of the edges
on the path between two vertices u and v. We denote
by w(T) the total weight of edges in a tree T .

Note that any feasible solution, say, R, specifies
m subtrees TRi (1 ≤ i ≤ m) that cover T . For
ease of description, we assume there exist m agents,
each owning one subtree TRi . Taking the view point
of the traveling salesman problem, the subtree TRi is
essentially the tour of the i-th salesman (divided by 2).
For any vertex v, we denote by MR(v) the set of agents
whose subtree contains the vertex v. Let T (v) be the
subtree of T rooted at v, and analogously TRi (v) the
subtree of TRi rooted at v. Any subtree of T (v) that
contains v is called a v-tree. We say TRi (v) is the v-tree
owned by agent i at vertex v. We define the weight
of agent i at v as the weight of TRi (v). We denote
by ΓR(v) the set of all the v-trees owned by agents
at v. The superscript R may be dropped if it is clear
from the context which solution we are referring to. We
summarize the notations as Table 1.

Throughout this section, when we say we lift the
weight of an agent i by δ at a certain vertex v, we mean
w(Ti(v)), as well as w(Ti(v

′)) for any v′ ∈ V (Ti) which
is an ancestor of v, are increased by δ simultaneously.
Equivalently, we may imagine that we attach a new edge
of weight δ to a leaf of Ti. Obviously, after lifting if the
weight of each agent at the root r is still bounded by c,
then the makespan of the solution is at most c.
Preprocessing. We preprocess the given tree T
in the following way. Notice that there exists a 4-
approximation algorithm for the subtree cover prob-
lem [3]. We can scale the given instance so that 1/4 ≤
OPT ≤ 1. If an edge has a weight larger than ε2, say,
w(u,v) ≥ ε, then we sub-divide the edge into k ≤ 1/ε2

edges (u, v1), (v1, v2), · · · , (vk−2, vk−1), (vk−1, v) such
that the weight of each edge is at most ε2, and their to-
tal weight equals w(u,v). After sub-dividing every edge,

we get a new instance in which every edge has a weight
bounded by ε2. It is easy to see that every feasible in-
stance of the original instance implies a feasible instance
of the new intance with the same makespan, and vice
versa.

2.2 Structuring the optimum Let σ be an arbi-
trary v-tree, we say it is small, if w(σ) < ε. Otherwise
we say it is big. Similarly we say an agent is small at v,
if its weight at v is small, and big otherwise. The goal of
this subsection is to prove the following theorem, which
is crucial for our algorithm.

Theorem 2.1. There exists a feasible solution of
makespan OPT + O(ε) such that for any v ∈ V , M(v)
either consists of only one small agent, or every agent
of M(v) is big.

The theorem looks simple at first glance, as we can al-
ways merge small v-trees until it becomes big. However,
any merging will cause an increase in the subtree owned
by some agent. The question is, can we always select
the correct agent so that the subtree owned by each of
them is increased by O(1) times? Towards this, we need
the following Lemma 2.1.

We first describe the notion of a simple v-tree, which
is required by Lemma 2.1. Given a feasible solution,
suppose some v-tree σ contains vertices v1, v2, · · · , vk
where each vj is a child of v. Then σ could be split into
k edge-disjoint v-trees such that each v-tree contains
exactly one child of v. A v-tree that only contains one
child of v is called a simple v-tree. We split every v-tree
of ΓR(v) into simple v-trees, and denote by ΓRs (v) the
set of all simple v-trees.

Lemma 2.1. Let D be any set of vertices that are
mutually incomparable. Given a feasible solution R, a
new feasible solution R′ could be constructed such that
the following is true:

• The weight of each subtree, and hence the
makespan, increases by O(dmax), where dmax =
maxv∈D maxσ∈ΓRs (v) w(σ), i.e., it is the maximal
weight among all the simple v-trees for v ∈ D.

• |MR′(v) ∩MR′(v′)| ≤ 1 for any v, v′ ∈ D.

Lemma 2.1 is the key to the proof of Theorem 2.1.
Briefly speaking, it states that with some bounded loss,
we can restrict our attention to a feasible solution such
that the subtrees of any two agents can share at most
one vertex in D. This guides the selection of subtrees
to merge. To prove Lemma 2.1, the basic idea is to first
allow an agent to own a fraction of a tree, seeking for a
fractional solution with a good structure, and eventually

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2804

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 1: Some Notations
TRi The subtree owned by agent i
TRi (v) The subtree of Ti rooted at v

Equivalently, the v-tree owned by agent i
v-tree Any subtree of T (v) rooted at v, e.g., TRi (v)
MR(v) The set of agents whose subtree contains vertex v
w(TRi (v)) The total edge weight of a tree TRi (v)

Equivalently, the weight of agent i at v
ΓR(v) The set of all v-trees owned by agents

”round” back this fractional solution into an integral
solution.

Towards the proof, we need the following lemmas.
We assume that every Ti contains at least one leaf of

T since otherwise any vertex v ∈ V (Ti) is also contained
in some V (Tj) which contains any descendant of v, and
Ti could be discarded.

For any v ∈ V , we define by LF (v) the set of leaves
of the subtree T (v) and LF the set of leaves of T . It is
not difficult to see that M(v) = ∪w∈LF (v)M(w), which
gives rise to the following lemma.

Lemma 2.2. For any vertex v, let S be a set of descen-
dants of v that separates v from LF (v), i.e., any path
from a leaf in LF (v) to v has to visit some vertex of S.
Then M(v) = ∪w∈SM(w).

Lemma 2.3. Given a ground set U and a family of k
subsets Si ⊆ U such that |Si| ≥ 2 and |Si ∩ Si′ | ≤ 1 for
any i, i′ ∈ {1, 2, · · · , k}, there exists H ′i ⊆ Si such that
Hi ∩Hi′ = ∅, and |Hi| ≥ 1/3 · |Si|.

Proof. We first observe that it suffices to prove the
lemma for |Si| ≤ 3. To see why, suppose the lemma
is true for |Si| ≤ 3, we claim that it is also true for
arbitrary large set size. Suppose |Si| ≥ 4, then we can
divide Si into disjoint subsets such that every subset
is of size 2 or 3. Let Sij be these subsets. We replace
every Si with its subsets, then it follows directly that
|Sij∩Si

′

j′ | ≤ 1 due to |Si∩Si′ | ≤ 1. Now according to the
lemma for set size at most 3, we can find disjoint subsets
Hi
j ⊆ Sij such that |Hi

j | ≥ 1/3 · |Sij |. Let Hi = ∪jHi
j

and the claim is proved.
Now we prove the lemma for |Si| ≤ 3. It suffices to

show that we can select a distinct element from every Si.
We prove it via Hall’s theorem. We construct a bipartite
graph G = (V1∪V2, E) where every Si corresponds to a
vertex in V1, every element of U corresponds to a vertex
in V2, and there is an edge between them if and only if
the element is contained in Si. Given that |Si| ≥ 2 and
|Si∩Si′ | ≤ 1, it is easy to verify that the union if every `
sets has a total size at least k, which implies a matching

in the bipartite graph, and consequently the lemma is
proved. �

Now we come to the proof of Lemma 2.1.
We introduce the notion of a fractional solution. In

an integral solution, every agent owns one subtree Ti(v)
at every vertex v. In a fractional solution, however, we
allow an agent to own a fraction of a v-tree at vertex v.
For example, let Γ(v) = {σ1(v), σ2(v), · · · , σ`(v)} be all
the v-trees, then we allow θij ∈ [0, 1] fraction of σj(v) to
be assigned to agent i. We remark that, in a fractional
solution it is required that

∑
i θij = 1, i.e., each v-tree

is assigned. However, we do not necessarily require that∑
j θij = 1, i.e., an agent could be assigned multiple v-

trees. If R is a fractional solution, then MR(v) is the set
of agents which contains a positive fraction of a v-tree.

Proof. [of Lemma 2.1] Let ΓRs (v) =
{σ1(v), σ2(v), · · · , σ`(v)} be the set of all the simple
v-trees for each v ∈ D. Notice that w(σk(v)) ≤ dmax
by definition. In the following we will re-assign v-trees
to achieve the lemma. Suppose {i, i′} ∈ MR(v) for
some v ∈ D. Consider any v-tree owned by agent i in
solution R. Re-assigning this v-tree to agent i′ leads to
another feasible solution since vertex v is also contained
in the subtree owned by agent i′. Furthermore, after we
re-assign v-trees for v ∈ D, we can still re-assign v′-trees
for v′ ∈ D. To see why, notice that either v′ = v, and
the claim is straightforward, or v′ is incomparable to v,
therefore the re-assignment of v-trees do not influence
any v′-tree.

The re-assignment of v-trees is done in three steps.
In the first and second steps, we allow fractional re-
assignment of v-trees. For example, we can re-assign
θ fraction of a v-tree from agent i to i′. By doing so
the weight of θw(σ) is moved from agent i to i′ and
we derive a solution where θ fraction of the v-tree is
assigned to agent i′, and 1 − θ fraction is assigned to
agent i. In general the re-assignment of step 1 and
2 leads to a fractional solution where θij(v) ∈ [0, 1]
fraction of a v-tree σj(v) is assigned to agent i such
that

∑
i θij = 1. It seems there is not really a natural

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2805

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

combinatorial interpretation of a fractional solution. It
is only an intermediate state of our rounding procedure
and all the v-tree will be assigned integrally at the last
step of the rounding procedure.

Step 1. Consider the current fractional solution and
let it be F . For any two vertices v, v′ ∈ D, as long
as |MF (v) ∩ MF (v′)| ≥ 2, we re-assign v-trees and
v′-trees as follows. Let {i, i′} be two arbitrary agents
of MF (v) ∩MF (v′). Suppose currently θhk (x) fraction
of the x-tree σhk (x) is assigned to agent h at vertex x
where h = i, i′, x = v, v′, k = 1, 2, · · · . We define by
Lh(x) =

∑
k θ

h
k (x)w(σhk (x)) as the weight of agent h

at x. Without loss of generality we assume Li(v) is the
smallest among Li(v), Li

′
(v), Li(v′), Li

′
(v′). Now we re-

assign all the (fractions of) v-trees from machine i to
machine i′, and meanwhile re-assign θ · θi′k (v′) fraction

of v′-tree σi
′

k (v′) from agent i′ to agent i at v′, where

θ = Li(v)/Li
′
(v′). The weight of agent i (and i′) at

v decreases (increases), while the weight of i at v′ in-
creases (decreases). However, the summation of them
remain the same.Further notice that applying the above
re-assignment, we derive a new fractional feasible solu-
tion F ′ such that

∑
v∈D |MF ′(v)| ≤

∑
v∈D |MF (v)|−1,

where |S| denotes the cardinality of a set S.
We apply the above procedure until a fractional

solution F is derived such that |MF (v) ∩MF (v′)| ≤ 1
and this completes step 1 of the rounding procedure.

Step 2. Let QF (v) be the set of all the simple
v-trees that are fractionally assigned in F . Obvi-
ously QF (v) ⊆ ΓFs (v). For simplicity let QF (v) =
{σ1(v), σ2(v), · · · , σs(v)} for s ≤ `. Again we denote
by θik(v) the fraction of v-tree σk(v) assigned to agent
i ∈ MF (v). If q = |QF (v)| ≤ |MF (v)| we are done.
Otherwise we re-assign v-trees using the rounding pro-
cedure from [16]. Consider the following linear system.

∑

i∈MF (v)

q∑

k=1

xik = 1 ∀1 ≤ k ≤ |QF (v)|

q∑

k=1

w(σk(v))xik = Li(v) ∀i ∈MF (v)

0 ≤ xik ≤ 1

Obviously xik = θik(v) is a feasible solution. According
to [16], in the extreme point solution of the above
linear system, at most |MF (v)| v-trees are fractionally
assigned. Hence we can re-assign v-trees according to
this extreme point solution and derive a new fractional
solution F ′ such that |QF ′(v)| ≤ |MF ′(v)| is true,
and furthermore, for every agent the summation of its
weights at all vertices in D remains the same.

Step 3. Consider MF ′(v) for v ∈ D. In the following

we will determine H(v) ⊆ MF ′(v) such that all the v-
trees that are fractionally assigned will be re-assigned
integrally to agents in H(v). If |M(v)| = 1 then
H(v) = M(v), and we know that all the simple v-
trees are assigned to only one machine, implying that v-
trees are already assigned integrally. Otherwise consider
all the vertices of D such that |MF ′(v)| ≥ 2 and let
D′ ⊆ D be the set of these vertices. Recall that
|MF ′(v) ∩ MF ′(v′)| ≤ 1 for any v, v′ ∈ D′ ⊆ D,
we can apply Lemma 2.3 to derive H(v) ⊆ MF ′(v)
such that H(v) ∩ H(v′) = ∅ for any v, v′ ∈ D′, and
|H(v)| ≥ 1/3 · |MF ′(v)|. Notice that there are at most
|MF ′(v)| simple v-trees fractionally assigned and the
weight of each of them is at most dmax. We can re-assign
these v-trees to agents in H(v) such that at most three
v-trees are assigned to one agent, whereas the weight of
every agent in H(v) increases by at most 3dmax at v.

Let A′ be the solution we eventually derive. We
compare R with A′. Although fractional assignments
are created during the rounding procedure, eventually
every single v-tree is assigned integrally. Therefore,
from R to A′ we only re-assign some of the simple v-
trees. Each time we re-assign a (simple) v-tree from
agent i to i′, we create a new solution by removing
this v-tree from Ti, and append it to Ti′ . As vertices
of D are mutually incomparable, for any v, v′ ∈ D,
the re-assignment of any v-tree does not influence the
re-assignment of a v′-tree. Therefore, A′ is a feasible
solution. We now check the makespan of A′. Consider
an arbitrary agent i. The summation of its weights at
all vertices in D remain the same in step 1 and 2, and
increase by at most 3dmax in step 3 since H(v)’s are
disjoint. Hence, the makespan of A′ is at most O(dmax)
larger than that of R. �

To prove Theorem 2.1, the basic idea is to select
an appropriate D and apply Lemma 2.1, and then we
may invoke Lemma 2.3 to select the correct subtrees to
merge. Note that D has to be chosen in such a way that:
i). dmax = O(ε); ii). By merging subtrees rooted at each
vertex in D, we can get big subtrees; iii). Vertices in
D are mutually disjoint; iv). Every subtree owned by
some agent should contain some vertex in D.

Proof. [of Theorem 2.1] Consider the optimal solution.
If the weight of an agent at r is no more than ε we simply
lift its weight to ε, this causes the makespan to increase
by at most ε. Now for each vertex v, we calculate the
total weight of all agents at v and define it as the whole
weight of v. For any leaf v, we consider its path from v
to the root r. Starting from v, we check one by one the
whole weight of each vertex on the path and pick the
first vertex whose whole weight is larger than or equal
to ε. We call such a vertex as a critical vertex and let

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2806

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CR be the set of all critical vertices.
If all vertices in CR are mutually incomparable, we

are done. Otherwise we modify the given tree so that
critical vertices become mutually incomparable. Indeed,
we modify T in the following way. Let v and v′ be two
arbitrary vertices in CR such that v′ is a descendant
of v. According to the definition of a critical vertex, v
is the first vertex whose whole weight is larger than or
equal to ε on the path from some (could be multiple)
leaf to r. For any such leaf, say, v1, we consider its
path to r that passes v. Let v2 be the vertex on this
path right before v. Now we sub-divide the edge (v2, v)
by adding a new vertex v3. We let the weight of edge
(v2, v3) be the same as the weight of (v2, v), and the
weight of (v3, v) be 0. By doing so a new tree T ′ is
constructed such that any feasible solution of T implies
a feasible solution of T ′ with the same makespan, and
vice versa. If we consider the path from v to r in T ′, the
first vertex whose whole weight is larger than or equal
to ε becomes v3 instead of v. Furthermore, we have the
following two observations:

• any vertex that is incomparable to v is also incom-
parable to v3;

• v3 is incomparable to v′.

We apply the above procedure as long as there exist two
critical vertices which are not incomparable. Eventually
we derive a new tree together with a set of critical ver-
tices which are mutually incomparable. For simplicity
we still denote the new tree as T ′. It is obvious that if
we prove Theorem 2.1 for T ′, then Theorem 2.1 is also
true for T .

From now on we restrict our attention on T ′. For
simplicity we still denote the set of critical vertices in
T ′ as CR. We let CH = {w|w is a child of v ∈ CR}
be the set of children of vertices in the critical set. In
the following we construct a new feasible solution R of
makespan OPT + O(ε) such that for any w ∈ CH we
have |MR(w)| = 1, and for any v ∈ CR, each agent of
MR(v) has a weight at least ε at v. We claim that, this
new solution satisfies the theorem. To see why, notice
that from any leaf of the tree to the root r the path has
to visit at least one vertex of CR, consequently also one
vertex of CH. Hence, any vertex x ∈ V \ (CR∪CH) is
either a descendant of w ∈ CH and thus |MR(x)| = 1,
or it is an ancestor of some vertices in CR and thus
MR(x) = ∪v∈CR(x)M

R(v) where CR(x) ⊆ CR is the
set of descendants of x in CR (note that any path from
a leaf to v has to visit some vertex of CR(x)), and
consequently MR(x) consists of only big agents. Hence,
the claim is true.

Consider the optimal solution for T ′. We claim
that, the weight of each simple v-tree for v ∈ CR is

at most 3ε. To see why, notice that v ∈ CR implies
that the whole weight of each child of v is at most ε.
Given the fact that the weight of each edge is bounded
by ε, the claim follows. Furthermore, critical vertices
are incomparable. Hence, we set D = CR and apply
Lemma 2.1 to derive a feasible solution R1 of makespan
OPT + O(ε) such that for any v, v′ ∈ CR we have
|MR1(v) ∩ MR1(v′)| ≤ 1. Notice that this solution
is constructed via re-assignment of v-trees, hence the
whole weight of every vertex remains the same.

Consider CH. For any w,w′ ∈ CH, it is easy
to see that we also have |MR1(w) ∩ MR1(w′)| ≤ 1.
Let CH1 = {v ∈ CH||MR1(v)| = 1} and CH2 =
CH \ CH1. Applying Lemma 2.3 to CH2 we can find
HR1(v) ⊆MR1(v) such that HR1(v) ∩HR1(v′) = ∅ for
any v, v′ ∈ CH2. Recall that the whole weight of any
v ∈ CH2 ⊆ CH is at most ε. For every v ∈ CH2, we
pick an arbitrary agent of HR1(v) and assign all the v-
trees to this agent, which will cause the makespan to
increase by at most ε.

Now we have derived a feasible solution R2 of
makespan OPT+O(ε) such that |MR2(w)| = 1 for every
w ∈ CH. We consider MR2(v) for v ∈ CR. Notice
that the whole weight of each vertex remains the same
throughout the above procedure, consequently it is at
least ε for v ∈ CR. If MR2(v) consists of only big
agents we are done, otherwise consider those vertices
where MR2(v) contains at least one small agent. Let
CR1 ⊆ CR be the subset of vertices where MR2(v)
consists of only one small agent, and CR2 ⊆ CR be the
subset of vertices where MR2(v) consists at least two
small agents.

Notice that |MR2(v)| ≥ 2 for v ∈ CR1. We apply
Lemma 2.3 for sets MR2(v) where v ∈ CR1, and derive
disjoint sets HR2(v) ⊆ MR2(v). As there is only one
small agent, there are two possibilities. If the small
agent is in HR2(v), we simply lift its weight at v to ε.
Otherwise all the v-trees assigned to this small agent
are re-assigned to an arbitrary machine of HR2(v). By
doing so for every v ∈ CR1 there are only big agents in
M(v), while the makespan is increased by at most ε.

Consider v ∈ CR2. Let MR2(v)′ ⊆ MR2(v) be the
subset of small agents and we have |MR2(v)′| ≥ 2. We
apply Lemma 2.3 for sets MR2(v)′ where v ∈ CR2, and
derive disjoint sets HR2(v) ⊆ MR2(v)′ and |HR2(v)| ≥
1/3 · |M(v)′|. We match agents of MR2(v)′ to HR2(v) in
an arbitrary way such that at most 3 agents of MR2(v)′

is matched to one agent of HR2(v). Now we re-assign
the v-trees of these at most 3 agents to that machine
of HR2(v). After the re-assignment, all the v-trees are
assigned to agents ofHR2(v) for v ∈ CR2 and the weight
of every agent at v is at most 4ε. If there is still a small
agent in HR2(v), we lift its weight to ε. As HR2(v) are

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2807

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

disjoint for v ∈ CR2, the weight of every agent at r, and
hence the makespan, increases further by at most ε.

Overall, we derive a new (well-ordered) solution
R of makespan OPT + O(ε) such that for v ∈ CR,
MR(v) consists of only big agents. Notice that the
re-assignment procedure we applied for v ∈ CR will
influence M(w) for w being a descendant of some
v, however, recall that before we handle v ∈ CR,
M(w) consists of only one agent. Hence, after the re-
assignment procedure for v, the w-tree of any agent
in M(w) either remains the same or is re-assigned to
another agent, in both cases M(w) still consists of one
agent. �

2.3 Dynamic Programming We provide a dy-
namic programming algorithm that returns a feasible
solution of makespanOPT+O(ε). Towards this, we first
modify the given tree T in the following way. We com-
pute w(T (v)) for every vertex v. Recall that the weight
of every edge is at most ε2. For any pair of vertices v
and v′ such that v is the parent of v′, if w(T (v)) ≥ ε and
w(T (v′)) < ε, we delete all descendants of v′, then add
a new vertex v′′ that is only connected to v′, and define
the weight of edge (v′, v′′) as w(T (v′)). According to
Theorem 2.1, the makespan of the optimal solution for
the modified tree is OPT (T ′) ≤ OPT +O(ε). Further-
more, any feasible solution of the modified tree implies
a feasible solution of T with the same makespan. There-
fore in the following part of this section we focus on this
modified tree. For simplicity we still denote this modi-
fied tree as T . Based on our modification procedure, we
have the following lemma.

Lemma 2.4. In the modified tree, if v is not a leaf, then
w(T (v)) ≥ ε.

On a very high level, the dynamic programming
proceeds in the following way. It iteratively calculates
all possible partial solutions at each vertex v, where a
partial solution is a feasible subtree cover for the sub-
problem on T (v), i.e., it indicates whether it is possible
to cover the whole subtree T (v) by using m subtrees
of weight λ1, λ2, · · · , λm respectively, where λi is the
weight of agent i at v. Once we calculate all possible
partial solutions for every child of a certain vertex v,
then each partial solution of v could be calculated by
merging partial solutions of v’s children.

Note that, however, we are not able to store the
weight of every agent in a partial solution. To handle
this, the traditional method rounds the weight of each
agent at each vertex. At every vertex, agents of the same
rounded weight are called agents of the same type, and
it stores in the partial solution the number of agents of
each type. However, this idea is not applicable to our

problem. It is clear that if we aim to have a constant
number of different types, every agent weight has to be
rounded within an error of f(ε), say, ε if we round the
values to be multiples of ε. However, the weight of an
edge could be significantly smaller, e.g., an edge weight
could be ε/ log n. The addition of any single edge weight
causes a very tiny increase of the agent weight, which
could not be revealed via the rounded value, however,
after adding log n such edges, the agent weight increases
significantly by ε. To overcome such a difficulty, we
introduce the notions of initial weight, initial distance
to r, type and type weight for agents at each vertex. All
of them are defined based on any fixed solution Sol that
satisfies Theorem 2.1.

Let ξ and η be the initial weight and initial distance
to r (their definitions will be provided later) for an agent
at v, then the type weight of this agent at v is defined
as ξ + η − w(v, r). The type of this agent at v is the
pair (ξ, η). In the following we define the initial weight
and initial distance to r for each agent. For simplicity
we restrict our attention to agent 1.

If the subtree owned by agent 1 does not contain
a vertex v, then its initial weight and initial distance
to r at v are both 0. Otherwise, v is contained in the
subtree owned by agent 1 and the two values are defined
iteratively starting from the leaves.

Let v be an arbitrary leaf. At v, the initial weight of
agent 1 is 0, the initial distance to r is w(v, r) rounded
up to a multiple of ε2.

To define the initial weight and initial distance for
agent 1 at other vertices, we introduce the notion of
initial vertex. For any two vertices v′ and v where v′ is
a descendant of v, we say v′ is the initial vertex of v for
agent 1 if both of the followings are true:

• Agent 1 owns a subtree that contains v′, and
furthermore, for any vertex x such that i). v′ is
the descendant of x, and ii). x is the descendant of
v or x = v, this subtree only contains one child of
x.

• Either v′ is a leaf, or the subtree owned by agent 1
contains at least two children of v′.

There are two possibilities regarding the recursive
definition above. If v′ 6= v is the initial vertex of v
for agent 1, then the initial weight of agent 1 at v is
its type weight at v′ rounded up to a multiple of ε2,
and the initial distance of this agent from v to r is the
rounded distance from v′ to r, i.e., w(v′, r) rounded up
to a multiple of ε2. Otherwise v is the initial vertex
of itself. The initial weight and initial distance to r
are already defined for leaves, therefore we suppose v is
not a leaf. The following observation follows directly by
definition.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2808

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Observation 1. If v is not a leaf and is the initial
vertex of itself for agent 1, then the subtree owned by
agent 1 contains at least 2 children of v.

Let v1, v2, · · · , vk be all the children of v that are
contained in the subtree of agent 1, and let (ξi, ηi) be
the type of this agent at vi. Then the initial weight
of agent 1 at v is the following value rounded up to a
multiple of ε2:

k∑

i=1

[ξi + ηi − w(vi, r) + w(vi,v)],(2.3)

and the initial distance from v to r is w(v, r) rounded
up to a multiple of ε2.

It is easy to see that the type of agent 1 remains
the same along the path from v′ to v if v′ is the initial
vertex of v for agent 1.

Using this method, given a solution, we can com-
pute the type weight of each agent at the root r. This
weight may be different from the exact weight, however,
we can prove that they differ by at most O(ε). Thus, it
suffices to store the type of agents at each vertex and
our algorithm follows.

Estimation of Rouding Errors. In the following
we focus on an arbitrarily fixed agent, say, agent 1. Let
E(x) be the rounding error of agent 1’s weight at an
arbitrary vertex x, i.e., its type weight minus its exact
weight at x. Notice that we always round up values,
therefore E(x) ≥ 0.

Lemma 2.5. If v′ is the initial vertex of v, then E(v) =
E(v′).

Proof. Let (ξ, η) be the type of agent 1 at v′, which is
also its type at v. According to the definition of the
initial vertex, the exact weight of agent 1 at v is its
exact weight at v′ plus w(v, v′). Meanwhile, as the type
of agent 1 remains the same from v′ to v, the type weight
of agent 1 at v equals its type weight at v′ plus w(v, v′).
Therefore, E(v) = E(v′). �

According to Equation (2.3), we have the following
lemma.

Lemma 2.6. If the subtree of agent 1 contains vertex
v together with its k ≥ 2 children v1, v2, · · · , vk, then
E(v) ≤

∑k
i=1E(vi) + ε2.

Consider the subtree owned by agent
1. Let LF be the set of all leaves and
LF ′ = {v|v is the parent of v′ for some v′ ∈ LF}.
We define a function φ(v) for each vertex v such that

• φ(v) = 1 if v ∈ LF ;

• φ(v) = 2 if v ∈ LF ′;

• φ(v) =
∑k
i=1 φ(vi) if v 6∈ LF ∪ LF ′ and

v1, v2, · · · , vk are all the children of v in the sub-
tree.

Lemma 2.7. E(v) ≤ (2φ(v)− 1)ε2.

Proof. We prove by induction. It is easy to see that
the lemma is true if v ∈ LF or v ∈ LF ′. Suppose
v1, v2, · · · , vk are all the children of v in the subtree
of agent 1, and lemma holds for every vi. If k =
1, then v and v1 have the same initial vertex, by
Lemma 2.5, E(v) = E(v1) ≤ (2φ(v1)− 1)ε2 = (2φ(v)−
1)ε2. Otherwise k ≥ 2, E(v) ≤

∑k
i=1E(vi) + ε2 ≤

ε2
∑k
i=1(2φ(vi)− 1) + ε2 ≤ (2φ(v)− 1)ε2. �

Consider the substree of agent 1 and let if be T1.
We have the following lemma.

Lemma 2.8. w(T1(v)) ≥ φ(v)ε/2 for v 6∈ LF .

Proof. We prove by induction. Consider v ∈ LF ′.
By Lemma 2.4 we know w(T (v)) ≥ ε. According to
Theorem 2.1, in Sol every agent inM(v) is big, therefore
w(T1(v)) ≥ ε = φ(v)ε/2. Suppose v 6∈ LF ∪ LF ′ and
the lemma holds for all the children of v in T1, namely
v1, v2, · · · , vk. Then w(T1(v)) ≥

∑k
i=1 w(T1(vi)) ≥

ε/2 ·
∑k
i=1 φ(vi) = φ(v)ε/2. �

Notice that w(T1(v)) ≤ OPT + O(ε) ≤ 1 + O(ε),
we conclude that φ(v) = O(1/ε), which implies that
E(v) = O(ε).

The algorithm Notice that for any agent type
(ξ, η), we have ξ, η ≤ 1 + O(ε) and they are multiples
of ε2. Hence there are q = O(1/ε2) different kinds of
types. We order these types arbitrarily and define a
configuration as a q-tuple (ω1, ω2, · · · , ωq), where ωi ≤
m is the number of agents of type i.

We say a configuration (ω1, ω2, · · · , ωq) is feasible
at vertex v, if it is possible to cover the subtree T (v)
using ωi agents of type i. We will iteratively calculate a
set of feasible configurations for each vertex v, whereas
a near optimal solution Sol could be found.
Initial states. As we already know the type of a single
agent at every leaf in Sol, we store the corresponding
configuration.
Recursive calculation. Let v1, v2, · · · , vk be all the
children of v. Suppose we have calculated the set of fea-
sible configurations for each vi and let it be C(vi). We
now calculate C(v). We first calculate C(v1) + C(v2),
i.e., for every possible configuration (ω1, ω2, · · · , ωq), we
check if it could be achieved by merging one configura-
tion of C(v1) and one configuration of C(v2). Then we
calculate (C(v1) + C(v2)) + C(v3), and so on.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2809

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

To check if (ω1, ω2, · · · , ωq) could be achieved by
merging one configuration of C(v1) and one configu-
ration of C(v2), we check the merging of every fea-
sible configuration in C1 and every feasible config-
uration in C(v2). Let (ω1(1), ω2(1), · · · , ωq(1)) and
(ω1(2), ω2(2), · · · , ωq(2)) be two arbitrary feasible con-
figurations in C(v1) and C(v2), respectively. If the same
agent has type i in the first configuration and type i′ in
the second configuration, then by merging the subtrees
of the agent at v1 and v2 we get a new type of this agent,
which could be calculated via formula (2.3). Hence, to
see which configurations could be achieved by merging
the two configurations, we try all possible mergings, i.e.,
Any agent of type i in the first configuration could be
merged with any agent of type i′ in the second con-
figuration. We estimate the number of such mergings.
Indeed, for any agent of type i in the first configura-
tion, it has q+1 different choices, i.e., to merge with one
type in the latter configuration or not to merge with any
type. Given ωi(1) agents of type i, the number of agents
merged with type i′ (or not merged with anyone) is at
most ωi(1), hence the overall possibilities are bounded
by ωi(1)(q+1) = mO(q). Combining the possibilities for
every type in the first configuration, the overall possibil-
ities are bounded by mO(q2), i.e., C(V1) + C(V2) could

be calculated in mO(q2) time. In a similar way we can
calculate C(V1) + · · ·+ C(Vk).

Overall, the algorithm can find a near optimal
solution within mO(q2) = mO(1/ε4), and Theorem 1.1
follows.

3 The FPT algorithm

In this section, we show that the subtree cover problem
is FPT parameterized by the makespan. Towards this,
we formulate the problem as an ILP. We observe that
the ILP we establish has a special structure, which gen-
eralizes the n-fold integer programming studied in the
literature. We call it as a tree-fold integer programming.
Indeed, when the input tree is a star, the tree-fold in-
teger program we formulate becomes an n-fold integer
program. We extend the FPT algorithm for the n-fold
integer programming to derive an FPT algorithm for the
tree-fold integer programming, which implies an FPT
algorithm for the subtree cover problem. This result
may be of separate interest.

Recall that when the given graph is a star, the
subtree cover problem becomes FPT parameterized by
the largest edge weight wmax = maxj{wj |1 ≤ j ≤
n} [17]. However, this is no longer true even if the given
graph is a tree of height 2, as is implied by the following
theorem.

Theorem 3.1. The subtree cover problem remains NP-

hard even if the given tree is of height 2 and every edge
has unit weight.

Proof. We reduce from 3-partition. In the 3-partition
problem, given is a set of 3n integers a1, a2, · · · , a3n

with B/4 < aj < B/2,
∑
j aj = 3nB where B = nO(1).

The goal is to determine whether we can partition the
3n integers of n subsets D1, D2, · · · , Dn, each of size 3,
such that

∑
aj∈Di aj = B for every 1 ≤ i ≤ n.

We construct a subtree cover instance as fol-
lows. There is a root r. The root has 3n children
v1, v2, · · · , v3n. Each vj further has aj children. We
let the weight of every edge be 1.

We show that the constructed subtree cover in-
stance can be covered by n subtrees of makespan B + 3
if and only if the given 3-partition instance admits a
feasible partition.

Suppose the 3-partition instance admits a feasi-
ble partition, then each subtree consists of the root,
{vj |aj ∈ Si} and their children. It is easy to verify that
the weight of each subtree is exactly B + 3.

Suppose the subtree cover instance admits a solu-
tion of makespan B+3. Since all edge weights sum up to
nB+3n, we know each subtree consists of exactly B+3
edges, and each edge appears in one subtree. Therefore,
if a subtree contains a vertex vj , it must contain all the
children of vj . As vj has B/4 < aj < B/2 children,
it is easy to see that each subtree contains exactly 3
children of the root, implying readily a solution for the
3-partition instance. �

The above hardness result excludes FPT algorithms
parameterized by edge weight and tree height, and
therefore we restrict our attention to makespan. We will
first show that a tree-fold integer programming can be
solved in FPT time. Then we establish a configuration
ILP for the subtree cover problem and prove that the
ILP falls exactly into the category of tree-fold integer
programming, and is thus solvable in FPT time.

3.1 Tree-fold integer programming The goal of
this and next subsection is to prove Theorem 1.3.
Towards this, we first introduce some basic concepts
and techniques which are crucial for our proof.

3.2 Preliminaries for Tree-fold Integer Pro-
gramming We provide a brief introduction to the no-
tions needed for solving a general integer programming.
We refer the readers to a nice book [2] for details.

We define Graver basis, which was introduced in [4]
by Graver and is crucial for our algorithm.

We define a partial order v in Rn in the following

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2810

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

way:

For any x,y ∈ Rn, x v y if and only if for every

1 ≤ i ≤ n, |xi| ≤ |yi| and xi · yi ≥ 0.

Roughly speaking, x v y implies that x and y lie in the
same orthant, and x is “closer” to the origin 0 than y.
The partial order v, when restricted to Rn+, coincides
with the classical coordinate-wise partial order ≤.

Given any subset X ⊆ Rn, we say x is an v-minimal
element of X if x ∈ X and there does not exist y ∈ X,
y 6= x such that y v x.

According to Gordan’s Lemma, for any subset Z ⊆
Zn, the number of v-minimal elements in Z is finite.
Indeed, this fact is known as Dickson’s Lemma for the
coordinate-wise partial order �.

Definition 1. The Graver basis of an integer m × n
matrix A is the finite set G(A) ⊆ Zn which consists of all
the v-minimal elements of kerZn(A) = {x ∈ Zn|Ax =
0,x 6= 0}.

The Graver basis G(A) is only dependent on A. Let
||B||∞ be the largest absolute value over all entries. For
any g ∈ G(A), we have the following rough estimation
for some constant c1, c2 [19]:

|G(A)| ≤ (c1||A||∞)mn and ||g||∞ ≤ (c2||A||∞)mn.

The Graver basis has the following positive sum
property: for every z ∈ kerZn(A), there exist a subset
U ⊆ G(A) such that for every gi ∈ U , gi v z,
and furthermore, z =

∑
gi∈U

αigi for some αi ∈ Z+.

See [2, 19] for details.
Given is an integer programming of the following

form:

min{cTx|Ax = b, l ≤ x ≤ u,x ∈ Zn}.(3.4)

Let x be an arbitrary feasible solution of (3.4). We say
q is an augmentation vector for x if x + q is a feasible
solution of (3.4) that has an objective value strictly
better than x, i.e., cT (x+q) < cTx. Therefore, Aq = 0
and cTq < 0.

It is shown by Graver [4] that x∗ is an optimal
solution of (3.4) if and only if there does not exist
g ∈ G(A) which is an augmentation vector for x∗.
Later on, Hemmecke, Onn and Weismantel [6] proved
that, starting from an arbitrary feasible solution x0

for (3.4), the optimal solution x∗ could be achieved by
iteratively applying the best augmentation via Graver
basis, i.e., augmenting x by using the best possible
augmentation vector of the form γg, where γ ∈ Z+ and
g ∈ G(A). The total number of augmentation vectors
needed is bounded by O(nL), where L is the length

of the binary encoding of the vector (c,b, l,u) (There
may exist an augmentation vector which is better than
any Graver basis, however, the result of [6] allows us to
restrict our attention to Graver basis). This statement
remains true if, instead of choosing the best possible
augmentation vector of the form γg, say, γ∗g∗, we
choose an augmentation vector q which is at least
as good as γ∗g∗. That is, if in each augmentation
vector we choose an augmentation vector q such that
cTq ≤ γ∗cTg∗, the optimal solution x∗ could also be
achieved afterO(nL) augmentation vectors [2,5]. Notice
that q does not necessarily belong to G(A). Such greedy
algorithm is called Graver-best augmentation algorithm.

The results by Hemmecke et al. [2,5] imply that, to
design a polynomial time algorithm for (3.4), it suffices
to handle the following two problems:

a. finding a feasible initial solution for (3.4) in poly-
nomial time;

b. finding a Graver-best augmentation algorithm that
runs in polynomial time.

In Subsection 3.4 we show in detail how to find a feasible
initial solution for (3.4) in polynomial time. Roughly
speaking this could be handled by establishing another
ILP with a trivial initial feasible solution and finding its
optimal solution.

We focus on problem [b]. A natural algorithm is
that, given the current feasible solution x, for every
g ∈ G(A), we find integer γg ∈ Z+ such that x + γgg is
still feasible and cT (x + γgg) is minimized, and among
all the γgg we pick the best one. For any fixed g we
can easily find γg by solving an integer programming
with only one integral variable γg. Therefore the overall
running time depends on the cardinality of the Graver
bais G(A). Unfortunately |G(A)| could be huge in
general. However, if the matrix A has some special
structure, then |G(A)| could be significantly smaller.

From now on we focus on a tree-fold matrix A
consisting of n copies of submatrices A1, A2, · · · , Aτ
and write it as A = T [A1, A2, · · · , Aτ] for simplicity.
Recall that each Ai is an si × t-matrix, whereas we are
restricting to the following

min{cTx|Ax = b, l ≤ x ≤ u,x ∈ Znt}.(3.5)

Notice that if τ = 2, A is called an n-fold matrix.
In 2013, Hemmecke et al. provided a Graver-best
augmentation algorithm for n-fold integer programming
that runs in O(n3L) time (here the big-O hides all
coefficients that only depend on A1 and A2). The
following lemma is the key ingredient to their algorithm.
It strengthens the fitness theorem in [8].

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2811

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Consider any x ∈ Znt. We write x as a tuple
x = (x1,x2, · · · ,xn) where xi ∈ Zt. Each xi is called a
brick of x.

Lemma 3.1. ([5]) Let A = T [A1, A2]. There exists
some integer λ = λ(A1, A2) that only depends on
matrices A1 and A2, and

H(A) = {h ∈ Zt|h is the sum of at most λ elements of

G(A2)},

such that for any g = (g1,g2, · · · ,gn) ∈ G(A) we
have

∑
i∈I gi ∈ H(A) for any I ⊆ {1, 2, · · · , n}.

We further generalize the algorithm of Hemmecke et
al. [5] to tree-fold integer programming. Towards this,
we first give a generalization of the above lemma, and
then we show how to further generalize their algorithm.

Lemma 3.2. Let A = T [A1, A2, · · · , Aτ]. There exists
some integer λ = λ(A1, A2, · · · , Aτ) that only depends
on matrices A1 A2, · · · , Aτ , and

H(A) = {h ∈ Zt|h is the sum of at most λ elements of

G(Aτ)},

such that for any g = (g1,g2, · · · ,gn) ∈ G(A) we have∑
i∈I gi ∈ H(A) for any I ⊆ {1, 2, · · · , n}.

Here A = T [A1, A2, · · · , Aτ] means A is a tree-fold
matrix consisting of A1, · · · , Aτ . Roughly speaking,
Lemma 3.2 states that for any Graver basis element g
of the matrix A, although it is of a very high dimension,
it is sparse, i.e., among the n bricks g1,g2, · · · ,gn,
only an “FPT” number of them can be nonzero. This
lemma extends the structural lemma for n-fold integer
programming in [5], which can be viewed as the case
when τ = 2.

Proof. [of Lemma 3.2] Throughout this proof, for an
arbitrary matrix B, we list its Graver bases (in an ar-
bitrary order) as g1(B),g2(B), · · · ,g|G(B)|(B), and let
G(B) = (g1(B),g2(B), · · · ,g|G(B)|(B)) be the matrix
with each of the bases being its column.

Consider Aτ . For any g = (g1,g2, · · · ,gn) ∈ G(A),
it follows directly that Aτg

i = 0 for every 1 ≤ i ≤ n.
According to the positive sum property of the Graver
basis, there exist qij(Aτ) ∈ Z≥0 such that

gi =

|G(Aτ)|∑

j=1

qij(Aτ)gj(Aτ)(3.6)

= G(Aτ)qi(Aτ), ∀1 ≤ i ≤ dτ = n

where qi(Aτ) = (qi1(Aτ), · · · , qi|G(Aτ)|)
T . Notice that

g(Aτ) is only dependent on matrix Aτ . In order to show

that
∑
i∈I gi ∈ H(A) for some λ, it suffices to show

that
∑
i ||qi(Aτ)||1 =

∑
i,j |qij(Aτ)| is upper bounded

by some value that only depends on A1, A2, · · · , Aτ .
Step 1. We consider Aτ−1. According to Ag = 0, we
have ∑

i∈S`τ−1

Aτ−1g
i = 0, ∀1 ≤ ` ≤ dτ−1

Plugging in Equation 3.6, we have

∑

i∈S`τ−1

Aτ−1G(Aτ)qi(Aτ) = 0. ∀1 ≤ ` ≤ dτ−1(3.7)

We rewrite the above equation in the following
way. Let matrix A′τ−1 = Aτ−1G(Aτ), Q`(Aτ) =∑
i∈S`τ−1

qi(Aτ), we have

∑

i∈S`τ−1

gi = G(Aτ)Q`(Aτ), ∀1 ≤ ` ≤ dτ−1(3.8)

A′τ−1Q
`(Aτ) = 0, ∀1 ≤ ` ≤ dτ−1(3.9)

Therefore, Q`(Aτ) ∈ kerZ|G(Aτ)|(A′τ−1). We replace the
index ` by i. According to the positive sum property,
we list the Graver basis of A′τ−1 as g1(A′τ−1), · · · ,
g|G(A′τ−1)|(A′τ−1), then there exist qij(A

′
τ−1) ∈ Z≥0 such

that

Qi(Aτ) =

|G(A′τ−1)|∑

j=1

qij(A
′
τ−1)gj(A′τ−1)(3.10)

= G(A′τ−1)qi(A′τ−1), ∀1 ≤ i ≤ dτ−1

where qi(A′τ−1) = (qi1(A′τ−1), · · · , qi|G(A′τ−1)|)
T . Fur-

thermore, as every entry of Qi(Aτ) is non-negative, the
positive sum property ensures that qij(A

′
τ−1) > 0 only

if every entry of gj(A′τ−1) is non-negative.
Step 2. We consider Aτ−2. According to Ag = 0, we
have

∑

i1∈S`τ−2

∑

i0∈S
i1
τ−1

Aτ−2g
i0 = 0, ∀1 ≤ ` ≤ dτ−2.

Plugging in Equation 3.8 and 3.10, we have

∑

i1∈S`τ−2

∑

i0∈S
i1
τ−1

Aτ−2g
i0

=
∑

i1∈S`τ−2

Aτ−2G(Aτ)Qi1(Aτ)

=
∑

i1∈S`τ−2

Aτ−2G(Aτ)G(A′τ−1)qi1(A′τ−1)

= 0, ∀1 ≤ ` ≤ dτ−2

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2812

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Let A′τ−2 = Aτ−2G(Aτ)G(A′τ−1), Q`(A′τ−1) =∑
i1∈S`τ−2

qi1(A′τ−1), we have

∑

i1∈S`τ−2

∑

i0∈S
i1
τ−1

gi0(3.11)

= G(Aτ)G(A′τ−1)Q`(A′τ−1), ∀1 ≤ ` ≤ dτ−2

A′τ−2Q
`(A′τ−1) = 0, ∀1 ≤ ` ≤ dτ−2(3.12)

Therefore, Q`(A′τ−1) ∈ kerZ|G(Aτ−1)′|(A′τ−2). Replacing

the index ` by i, there exist qij(A
′
τ−2) ∈ Z≥0 such that

Qi(A′τ−1)(3.13)

=

|G(A′τ−2)|∑

j=1

qij(A
′
τ−2)gj(A′τ−2)

= G(A′τ−2)qi(A′τ−2), ∀1 ≤ i ≤ dτ−2

where qi(A′τ−2) = (qi1(A′τ−2), · · · , qi|G(A′τ−2)|)
T .

We can iteratively carry on the above argument.
Step τ − k. In general, suppose we have shown the
following three equations:

∑

iτ−k−2∈S`k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i0∈S
i1
τ−1

gi0(3.14)

= G(Aτ)G(A′τ−1) · · ·G(A′k+2)Q`(A′k+2),

∀ 1 ≤ ` ≤ dk+1

A′k+1Q
`(A′k+2) = 0, ∀1 ≤ ` ≤ dk+1(3.15)

Replacing the index ` by i, there exist qij(A
′
k+1) ∈ Z≥0

such that

∑

i′∈Sik+1

qi
′
(A′k+2)(3.16)

= Qi(A′k+2)

=

|G(A′k+1)|∑

j=1

qij(A
′
k+1)gj(A′k+1)

= G(A′k+1)qi(A′k+1), ∀1 ≤ i ≤ dk+1

where qi(A′k+1) = (qi1(A′k+1), · · · , qi|G(A′k+1)|)
T , and

A′k+1 = Ak+1G(Aτ)G(A′τ−1) · · ·G(A′k+2).
When we consider Ak, Ag = 0 implies that

∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i0∈S
i1
τ−1

Akg
i0

= 0, ∀1 ≤ ` ≤ dk.

Indeed, if we view each gi as the i-th leaf (from left to
right) of the tree, the summation is taken over all the
leaves of the sub-tree routed at the vertex corresponding
to S`k. Plugging Equation 3.14 and Equation 3.16 into
the above equation, and replacing index iτ−k−1 by i, we
have the following

∑

i∈S`k

AkG(Aτ)G(A′τ−1) · · ·G(A′k+2)G(A′k+1)qi(A′k+1)

= 0, ∀1 ≤ ` ≤ dk

Let A′k = AkG(Aτ)G(A′τ−1) · · ·G(A′k+1), Q`(A′k+1) =∑
i′∈S`k

qi
′
(A′k+1), we have

∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

· · ·
∑

i0∈S
i1
τ−1

gi0(3.17)

= G(Aτ)G(A′τ−1) · · ·G(A′k+1)Q`(A′k+1),

∀ 1 ≤ ` ≤ dk

A′kQ
`(A′k+1) = 0, ∀1 ≤ ` ≤ dk(3.18)

Therefore, Q`(A′k+1) ∈ kerZ|G(Ak+1)′|(A′k). Replacing

the index ` by i, there exist qij(A
′
k) ∈ Z≥0 (by the

positive sum property) such that

∑

i′∈Sik

qi
′
(A′k+1)(3.19)

= Qi(A′k+1)

=

|G(A′k)|∑

j=1

qij(A
′
k)gj(A′k)

= G(A′k)qi(A′k), ∀1 ≤ i ≤ dk

where qi(A′k) = (qi1(A′k), · · · , qi|G(A′k)|)
T , and A′k =

AkG(Aτ)G(A′τ−1) · · ·G(A′k+1).
Specifically, we let A′τ = Aτ , therefore the above

equalities hold for any 1 ≤ k ≤ τ − 1.
Step τ − 1. Eventually we consider A1 and derive the
following based on the iterative argument.

∑

iτ−2∈S`1

∑

iτ−3∈S
iτ−2
2

· · ·
∑

i0∈S
i1
τ−1

gi0(3.20)

= G(Aτ)G(A′τ−1) · · ·G(A′2)Q`(A′2),

∀ 1 ≤ ` ≤ d1 = 1

A′1Q
`(A′2) = 0, ∀1 ≤ ` ≤ d1 = 1(3.21)

Replacing the index ` by i, there exist qij(A
′
1) ∈ Z≥0

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2813

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

such that
∑

i′∈Si1

qi
′
(A′2)(3.22)

= Qi(A′2)

=

|G(A′1)|∑

j=1

qij(A
′
1)gj(A′1)

= G(A′1)qi(A′1), ∀1 ≤ i ≤ d1 = 1

where qi(A′1) = (qi1(A′1), · · · , qi|G(A′1)|)
T , and A′1 =

A1G(Aτ)G(A′τ−1) · · ·G(A′2).
We make the following claim.

Claim 1. Qi(A′2) ∈ G(A′1).

Proof. [of the Claim] Suppose on the contrary that

Qi(A′2) 6∈ G(A′1), then there exist 0 6= Q̄
i
(A′2) @ Qi(A′2)

such that A′1Q̄
i
(A′2) = 0. In the following we will

construct 0 6= ḡ @ g such that Aḡ = 0, which
contradicts the fact that g ∈ G(A). Hence, the claim
is true.

We show how to construct ḡ. According to Equa-
tion 3.22,

∑
i′∈Si1

qi
′
(A′2) = Qi(A′2). We know that

every entry of qi
′
(A′2), and consequently Qi(A′2), is

non-negative. Therefore every entry of Q̄
i
(A′2) is also

non-negative. Consider every entry of the equation∑
i′∈Si1

qi
′
(A′2) = Qi(A′2), we have

∑
i′∈Si1

qi
′

j (A′2) =

Qi
j(A
′
2). For 0 ≤ Q̄

i
j(A
′
2) ≤ Qi

j(A
′
2), we can easily

find 0 ≤ q̄i
′

j (A′2) ≤ qi
′

j (A′2) such that
∑
i′∈Si1

q̄i
′

j (A′2) =

Q̄
i
j(A
′
2). Hence, there exist q̄i

′
(A′2) v qi

′
(A′2) such that

∑

i′∈Si1

q̄i
′
(A′2) = Q̄

i
j(A
′
2), ∀1 ≤ i ≤ d1 = 1,

and moreover, there exist some i′1 and i′2 such that
q̄i
′
1(A′2) @ qi

′
1(A′2) and q̄i

′
2(A′2) 6= 0.

Replacing i′ with i, we define

Q̄
i
(A′3) = G(A′2)q̄i(A′2), 1 ≤ i ≤ d2.

It is easy to see that Q̄
i
(A′3) v Qi(A′3) for 1 ≤ i ≤ d2.

As each Q̄
i
(A′3) is the weighted sum of the Graver basis

of A′2, we know A′2Q̄
i
(A′3) = 0. Furthermore, there

exist 1 ≤ i1, i2 ≤ d2 such that Q̄
i1(A′3) @ Qi1(A′3) and

Q̄
i2(A′3) 6= 0.

Carry on the above argument, we can prove itera-
tively that there exist q̄i

′
(A′k+1) v qi

′
(A′k+1) such that

∑

i′∈Sik

q̄i
′
(A′k+1) = Q̄

i
j(A
′
k+1), ∀1 ≤ i ≤ dk.

Furthermore, there exist some i′1 and i′2 such that
q̄i
′
1(A′k+1) @ qi

′
1(A′2) and q̄i

′
2(A′k+1) 6= 0.

Replacing the index i′ with i, we define

Q̄
i
(A′k+2) = G(A′k+1)q̄i(A′k+1), 1 ≤ i ≤ dk+1.

Then Q̄
i
(A′k+2) v Qi(A′k+2) for 1 ≤ i ≤ dk+1. As

each Q̄
i
(A′k+2) is the weighted sum of the Graver basis

of A′k+1, we know A′k+1Q̄
i
(A′k+2) = 0. Furthermore,

there exist 1 ≤ i1, i2 ≤ dk+1 such that Q̄
i1(A′k+2) @

Qi1(A′k+2) and Q̄
i2(A′k+2) 6= 0.

Eventually, we can show that there exist Q̄
i
(Aτ) =

G(A′τ−1)q̄i(A′τ−1) for 1 ≤ i ≤ dτ−1 such that Q̄
i
(Aτ) v

Qi(Aτ), A′τ−1Q̄
i
(Aτ) = 0. Furthermore, there exist

1 ≤ i1, i2 ≤ dτ−1 such that Q̄
i1(Aτ) @ Qi1(Aτ) and

Q̄
i2(Aτ) 6= 0.

Given that Qi(Aτ) =
∑
i′∈Siτ−1

qi
′
(Aτ), we

can find q̄i
′
(Aτ) v qi

′
(Aτ) such that Q̄

i
(Aτ) =∑

i′∈Siτ−1
q̄i
′
(Aτ), and moreover, there exist 1 ≤ i1, i2 ≤

n such that q̄i1(Aτ) @ qi1(Aτ) and q̄i2(Aτ) 6= 0.
We define

ḡi = G(Aτ)q̄i(Aτ), ∀1 ≤ i ≤ dτ = n

Note that by the positive sum property of the Graver
basis, if qij(Aτ) > 0 then gj(Aτ) must lie in the same

orthant as gi. Therefore q̄i
′
(Aτ) v qi

′
(Aτ) implies

that ḡi v gi. Further, Aτ ḡ
i = 0, and moreover, there

exist 1 ≤ i1, i2 ≤ n such that ḡi1 @ gi1 and ḡi2 6= 0.
Therefore, 0 6= ḡ = (ḡ1, · · · , ḡn) @ g.

Finally we show that Aḡ = 0. This is equivalent as
showing for every 1 ≤ k ≤ τ − 1,

∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i0∈S
i1
τ−1

Akḡ
i0

= 0, ∀1 ≤ ` ≤ dk.

Using the equations ḡi = G(Aτ)q̄i(Aτ) and∑
i′∈Sik

q̄i
′
(A′k+1) = Q̄

i
(A′k+1) = g(A′k)q̄i(A′k), we have

the following equations (see the equations on the top.)
Therefore, the claim is proved. �

We now show that
∑n
i=1 ||qi(Aτ)||1 =

∑
i,j |qij(Aτ)| is

upper bounded by some value that only depends on
A1, A2, · · · , Aτ . Using the fact that

∑
i′∈Sik

qi
′
(A′k+1) =

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2814

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i0∈S
i1
τ−1

Akḡ
i0

=
∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i0∈S
i1
τ−1

AkG(Aτ)q̄i0(Aτ)

=
∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i1∈S
i2
τ−2

AkG(Aτ)Q̄
i1(Aτ)

=
∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i1∈S
i2
τ−2

AkG(Aτ)G(A′τ−1)q̄i1(Aτ)

=
∑

iτ−k−1∈S`k

∑

iτ−k−2∈Sτ−k−1
k+1

∑

iτ−k−3∈S
iτ−k−2
k+2

· · ·
∑

i1∈S
i3
τ−3

AkG(Aτ)G(A′τ−1)Q̄
i2(A′τ−1)

= ...

= AkG(Aτ)G(A′τ−1) · · ·G(A′k+1)Q̄
`

= A′kQ̄
`

= 0

Qi(A′k+1) = G(A′k)qi(A′k),we have

dk+1∑

i=1

||qi(A′k+1)||1

=

dk∑

i=1

||Qi(A′k+1)||1

=

dk∑

i=1

||G(A′k)qi(A′k)||1

≤
dk∑

i=1

||G(A′k)||1||qi(A′k)||1

=

dk−1∑

i=1

||G(A′k)||1||Qi(A′k)||1

Therefore,

n∑

i=1

||qi(Aτ)||1

≤ ||G(A′τ−1)||1||G(A′τ−2)||1 · · · ||G(A′2)||1||Qi(A′2)||1.

Obviously each A′k, and hence its Graver ba-
sis, and hence ||G(A′k)||, is only dependent on
A1, · · · , Aτ . Furthermore, Qi(A′2) ∈ G(A′1),
hence ||Qi(A′2)||1, and consequently

∑n
i=1 ||qi(Aτ)||1,

is only dependent on A1, · · · , Aτ . Thus, for
λ = ||G(A′τ−1)||1||G(A′τ−2)||1 · · · ||G(A′2)||1||Qi(A′2)||1
we have g ∈ H(A), and the lemma is proved. �

3.3 Dynamic programming in FPT time We
provide a dynamic programming algorithm running

in FPT algorithm for the tree-fold integer program-
ming, and Theorem 1.3 follows. Towards this, we let
λ = λ(A1, A2, · · · , Aτ) and H(A) be defined as in
Lemma 3.2.

Given a feasible solution x of the integer program-
ming (3.5), let γ∗ ∈ Z+, g∗ ∈ G(A) satisfy that γ∗g∗

is the best augmentation among Graver basis, i.e., the
best possible augmentation vector of the form γg where
γ ∈ Z+ and g ∈ G(A). The following lemma from [5]
allows us to guess γ∗ in O(n) time:

Lemma 3.3. ([5]) In O(n) time we can compute a set
of integers Γ such that γ∗ ∈ Γ and |Γ| ≤ n|H(A)|.

The proof in [5] is for the case when τ = 2, however, it
works directly for the general tree-fold matrices. For the
completeness of the paper we give the proof as follows.

Proof. [of Lemma 3.3] Notice that if we fix g = g∗, then
γ = γ∗ is the largest integer such that l ≤ x + γg∗ ≤ u
is still true. Therefore, if we consider each brick of the
solution x = (x1,x2, · · · ,xn), then there exists some
1 ≤ i ≤ n such that γ∗ is the largest integer such
that li ≤ xi + γg∗i ≤ ui is still true. As g∗ ∈ H(A),
g∗i ∈ H(A) for every i. Now for every h ∈ H(A) and
every 1 ≤ i ≤ n, we find out the largest integer γh,i such
that li ≤ xi + γh,ih

i ≤ ui is true and add this integer
to Γ. Obviously γ∗ ∈ Γ and |Γ| ≤ n|H(A)|. �

In the following we give a dynamic programming
algorithm such that given a feasible solution x and
any γ ∈ Γ, it finds out hγ ∈ H(A) that minimizes
cT (x+γhγ), or equivalently, minimizes cThγ subject to
the constraints that li ≤ xi + γhiγ ≤ ui and Ahγ = 0.
With such an algorithm, we can run it for every γ ∈ Γ

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2815

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

and pick γ′ such that cT (x + γ′hγ′) is minimal. By the
definition of H(A), γ′hγ′ is at least as good as the best
augmentation via Graver basis and is thus the Graver-
best augmentation that we desire.

The dynamic programming works in stages where
in each stage it solves a subproblem. To define the
subproblem, we define a matrix Ā as follows. Consider
any small matrix Ai and all the rows in A that contain
Ai. Suppose Ai appears consecutively in these rows
from column 1 = di0 to column di1, from column di1 + 1
to column di2, · · · , from column dik−1 to column dik = n.
We define Ā where each row of Ā is the summation of
some rows in A. More precisely, Ā contains the same
number of rows as A. If in the `-th row of A some
small matrix Ai appears consecutively from column dij
to column dij+1, then in the `-th row of Ā the small

matrix Ai appears consecutively from 1 to dij+1, that is,

we construct Ā by extending the sequence of Ai in each
row of A to column 1. It is obvious that Ah = 0 if and
only if Āh = 0.

Let Ā[1], Ā[2], · · · be all the rows in Ā. Let EDk

be the set of rows Ā[`] where only the first k columns
are non-zero. Obviously EDk ⊆ EDk+1. We define
subproblem-k as follows:

Find some h̄γ such that

• h̄
i
γ = 0 for i > k, that is, only the first k bricks can

be non-zero.

• h̄γ ∈ H(A).

• li ≤ xi + γh̄
i
γ ≤ ui for 1 ≤ i ≤ k.

• Ā[`] · h̄γ = 0 for any Ā[`] ∈ EDk.

• cT h̄γ is minimized.

It is easy to see that the optimal solution for the
subproblem-(k+1) can be constructed by extending the
optimal solution for the subproblem-k by one brick, and
such a brick belongs to H(A). Therefore, the optimal
solution for subproblem-n can be found in O(n|H(A)|)
time.

The overall running time. We have shown in this
subsection that the dynamic programming algorithm
can find out a Graver best augmentation in O(n2)
time (ignoring all the FPT-terms). By [6] the number
of Graver best augmentations needed is O(nL) where
L is the encoding length of the integer programming,
therefore tree-fold integer programming can be solved
in O(n3L) time, and Theorem 1.3 is proved (if a feasible
initial solution is given).

3.4 Constructing an initial feasible solution We
have proved the correctness of Theorem 1.3 if a feasi-
ble initial solution is given. In case a feasible solution
is unknown, we construct an auxiliary tree-fold integer
programming such that i). the initial feasible solution
of the auxiliary programming is trivial; ii). the opti-
mal solution of the auxiliary programming gives a fea-
sible initial solution for the original tree-fold program-
ming (1.1). The argument is essentially the same as
that of [5].

We add auxiliary variables. For each xi,
we add 2

∑τ
k=1 sk auxiliary variables and let them

be zi. The new vector of variables becomes
(x1, z1,x2, z2, · · · ,xn, zn).

We introduce a lower bound of 0 and up-
per bound of ||b||∞ for each auxiliary variable.
For each 1 ≤ k ≤ τ , we replace each Ak with
(Ak, 0sk×s1 , 0sk×s1 , 0sk×s2 , 0sk×s2 , 0sk×s3 , · · · , 0sk×sk−1

, Isk×sk ,
− Isk×sk , 0sk×sk+1

, 0sk×sk+1
, · · · , 0sk×sτ).

We change the objective function as the summation
of all the auxiliary variables.

A feasible initial solution for the auxiliary ILP could
be easily derived by setting x = 0 and approperiate
values to the auxiliary variables. Furthermore, the
optimal solution of the auxiliary ILP is 0 if and only if
there exists a feasible solution for (1.1). Therefore, we
can apply our algorithm of the previous subsection to
solve the auxiliary ILP and derive its optimal solution,
which provides an initial feasible solution for the original
tree-fold integer programming (1.1).

3.5 Subtree cover–integer programming formu-
lation The goal of this subsection is to derive an ILP
formulation of the subtree cover problem which falls
into the category of tree-fold integer programming.
Given this result, applying Theorem 1.3, Theorem 1.2
is proved.

For ease of description, we let the root r = v1. We
define the unweighted distance between two vertices as
the length the path connecting them in the same tree
with all edge weights as 1. The depth of any vertex vs
is the unweighted distance of vs to v1.

Preprocessing. We consider the decision version of the
problem which asks whether there exists a subtree cover
of makespan B. We assume without loss of generality
that the height of the tree, h(T), is at most B, since
otherwise we can conclude directly that there is no
feasible solution of makespan at most B. For ease of
presentation, we modify the problem in the following
way. For any leaf whose depth is h < h(T), we append
a path to it which consists of h(T)− h dummy vertices
and h(T) − h dummy edges of 0 weight. By doing so
every leaf of T has a depth of h(T). Next, we direct all

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2816

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the edges towards the root and move the weight of each
edge to its source vertex. Specifically, the weight of the
root is 0. Now the weight of any subtree is simply the
total weight of its vertices. For simplicity, we still denote
the modified tree as T and denote by n the number of
its vertices.

Configurations. We define configurations. Any tree
with at most O(B2) vertices can be encoded via an
O(B2)-vector as follows: We index all vertices from 1
to O(B2). For every vertex, we store its weight and its
parent. We call such an O(B2)-vector as a configuration
and have the following simple observation.

Observation 2. There are at most µ = BO(B2) differ-
ent kinds of configurations.

We index configurations arbitrarily as
CF1, CF2, · · · , CFµ and denote by |CFj | the number
of vertices in CFj . Given an arbitrary configuration
CFj , we use (CFj , k) to denote its vertex of index
k ∈ {1, 2, · · · , |CFj |}. k is also called the location of
this vertex. Let ζ = O(B2) be the maximal number of
vertices among all the configurations. A pair (CFj , k)
with |CFj | < k ≤ ζ is called invalid. For simplicity, 1 is
always the index (location) of the root for every CFj .

Given a configuration CFj , we define a function fj
which maps a vertex of location k to the location of its
parent (it shall be noted that here the function fj has
nothing to do with the function f in Theorem 1.3).

Now we revisit the subtree cover problem using the
notion of configurations. Consider an arbitrary subtree
of T rooted at r = v1 whose weight is at most B.
We first observe that there are at most O(B2) vertices
in the subtree. To see why, we can first consider a
subtree of weight at most B in the original tree before
preprocessing. Since every vertex, except the root, has
non-zero weight, the number of vertices is bounded by
B + 1. As the preprocessing procedure will append
at most h(T) ≤ B vertices below a vertex, the total
number of vertices is thus bounded by O(B2). Hence,
any subtree of weight at most B can be mapped to a
configuration. Furthermore, any feasible solution can
be interpreted as m subtrees that can be mapped to m
configurations. Using this idea, we now establish an ILP
formulation of the problem.

We define an integral variable xi,(CFj ,k) for every
vertex vi and every pair (CFj , k). For h ∈ Z+,
xi,(CFj ,k) = h implies that there are h subtrees in the
solution which contain vi, and furthermore, each of
them can be mapped to the configuration CFj such that
vi is mapped to the location k vertex in CFj .

Obviously, vi can not be mapped to an arbitrary
vertex in CFj . We say a vertex vi is consistent with
the pair (CFj , k), if both of the following conditions are

true:

• the depth of vi in T is the same as the depth of the
location k vertex in CFj ;

• the weight of vi in T is the same as the weight of
the location k vertex in CFj .

Otherwise, we say they are inconsistent.
Let CH(vi) be the set of children of vi, LF be the

set of leaves. We establish the following ILP (T) for the
subtree cover problem (see the ILP on the top of the
next page).

We explain the constraints. Constraint (II) ensures
that every leaf is contained in one of the subtrees.
Constraints (III) and (IV) are straightforward. We
now explain constraint (I). Consider any feasible
solution and let vi be an arbitrary vertex. Let vs be
any child of vi. If vs is mapped to the vertex of location
k in CFj , then vi must be mapped to the vertex of
location fj(k) in CFj . Therefore, if we consider the
total number of configuration CFj where a child of vi is
mapped to its vertex of location k, this should be equal
to the number of configuration CFj where vi is mapped
to its vertex of location fj(k). This is essentially what
constraint (I) implies.

The following two lemmas ensures that the ILP (T)
we have derived indeed solves the subtree cover problem.
One direction (Lemma 3.4) is staightforward, yet the
other direction is a bit involved.

Lemma 3.4. If there exists a feasible solution of the
scheduling problem with makespan at most B, then there
exists a feasible solution of the ILP with the objective
value at most m.

Lemma 3.5. If there exists a feasible solution of the ILP
with the objective value at most m, then there exists
a feasible solution of the subtree cover problem with
makespan at most B.

Proof. Let LF be the set of leaves. In the following we
show that it is possible to select a subset LF ′ ⊆ LF
such that there exists a subtree of weight at most B
that contains each vertex of LF ′, and furthermore, if
we delete LF ′ (together with the edge incident to them)
from the tree T , there exists a feasible solution of the
ILP for the remaining tree T ′ with the objective value at
most m−1. If the above claim is true, we can iteratively
carry on the argument to construct m subtrees that
contain every vertex of LF and the lemma is proved.

We pick an arbitrary j0 such that x1,(CFj0 ,1) ≥ 1.
Consider the children of the root v1. According to
constraint (I), for any location k such that fj0(k) = 1

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2817

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ILP (T) :

min

µ∑

j=1

x1,(CFj ,1)

(I)
∑

s:vs∈CH(vi)

xs,(CFj ,k) = xi,(CFj ,fj(k)), ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ µ, 1 ≤ k ≤ ζ

(II)

µ∑

j=1

ζ∑

k=1

xi,(CFj ,k) = 1, ∀ vi ∈ LF

(III) xi,(CFj ,k) = 0, if vi and (CFj , k) are inconsistent, or |CFj | < k ≤ ζ
(IV) xi,(CFj ,k) ∈ Z≥0, 1 ≤ i ≤ n, 1 ≤ j ≤ µ, 1 ≤ k ≤ ζ

(i.e., the location of the vertices who are children of the
root of CFj0), we have

∑

s:vs∈CH(v1)

xs,(CFj0 ,k) = x1,(CFj0 ,1) ≥ 1.

Hence, for any k such that fj0(k) = 1, there ex-
ists at least one child of v1, say, vs(1,k), such that
xs(1,k),(CFj0 ,k) ≥ 1. We pick an arbitrary one (if there
are multiple) of such vertices for every k and let H(1)
be the set of these vertices.

Consider an arbitrary vs(k1) ∈ H1 where
xs(k1),(CFj ,k1) ≥ 1. According to constraint (I), for any
k2 such that fj0(k2) = k1, we have

∑

s:vs∈CH(vs(k1))

xs,(CFj0 ,k2) = xs(k1),(CFj0 ,k1) ≥ 1.

Hence, for any k2 such that fj0(k2) = k1, there
exists at least one child of vs(k1), say, vs(k2) such that
xs(k2),(CFj0 ,k2) ≥ 1. We pick an arbitrary one of such
vertices for every k2 such that fj0(k2) = k1, and let
H(1, k1) be the set of these vertices.

Suppose in general we have constructed the set of
vertices H(1, k1, k2, · · · , ki) such that

• for any 1 ≤ h ≤ i, fj0(kh) = kh−1;

• for any ki+1 such that fj0(ki+1) = ki, there exists
exactly one vertex vs(ki+1) ∈ H(1, k1, k2, · · · , ki)
such that xs(ki+1),(CFj0 ,ki+1) ≥ 1.

If there exists at least one vertex of H(1, k1, k2, · · · , ki)
which is not a leaf, we proceed as follows. For any
vs(ki+1) ∈ H(1, k1, · · · , ki) which is not a leaf and any
ki+2 such that f(ki+2) = ki+1, the following is true:

∑

s:vs∈CH(vs(ki+1))

xs,(CFj0 ,ki+2) = xs(ki+1),(CFj0 ,ki+1) ≥ 1.

Hence, there exists at least one child of vs(ki+1), say,
vs(ki+2) such that xs(ki+2),(CFj0 ,ki+2) ≥ 1. We pick an
arbitrary one of such vertices for every ki+2 and let
H(1, k1, · · · , ki+1) be the set of them. Otherwise every
vertex of H(1, k1, k2, · · · , ki) is a leaf and we stop.

Eventually we derive a sequence of sets
H(1, k1, k2, · · · , ki) and let H be the union of them.

Let T [H] be the induced subgraph of T . Firstly,
we claim that T [H] is a subtree of the original tree T .
To see why, it suffices to notice that every vertex of
H(1, k1, k2, · · · , ki) is connected to the root v1.

Secondly, we claim that every leaf of the subtree
T [H] is also a leaf in T . This is straightforward. Let
vs be an arbitrary leaf of T [H] which is not a leaf
in the original graph, then according to our iterative
construction, we will further consider the children of vs
and add some of them to H.

Thirdly, we claim that the weight of T [H] is at most
B. Indeed, the claim follows directly as every vertex of
H is consistent to some vertex in CFj0 .

Let LF (H) be the set of leaves in T [H]. We delete
LF (H) and the edges incident to them in T and consider
the ILP for the remaining subtree T ′. It is easy to
verify that the following solution x′s,(CFj ,k) is a feasible

solution to ILP (T ′) with the objective of at most m−1:

x′s,(CFj ,k) = xs,(CFj ,k), if j 6= j0

x′s,(CFj0 ,k) = xs,(CFj0 ,k) − 1, if vs ∈ H \ LF (H)

Therefore given a feasible integer solution with the
objective value at most m, we can iteratively construct
at most m subtrees such that every vertex is covered,
and the lemma is proved. �

Still, ILP (T) is similar but not exactly the same as
a tree-fold integer programming. We need to tune the
ILP a bit. The tuning is essentially by replacing some

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2818

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

of the variables with the equation in (I) it satisfies, i.e.,
we will remove some of the variables (See Section 3.6).
Once transformed into a tree-fold integer programming,
Theorem 1.3 can be applied and Theorem 1.2 is proved.

3.6 Tuning the ILP We alter the ILP a bit so that
it becomes a tree-fold integer programming.

Given CFj , we let F−1
j (k) = {w|fj(w) = k}. For

h ≥ 2, we define F−hj (k) = {w|fj(w) ∈ F−h+1
j (k)}.

Recall that fj is the function that maps the location of
a vertex to the location of its parent in CFj , therefore
F−hj (k) the set of locations of vertices satisfying the
following: i). they are descendants of the location k
vertex; ii). for each of them, the unweighted distance to
the location k vertex is h.

We show that, it is possible to remove all the
variables xi,(CFj ,k) where vi is not a leaf and establish
an equivalent ILP.

Let LF (vi) be the set of all leaves of the subtree
rooted at vi. By constraint (I), we have the following

xi,(CFj ,k) =
∑

s:vs∈CH(vi)

xs,(CFj ,w), ∀w ∈ F−1
j (k).

If w ∈ F−1
j (k) is not a leaf, we could further express

xs,(CFj ,w) into the summation of other variables. In
general, consider any vertex vi whose depth is h(T)−h.
As the depth of every leaf is h(T), the unweighted
distance of any leaf in LF (vi) to vi is h, and we have
the following:

xi,(CFj ,k) =
∑

s:vs∈LF (vi)

xs,(CFj ,w), ∀w ∈ F−hj (k).

Specifically,

x1,(CFj ,1) =
∑

s:vs∈LF
xs,(CFj ,w), ∀w ∈ F−h(T)

j (1).

Now every x1,(CFj ,1) could be expressed using
xs,(CFj ,w) where vs is a leaf. We replace the objective
function using the above equations.

Let Lh(CFj) be the subset of locations of CFj
whose depth is h(T) − h, and let L≥2

h (CFj) =

{k||F−hj (k)| ≥ 2}, we replace constraint (I) by the fol-
lowing:

∑

s:vs∈LF (vi)

xs,(CFj ,w) −
∑

s:vs∈LF (vi)

xs,(CFj ,w′) = 0,

∀vi ∈ Vh, k ∈ L≥2
h (CFj), w, w

′ ∈ F−hj (k), (I ′)

where Vh is the set of vertices of depth h(T)− h.
It is obvious that the new ILP is equivalent as the

original ILP since we simply replace each xs,(CFj ,w)

where vs is not a leaf with the equality it satisfies.

In the following we show that the modi-
fied ILP belongs to the tree-fold integer program-
ming. It suffices to consider constraints (I ′)
and (II). Let xi = (xi,(CF1,1), xi,(CF1,2), · · · ,
xi,(CF1,ζ), xi,(CF2,1), · · · , xi,(CF2,ζ), · · · , xi,(CFµ,ζ))T and

x = (x1,x2, · · · ,x|LF |)T .
Consider constraint (II):

µ∑

j=1

ζ∑

k=1

xi,(CFj ,k) = 1, ∀vi ∈ LF

Let τ = |h(T)| + 1. We define A1 = Iµζ×µζ , constraint
(II) could be written as

∑
iA1x

i = (1, 1, · · · , 1)1×µζ .
Consider constraint (I ′). For any vertex vs ∈

LF (vi) where vi ∈ Vh, the constraint (I ′) could be
rewritten as

∑
s:vs∈LF (vi)

Aτ−hx
s = 0 where Aτ−h

consists of
∑
j

∑
k∈L≥2

h (CFj)
(|F−hj (k)| − 1) · |Fhj (k)|/2

different rows, and each row consists of 0, 1,−1 such
that the entry that becomes the coefficient of xs,(CFj ,w)

after multiplication is 1, the entry that becomes the
coefficient of xs,(CFj ,w′) after multiplication is −1, and
other entries are 0. Given the fact that LF (vi) =
∪s:vs∈CH(vi)LF (vs), it is not difficult to verify that
contraints (I ′) and (II) could be written as Ax = b
where A is a tree-fold matrix consisting of submatrices
A1, A2, · · · , Aτ .

Now applying Theorem 1.3, an f(B)n4 time algo-
rithm for the subtree cover problem is derived for some
function f , and Theorem 1.2 is proved.

4 Conclusion

We consider the subtree cover problem in this paper
and provide a PTAS as well as an FPT algorithm
parameterized by the makespan. Our FPT algorithm
follows from a more general FPT result on the tree-
fold integer programming, which extends the existing
FPT algorithm on the n-fold integer programming.
The running times of the PTAS and FPT algorithms
are huge and are only of theoretical interest. It is
an intriguing open problem whether there exists an
efficient polynomial approximation scheme (EPTAS) for
the subtree cover problem. Another important open
problem is whether we can derive FPT algorithm for
integer programming with the matrix A that has an
even more general structure.

References

[1] Lin Chen, Klaus Jansen, and Guochuan Zhang. On
the optimality of approximation schemes for the classi-
cal scheduling problem. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Al-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2819

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

gorithms, pages 657–668. Society for Industrial and Ap-
plied Mathematics, 2014.

[2] Jesús A De Loera, Raymond Hemmecke, and Matthias
Köppe. Algebraic and geometric ideas in the theory of
discrete optimization, volume 14. SIAM, 2013.

[3] Guy Even, Naveen Garg, Jochen Könemann, R Ravi,
and Amitabh Sinha. Min–max tree covers of graphs.
Operations Research Letters, 32(4):309–315, 2004.

[4] Jack E Graver. On the foundations of linear and inte-
ger linear programming i. Mathematical Programming,
9(1):207–226, 1975.

[5] Raymond Hemmecke, Shmuel Onn, and Lyubov Ro-
manchuk. N-fold integer programming in cubic time.
Mathematical Programming, 137(1-2):325–341, 2013.

[6] Raymond Hemmecke, Shmuel Onn, and Robert Weis-
mantel. A polynomial oracle-time algorithm for con-
vex integer minimization. Mathematical Programming,
126(1):97–117, 2011.

[7] Dorit S Hochbaum and David B Shmoys. Using
dual approximation algorithms for scheduling problems
theoretical and practical results. Journal of the ACM
(JACM), 34(1):144–162, 1987.

[8] Serkan Hoşten and Seth Sullivant. A finiteness theorem
for markov bases of hierarchical models. Journal of
Combinatorial Theory, Series A, 114(2):311–321, 2007.

[9] Bart MP Jansen and Stefan Kratsch. A structural
approach to kernels for ilps: Treewidth and total
unimodularity. In Algorithms-ESA 2015, pages 779–
791. Springer, 2015.

[10] Klaus Jansen, Kim-Manuel Klein, and José Verschae.
Closing the gap for makespan scheduling via sparsifi-
cation techniques. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, pages 72:1–72:13,
2016.

[11] Klaus Jansen and Monaldo Mastrolilli. Scheduling un-
related parallel machines: linear programming strikes
back. University of Kiel, Technical Report 1004, 2010.

[12] M Reza Khani and Mohammad R Salavatipour. Im-
proved approximation algorithms for the min-max tree
cover and bounded tree cover problems. Algorithmica,
69(2):443–460, 2014.

[13] Dušan Knop and Martin Kouteckỳ. Scheduling
meets n-fold integer programming. arXiv preprint
arXiv:1603.02611, 2016.

[14] Dušan Knop, Martin Kouteckỳ, and Matthias Mnich.
Combinatorial n-fold integer programming and appli-
cations. arXiv preprint arXiv:1705.08657, 2017.

[15] Stefan Kratsch. On polynomial kernels for sparse
integer linear programs. Journal of Computer and
System Sciences, 82(5):758–766, 2016.

[16] Jan Karel Lenstra, David B Shmoys, and Éva Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Mathematical programming, 46(1-
3):259–271, 1990.

[17] Matthias Mnich and Andreas Wiese. Scheduling and
fixed-parameter tractability. Mathematical Program-
ming, 154(1-2):533–562, 2015.

[18] Hiroshi Nagamochi and Kohei Okada. Approximating
the minmax rooted-tree cover in a tree. Information
Processing Letters, 104(5):173–178, 2007.

[19] Shmuel Onn. Nonlinear discrete optimization. Zurich
Lectures in Advanced Mathematics, European Mathe-
matical Society, 2010.

[20] Sartaj K Sahni. Algorithms for scheduling independent
tasks. Journal of the ACM (JACM), 23(1):116–127,
1976.

[21] Liang Xu, Zhou Xu, and Dongsheng Xu. Exact and
approximation algorithms for the min–max k-traveling
salesmen problem on a tree. European Journal of
Operational Research, 227(2):284–292, 2013.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2820

D
ow

nl
oa

de
d

12
/1

8/
18

 to
 1

95
.1

11
.2

.2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

