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Abstract

In an earlier work we described Gröbner bases of the ideal of poly-
nomials over a field, which vanish on the set of characterisic vectors
v ∈ {0, 1}n of the complete d unifom set family over the ground set
[n]. In particular, it turns out that the standard monomials of the
above ideal are ballot monomials. We give here a partial extension of
this fact. A set family is a linear Sperner system if the characteristic
vectors satisfy a linear equation a1v1 + · · · + anvn = k, where the ai
and k are positive integers. We prove that the lexicographic standard
monomials for linear Sperner systems are also ballot monomials, pro-
vided that 0 < a1 ≤ a2 ≤ · · · ≤ an. As an application, we confirm a
conjecture of Frankl in the special case of linear Sperner systems.
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1 Introduction

Throughout the paper n will be a positive integer and [n] stands for the set
{1, 2, . . . , n}. The family of all subsets of [n] is denoted by 2[n].

Let F be a field. F[x1, . . . , xn] = F[x] denotes the ring of polynomials
in commuting variables x1, . . . , xn over F. For a subset F ⊆ [n] we write
xF =

∏

j∈F xj . In particular, x∅ = 1.
Let vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n]. For

a family of subsets F ⊆ 2[n], let V (F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ Fn. A
polynomial f ∈ F[x1, . . . , xn] can be considered as a function from V (F) to
F in the straightforward way.

Several interesting properties of finite set systems F ⊆ 2[n] can be for-
mulated simply as statements about polynomial functions on V (F). For
instance, the rank of certain inclusion matrices can be studied in this setting
(see for example Sections 2, 3 in [14]). As for polynomial functions on V (F),
it is natural to consider the ideal I(V (F)):

I(V (F)) := {f ∈ F[x] : f(v) = 0 whenever v ∈ V (F)}.

Substitution gives an F algebra homomorphism from F[x] to the F alge-
bra of F-valued functions on V (F). A straightforward interpolation argu-
ment shows that this homomorphism is surjective, and the kernel is exactly
I(V (F)). This way we can identify F[x]/I(V (F)) and the algebra of F valued
functions on V (F). As a consequence, we have

dimF F[x]/I(V (F)) = |F|. (1)

Gröbner bases and related structures of I(V (F)) were given for some
families F , see [14] and the references therein. Before proceeding further, we
recall some basic facts about to Gröbner bases and standard monomials. For
details we refer to [1], [5], [6], [7].

A linear order ≺ on the monomials over variables x1, x2, . . . , xm is a term

order, or monomial order, if 1 is the minimal element of ≺, and uw ≺ vw

holds for any monomials u,v,w with u ≺ v. Two important term orders are
the lexicographic order ≺l and the deglex order ≺d. We have

xi1
1 x

i2
2 · · ·xim

m ≺l x
j1
1 x

j2
2 · · ·xjm

m

iff ik < jk holds for the smallest index k such that ik 6= jk. Concerning the
deglex order, we have u ≺d v iff either degu < deg v, or deg u = deg v, and
u ≺l v.
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The leading monomial lm(f) of a nonzero polynomial f ∈ F[x] is the
≺-largest monomial which appears with nonzero coefficient in the canonical
form of f as a linear combination of monomials.

Let I be an ideal of F[x]. A finite subset G ⊆ I is a Gröbner basis of
I if for every nonzero f ∈ I there exists a g ∈ G such that lm(g) divides
lm(f). In other words, the leading monomials lm(g) for g ∈ G generate the
semigroup ideal of monomials {lm(f) : f ∈ I}. It follows easily, that G is
actually a basis of I, i.e. G generates I as an ideal of F[x]. A key fact is (cf.
[6, Chapter 1, Corollary 3.12] or [1, Corollary 1.6.5, Theorem 1.9.1]) that
every nonzero ideal I of F[x] has a Gröbner basis.

A monomial w ∈ F[x] is a standard monomial for I if it is not a leading
monomial for any f ∈ I. We denote by sm(I) the set of standard monomials
of I. For a nonzero ideal I of F[x] the set of monomials sm(I) is a downset: if
w ∈ sm(I), u,v are monomials from F[x] such that w = uv then u ∈ sm(I).
Also, sm(I) gives a basis of the F-vectorspace F[x]/I in the sense that every
polynomial g ∈ F[x] can be uniquely expressed as h + f where f ∈ I and h
is a unique F-linear combination of monomials from sm(I).

For a set family F ⊆ 2[n] the characteristic vectors in V (F) are all 0,1-
vectors, hence the polynomials x2

i − xi all vanish on V (F). We infer that
the standard monomials of I(F) := I(V (F)) are square-free monomials.
Moreover, (1) and the preceding paragraph imply that

|F| = dimF F[x]/I(F) = |sm(I(F))|. (2)

Let a = (a1, . . . , an) be a vector with positive integer components ai, and
k ∈ N. We define the set of vectors S(a, k) ⊆ {0, 1}n ⊆ Fn as follows:

S(a, k) := {(v1, . . . , vn) ∈ {0, 1}n :

n
∑

i=1

aivi = k}.

In this paper, with the exception of a brief remark, where F = Fp is
considered, we assume that F = Q. The set family corresponding to S(a, k)
is a Sperner system or antichain. Sperner systems of the form S(a, k) are
called linear Sperner systems. There are Sperner systems which are non
linear. A simple example is the following family:

T := {(1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 1, 0, 0), (0, 0, 1, 1, 1)}.
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Indeed, easy linear algebra shows that S(a, k) can contain the first 5 points
of T only if a1 = a2 = · · · = a5.

The complete uniform family of all d element subsets of [n] is linear, in fact
it is S(1, d), where 1 = (1, . . . , 1). Following [2], in [11] we described Gröbner
bases and standard monomials for the ideals In,d = I(S(1, d)). Extensions
and combinatorial applications were given in [12].

Assume that ≺ is an arbitrary term order on F[x] such that x1 ≻ x2 ≻
· · · ≻ xn. Let 0 ≤ d ≤ n/2 and denote by Md,n the set of all monomials
xG such that G = {s1 < s2 < . . . < sj} ⊂ [n] for which j ≤ d and si ≥ 2i
holds for every i, 1 ≤ i ≤ j. These monomials xG are the ballot monomials

of degree at most d. If n is clear from the context, then we write Md instead
of the more precise Md,n. It is known (see for example Lemma 2.3 and the
following remark in [2]) that

|Md| =

(

n

d

)

.

In [2] it was also shown for the lex order ≺l, and this was extended in [11] to
any term order ≺ such that xn ≺ · · · ≺ x1, that Md is the set of standard
monomials for In,d as well as for In,n−d. Our main aim in this note is to prove
a partial extension of the above result to linear Sperner systems. Some of
the results in [4] also served as motivation for our work in this direction.

Theorem 1.1 Let a = (a1, . . . , an) ∈ Zn be a vector such that 0 < a1 ≤
a2 ≤ . . . ≤ an, and k be a natural number. Then the lexicographic standard

monomials for S(a, k) are all ballot monomials. More precisely

sm(I(S(a, k)) ⊆ M[n/2].

In the following example we give an explicit description of the lex standard
monomials for S(a, k), when a1 = . . . = an−1 = 1, and an = t for some integer
t ≥ 1.

Example 1 Let 1 ≤ t ≤ k ≤ n−1
2

be integers, a1 = . . . = an−1 = 1, an := t,
and put V := S(a, k). Then the set of the lex standard monomials of I(V ) is

sm(I(V )) = Mk,n−1 ∪ {mxn : m ∈ Mk−t,n−1}.

The following fact is easy to see by symmetric chain decomposition (see
Problem 13.20 in [13]). Here we offer a somewhat algebraic proof.
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Corollary 1.2 Suppose that the coordinates of a ∈ Zn are positive integers

and k ≤ n
2
is a natural number. Then

|S(a, k)| ≤

(

n

k

)

.

Proof. After possibly permuting the coordinates, we may assume that 0 <
a1 ≤ a2 ≤ · · · ≤ an. Observe also that a monomial xG is a leading monomial
for I(S(a, k)) whenever |G| > k, hence

|S(a, k)| = |sm(I(S(a, k))| ≤ |Mk| =

(

n

k

)

.

Here we first used (2), and the inequality follows from Theorem 1.1. �

A set family F ⊆ 2[n] shatters a subset S ⊆ [n], if for every Y ⊆ S there
exists an F ∈ F such that F ∩ S = Y . In [9] Frankl conjectured that if
a Sperner system F ⊆ 2[n] does not shatter any ℓ element subset of [n] for
some integer 0 ≤ ℓ ≤ n/2, then

|F| ≤

(

n

ℓ− 1

)

.

Here we confirm this conjecture for linear Sperner systems.

Corollary 1.3 Suppose that the coordinates of a ∈ Zn are positive integers,

k, ℓ are natural numbers, ℓ ≤ n/2, and S(a, k) does not shatter any ℓ element

subset of [n]. Then

|S(a, k)| ≤

(

n

ℓ− 1

)

.

Proof. After possibly permuting coordinates, we may again assume that 0 <
a1 ≤ a2 ≤ · · · ≤ an. By Theorem 1.1 the lex standard monomials of S(a, k)
are ballot monomials. Next we observe that the square-free monomials of
degree at least ℓ are leading monomials for S(a, k). Indeed, let S ⊆ [n] be a
subset, |S| ≥ ℓ. Then S is not shattered by S(a, k): there is a subset Y ⊆ S
such that no F ⊆ [n] for which vF ∈ S(a, k) can give Y = S ∩ F . Then the
polynomial

f(x) =
∏

i∈Y

xi ·
∏

j∈S\Y

(xj − 1)
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vanishes on S(a, k) completely, and the leading monomial of f is xS (for an
arbitrary term order). We obtain that

sm(I(S(a, k)) ⊆ Mℓ−1,

and hence

|S(a, k))| = |sm(I(S(a, k))| ≤ |Mℓ−1| =

(

n

ℓ− 1

)

.

�

Let p be a prime, a ∈ Nn be a vector, k ∈ N. We consider the family

Sp(a, k) = {v ∈ {0, 1}n :

n
∑

i=1

aivi ≡ k(mod p)} ⊂ Qn.

Note that Sp(a, k) is no longer a Sperner family. An interesting and useful
fact is (see [10], [12]) that in degrees at most p − 1 the deglex standard
monomials for S(1, k) and Sp(1, k) are the same over Fp. We have a similar
but weaker statement for more general a. Weaker in the sense that stronger
upper bound is required for the degree of the monomials, and also in the
sense that our argument works only for lex standard monomials 1.

Let t be an integer, 0 < t ≤ n/2. We define Ht as the set of those subsets
{s1 < s2 < · · · < st} of [n] for which t is the smallest index j with sj < 2j.

We have H1 = {{1}}, H2 = {{2, 3}}, and H3 = {{2, 4, 5}, {3, 4, 5}}. It
is clear that if {s1 < . . . < st} ∈ Ht, then st = 2t − 1, and st−1 = 2t − 2 if
t > 1.

Proposition 1.4 Suppose that 0 < ai ≤ ai+1 for each 1 ≤ i ≤ n − 1. Let

0 < t ≤ n/2 be an integer, T ∈ Ht, and assume that
∑

i∈T ai < p. Then xT

is a lex leading monomial for Sp(a, k). In particular, the conclusion holds

when
∑

i∈[2t−1] ai ≤ p.

In the next Section we prove Theorem 1.1, Proposition 1.4, and discuss
the details of Example 1.

1A set V ⊆ {0, 1}n can be considered as a subset of Fn for any field F . It is known that
the set of lex standard monomials for I(V ) is independent of F. This is seen for example
from Proposition 2.3.
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2 Lex standard monomials for linear Sperner

systems

We shall need the following simple observations.

Fact 2.1 Let G ⊆ [n]. If the monomial xG is not a ballot monomial, then

there exists an integer t > 0 and a Y ∈ Ht such that Y ⊆ G. �

Lemma 2.2 Let 0 < a1 ≤ a2 ≤ · · · ≤ an and t be integers, 1 < t ≤ n/2,
T ∈ Ht. Then

∑

i∈[2t−1]\T

ai ≤
∑

i∈T\{2t−1}

ai <
∑

i∈T

ai.

Proof. We prove that there exists a bijective map f from T \ {2t− 1} onto
[2t− 1] \ T such that f(t) < t for every t ∈ T \ {2t− 1}.

This holds because T ∈ Ht and therefore if

T \ {2t− 1} = {l1 < l2 < · · · < lt−1},

then li ≥ 2i for i = 1, . . . , t− 1. The map f can be constructed inductively
for l1, . . . , lt−1.

Indeed, we can set f(l1) = 1. Suppose now that we have constructed f(lj)
for j < i. The numbers lj and f(lj) are all positive integers less than li by
the induction hypothesis. Their number is 2i − 2. In the interval [1, 2i− 1]
there are 2i− 1 integers, hence we have one, say s, which is not among the
numbers considered previously. Then we can set f(li) = s.2

The existence of f implies that

∑

i∈[2t−1]\T

ai ≤
∑

i∈T\{2t−1}

ai <
∑

i∈T

ai.

This proves the lemma. �

2An alternative way to construct f is to observe first that if we write

{1, 2, . . . , 2t− 2} = {l1 < l2 < · · · < lt−1} ∪
∗ {s1 < s2 < · · · < st−1},

then we have si < li for i = 1, . . . , t− 1. We can then set f(li) = si for every i.
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Following [8] and [14] we recall some facts about the Lex game, a method
to determine the lexicographic standard monomials of the vanishing ideal of
a finite set of points from Fn, where F is an arbitrary field. Let V ⊆ Fn be
a finite set, and w = (w1, . . . , wn) ∈ Nn an n dimensional vector of natural
numbers. With these data as parameters, we define the Lex game Lex(V ;w),
which is played by two players, Lea and Stan, as follows:
Both Lea and Stan know V and w. Their moves are:

1 Lea chooses wn elements of F.

Stan picks a value yn ∈ F, different from Lea’s choices.

2 Lea now chooses wn−1 elements of F.

Stan picks a yn−1 ∈ F, different from Lea’s (last wn−1) choices.

. . . (The game proceeds in this way until the first coordinate.)

n Lea chooses w1 elements of F.

Stan finally picks a y1 ∈ F, different from Lea’s (last w1) choices.

The winner of the game is Stan, if in the course of the game he can select a
vector y = (y1, . . . , yn) such that y ∈ V , otherwise Lea wins the game. If in
any step there is no suitable choice yi for Stan, then Lea wins also.

The game allows a characterization of the lexicographic leading monomi-
als and standard monomials for V (Theorems 2 and 3 in [8]).

Proposition 2.3 Let V ⊆ Fn be a nonempty finite set and w ∈ Nn. Stan

wins Lex(V ;w) if and only if xw is a lex standard monomial for I(V ). Equiv-
alently, Lea wins the lex game if and only if xw is a lex leading monomial

for the ideal I(V ).

Proof of Theorem 1.1. We may assume that S = S(a, k) is nonempty. By
Fact 2.1 it suffices to prove that for any integer 1 ≤ t ≤ n/2 and T ∈ Ht the
monomial xT is a lexicographic leading monomial for S. Note that |T | = t
and 2t − 1 ∈ T . The statement is clear for t = 1, in fact x1 is a leading
monomial for S, because a1x1 + · · · + anxn − k vanishes on S. Suppose for
the rest of the proof that t > 1.

We employ the Lex game method, proving that Lea wins the the lex game
Lex(S,vT ), where vT is the characteristic vector of T . After Stan specifies
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the coordinate values y2t, . . . , yn, what remains (if Lea has not won yet) is
a lex game Lex(V,vT ) where V ⊆ {0, 1}2t−1 defined by

∑2t−1
i=1 aivi = k′, for

some positive integer k′ ≤ k, and vT is viewed now as a vector in {0, 1}2t−1.
Let V ⊆ 2[2t−1] denote the set family whose corresponding set of char-

acteristic vectors is V . We claim that V does not shatter T . To be more
specific, either there is no F ∈ V such that F ∩ T = T , or there is no G ∈ V
such that G ∩ T = ∅.

Suppose for contradiction that both F,G ∈ V exist. Then

∑

i∈[2t−1]\T

ai ≥
∑

i∈G

ai = k′ =
∑

i∈F

ai ≥
∑

i∈T

ai. (3)

But this is in contradiction with the inequality of Lemma 2.2, proving the
claim. We obtained that xT is a lex leading monomial for V , the correspond-
ing vanishing polynomial being either xT or

∏

i∈T (xi−1). This implies, that
Lea wins the game Lex(V,vT ), hence also Lex(S,vT ) as well. This finishes
the proof. �

Remark. We can exhibit a polynomial Q(x) ∈ Q[x] vanishing on S with
leading term xT without using directly the Lex game method, as follows.
Let U0 ⊆ {0, 1}n−2t+1 denote the set of all vectors (v2t, . . . , vn) which can
be extended into a vector in S which has 0 coordinate values everywhere in
T . Let P (x2t, . . . , xn) ∈ Q[x] be a polynomial which is 0 on U0 and is 1 on
{0, 1}n−2t+1 \ U0. Then set

Q(x1, . . . , xn) =
∏

i∈T

(xi − P (x2t, . . . , xn)).

It is immediate that the lex leading term of Q is xT , since T ⊆ [2t− 1]. Let
v ∈ S be an arbitrary vector. On one hand, if u = (v2t, . . . , vn) ∈ U0, then
Q(v) =

∏

i∈T vi = 0 because by the claim in the preceding proof vectors from
U0 do not have extensions v ∈ S with vi = 1 for all i ∈ T . On the other
hand, if u ∈ {0, 1}n−2t+1 \ U0, then Q(v) =

∏

i∈T (vi − 1) = 0 because u has
no extension v ∈ S with values vi = 0 for all i ∈ T . We note also, that using
the equality P 2 = P of functions defined on {0, 1}n, we have

Q(x1, . . . , xn) = xT +

(

∏

i∈T

(xi − 1)− xT

)

P (x2t, . . . , xn),

again an equality of functions on {0, 1}n.
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Proof of Proposition 1.4. The statement is clear for t = 1. For a vector
v ∈ Sp(a, k) the value v1 is determined by the rest of the values vi because a1
is not 0 modulo p. Henceforth we assume that t > 1. As with Theorem 1.1, it
suffices to show that a set V ⊆ {0, 1}2t−1 defined by

∑2t−1
i=1 aivi ≡ k′(mod p)

for some integer 0 ≤ k′ ≤ p − 1, can not shatter T . Assume the contrary.
Let v = v(0) ∈ V be a vector which is 0 at every coordinate from T . Also let
u = v(t) ∈ V be a vector which has coordinates 1 at every coordinate from
T . Using Lemma 2.2 we obtain

0 ≤
∑

i∈[2t−1]

aivi ≤
∑

i∈[2t−1]\T

ai <
∑

i∈T

ai ≤
∑

i∈[2t−1]

aiui ≤
∑

i∈[2t−1]

ai < 2p.

This is possible only if
∑

i aivi = k′ and
∑

i aiui = k′ + p. Now for ℓ =
1, . . . , t− 1 let v(ℓ) ∈ V be a vector which is 1 in the first ℓ coordinates from
T , and is 0 at the remaining t − ℓ coordinates belonging to T . It follows
from the indirect hypothesis that such vectors v(ℓ) exist. The inequality
∑

i∈[2t−1] ai < 2p implies that for every ℓ the sum
∑

i∈[2t−1] aiv
(ℓ)
i is either

k′ or k′ + p. Clearly there must be an index j with 0 ≤ j < t, such that
∑

i∈[2t−1] aiv
(j)
i = k′ and

∑

i∈[2t−1] aiv
(j+1)
i = k′ + p . Set w = v(j+1) − v(j).

This vector has±1 and 0 coordinates, moreover it is 0 on T with the exception
of ws = 1, where s ∈ [2t− 1] is the (j+1)th element of T . Therefore we have

p =

2t−1
∑

i=1

aiwi ≤ as +
∑

i∈[2t−1]\T

ai ≤ as +
∑

i∈T\{2t−1}

ai ≤
∑

i∈T

ai < p, (4)

a contradiction proving the statement. At the second inequality we used
Lemma 2.2 again, and as ≤ a2t−1 at the third. �

Verification of Example 1. We recall first the following recursion for the
lex standard monomials (see the proof of Theorem 4.3 in [2]). Let V ⊆
{0, 1}n ⊆ Fn be a subset of the Boolean cube. Define the sets of vectors

V0 := {v ∈ {0, 1}n−1 : (v, 0) ∈ V }

and
V1 := {v ∈ {0, 1}n−1 : (v, 1) ∈ V }.

Then for the lex standard monomials of I(V ) we have

sm(I(V )) = sm(I(V0)) ∪ sm(I(V1)) ∪ {mxn : m ∈ sm(I(V0)) ∩ sm(I(V1))}.
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We apply this in the case V := S(a, k), a = (1, . . . , 1, t). It is easy to see
that

V0 = {(v1, . . . , vn−1) ∈ {0, 1}n−1 :
n−1
∑

i=1

vi = k}

and

V1 = {(v1, . . . , vn−1) ∈ {0, 1}n−1 :
n−1
∑

i=1

vi = k − t}.

Observe that V0 and V1 correspond to complete uniform families. Then by
the results of Section 2 and Theorem 4.3 of [2] we have

sm(I(V0)) = Mk,n−1

and
sm(I(V1)) = Mk−t,n−1.

These together imply that

sm(I(V )) = Mk,n−1 ∪Mk−t,n−1 ∪ {mxn : m ∈ Mk,n−1 ∩Mk−t,n−1} =

= Mk,n−1 ∪ {mxn : m ∈ Mk−t,n−1}.

Here we used that 0 ≤ k − t < k ≤ n−1
2
, and hence Mk−t,n−1 ⊆ Mk,n−1. �
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American Mathematical Society (1994)

[2] Anstee, R.P., Rónyai, L., Sali, A.: Shattering News. Graphs and Com-
binatorics 18, 59–73 (2002)

[3] Babai, L., Frankl, P.: Linear Algebra Methods in Combinatorics with
Applications to Geometry and Computer Science. The University of
Chicago (1992)
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