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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Cyber-Physical Production Systems (CPPS) appeared already in recent manufacturing environments, and they are capable of providing detailed
data about the products, processes and resources in near real-time. Various analytics techniques are available to exploit such technology related
data in decision making, however, these tools typically act in the fields of maintenance and quality. Only a few approaches target production
control, while the effectiveness of related processes is of crucial importance from overall performance’s viewpoint. In the paper, a new production
data analytics tool is presented, applying machine learning techniques to proactively predict manufacturing lead times to make decisions by
implementing a closed-loop production control. The proposed method applies regression techniques, and based on that, it supports job priorization
to be utilized in dispatching decisions. The efficiency of the proposed method is analyzed and presented by numerical results of a case study.
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1. Introduction and motivation

1.1. Machine learning applications in production control

In the past few years, artificial intelligence (AI) has become
again an emerging field, not only in the business and IT sectors,
but also in the industry. In the era of cyber-physical environ-
ments, production systems are developed so as to generate and
utilize data, in a way as never before, enabling to make produc-
tion systems smarter. This becomes possible, in case AI tech-
niques are used for making or supporting complex decisions
and performing tasks in an automated way that would otherwise
require human interaction or domain expertise. Such means of
AI are applied to complete or replace human logic in production
management, utilizing the data that is generated by the system
in (near) real-time. Although one can obtain detailed data about
products, processes and system elements, neither it can be ap-
plied directly for decision making without preprocessing and
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analyzing that, nor it is informative for human decision makers,
due to its volume and complexity. Therefore, in order to obtain
useful information for decision support, data analytics tools are
required, furthermore, automated decision making and predic-
tion ask for machine learning (ML) techniques.

In general ML is a subset of AI, and a common applied way
of achieving that. It provides the capability for processing large
and complex data, to build models upon, supporting decisions
with forecasts and predictions. Although in production manage-
ment ML techniques are applied in the domains of quality con-
trol and maintenance, there are still only a few successful ap-
plications in production planning and control (PPC). However,
there are several opportunities for replacing conventional, typi-
cally rule-based decision making mechanisms with data-driven
ones, providing the opportunity for reacting on various produc-
tion situations in a faster and more efficient way.

In the paper, a new, ML-based approach is presented that
aims at implementing situation-aware production control by
continuously collecting and analyzing real-time streamed pro-
duction data, and supporting decisions with prediction of con-
trol parameters by applying periodically trained learning mod-
els. The method is presented through a realistic case study, in
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which manufacturing lead times (LT) are predicted in a flow-
shop environment, and complexity of the prediction is resulted
by the diversity of process parameters, and by the high influence
of customer order stream on the jobs in progress. The individual
job LTs are predicted by ML techniques, based on the data of
products and processes, obtained from the manufacturing ex-
ecution (MES) system. Special emphasis is put on the online
prediction, which means that lead times are predicted upon the
arrival of jobs in the system, and in case interaction is needed,
e.g., late completion is predicted, control decisions are made in
order to keep the target level of key production indicators.

1.2. Towards situation-aware control: the role of ML in PPC

The method presented in the paper is the continuation of pre-
vious works, and each of those are parts of an ongoing research
in the topic of situation-aware production control. About the lat-
ter, as the authors believe, it will be core element of the future
PPC approaches. In this direction, the authors presented first
regression techniques to predict manufacturing lead times in
a flow shop environment, applying linear and tree-based mod-
els [15, 10]. The results reinforced that ML approaches can out-
perform analytical ones in LT prediction. The implementation
of the digital data twin was the continuation of this work, high-
lighting the importance of model retraining frequency that sig-
nificantly influences the prediction accuracy [7]. These results
will be also utilized throughout the present paper, and form the
basis of the presented approach to complete the previous works
by implementing a closed-loop control, feeding back the results
to support the decision making process, so as shifting from of-
fline predictions to online ones.

Latest results of data science and machine learning also
mark this direction, providing real-time, distributed (and open-
source) data processing frameworks such as Apache Flink R©

[14] and Apache StormTM[2]. Together with the Internet of
Things (IoT) frameworks—either considering commercial or
open-source ones—, these software tools form the basis for
implementing next generation PPC methods that can react on
the changes and disturbances (happen to the manufacturing en-
vironment) in near real-time. Such solutions provide the op-
portunity of identifying various situations, moreover, they are
also capable of making decisions to manage, avoid or achieve
them, thus implementing prescriptive data analytics, a subse-
quent step of predictive analytics [3].

Current PPC approaches typically rely on rule-based de-
cisions, without exploiting useful information from the avail-
able production data. Although promising approaches have re-
cently been proposed for data-driven control [12, 19] and pre-
dictive scheduling [5], still there are open questions to re-
place traditional, rule-based systems with adaptive ones. In the
above characterized situation-aware production control, deci-
sions must rely on the combination of static data (e.g., prod-
uct attributes) and event-driven data. The latter changes dy-
namically together with the production situations, therefore,
conventional data processing methods are not always capable
of dealing with it, but special tools and methods are needed.
Event-stream processing (ESP) and complex-event processing

(CEP) technologies are designed for tackling such challenges
[6], therefore, they will be also important elements of advanced,
new generation PPC applications.
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Fig. 1. Combination of simulation and machine learning: a conceptual figure
about a generic framework for next generation PPC systems by [15], highlight-
ing the workflow considered in the present paper.

In the paper, a simple production control problem is investi-
gated, namely to reduce lateness of job completions by adjust-
ing the job priorities, based on ML-based prediction of manu-
facturing LTs. Although this example might seem overly sim-
plistic, the emphasize in the paper is put on the implementation
of a closed-loop production control (as first proposed in [15])
by the utilization of future-related ML predictions in control de-
cisions, rather than on the decisions themselves. As illustrated
in Fig. 1, the decision maker utilizes MES data (gathered from
the plant), applying machine learning to predict the outcome
of various decisions. The implementation of this method is a
preceding step of a complete situation-aware decision making
mechanism, and marks the future direction of the related re-
search towards more sophisticated applications.

1.3. Prediction of manufacturing lead times: state-of-the-art

The essence of the proposed approach relies in the accu-
rate prediction of manufacturing LTs, based on production data
gathered in near real-time. Traditionally, expected LTs of jobs
are calculated by applying Little’s law, considered as the most
fundamental analytical method in production control. It states
that the average number of items L in a queuing system equals
the average arrival rate of items to the system, λ, multiplied by
the average waiting time (or lead time) W of an item in the sys-
tem, thus L = λW [11].

Although Little’s law exists for decades now and proven
to be very efficient, in recently applied manufacturing sys-
tems with dynamically changing parameters and great variety
of products produced, lead times are affected by several param-
eters that increase the complexity of prediction [7]. In order
to tackle these challenges, data analytics and ML methods are
often applied for lead time prediction. Related promising ap-
proaches apply various prediction techniques, e.g., regression
trees [13], support-vector machines [1], deep neural networks
[21] or linear regression models [17]. These methods are proven

2



192	 Dávid Gyulai  et al. / Procedia CIRP 78 (2018) 190–195
Gyulai et al. / Procedia CIRP 00 (2018) 000–000 3

to be efficient, however, still there is no rule of thumb how one
should select a tool to predict LTs, therefore, domain expertise
is of very high importance to achieve success.

2. Problem statement

2.1. Production environment

In the paper, a flow-shop manufacturing environment is ana-
lyzed, however, in order to demonstrate the proposed situation
aware-control method, the realistic simulation model of the sys-
tem is applied as a testbed. This model represents efficiently the
processes, as in addition to simulating the resources and mate-
rial flow, it includes stochastic parameters and random events
that are also characteristics of real systems. Therefore, through-
out the following sections, experiments are performed by using
the simulation model, however, the emphasis is not put on the
application case, but rather on the ML-based control method
and framework that is designed to be generic. Accordingly, it
could be apply with any real manufacturing system where sim-
ilar problems arise, and streamed MES data —applied in the
presented method— is available.

In the analyzed flow-shop environment, jobs are processed
individually, without applying batches as it often happens e.g.,
in customized mass production. All products pass through all
stages of the system, however, alternative resources are avail-
able at each stage to perform a given operation. Operations are
performed by machines, and human operators support the pro-
cesses (e.g. replace parts in the machines), therefore, processing
times have a certain deviation. The system consists of three pro-
cessing stages with 4-3-3 alternative resources at each stage, re-
spectively. The resources have dedicated buffers, in which jobs
are waiting to be processed. From production control view-
point, important to highlight that these buffers are not FIFO-
queues but sorters, where job sequences can be altered in case a
control actions demands for that. A typical example is preemp-
tion: in case a job with higher priority arrives in the buffer, it
can be placed in the front of the queue to be processed next, so
as reducing its lead time to be completed before the due date.

Five different product types are produced in the system,
which differ in the routings and processing times at the differ-
ent stages. As for the routings, each job is assigned to a machine
at all stages applying probability distributions, therefore, each
product type can be processed by all machines at a given stage,
while they have a characteristic routing that they follow with
the highest probability. The processing times are also stochas-
tic, further increasing the complexity of accurate lead time pre-
diction. Additionally, a functional test is performed at the last
stage, in order to identify fail products. Following the realis-
tic case, products are randomly marked as fail items, following
a uniform distribution, and the average failure rate is 5%. The
fail items are not scrapped, but they are reworked at a dedi-
cated station, decoupled from the line. The reworked items are
then retested at the last stage, therefore, only functionally cor-
rect parts can left the line.

2.2. Lead time prediction problem

Prediction of manufacturing lead times is in the scope of the
paper, as in general, LT is one of the most important parameters
in production control: it influences various decisions, including
due date assignment of jobs, selection of routings, and adjust-
ment of job priorities. In an ideal case, the lead time would be
known a-priori when releasing a job in the system, and based on
this information, typical problems like unbalanced resources,
high work-in-progress (WIP) and late job completion could be
avoided. However, in practice, lead time is influenced by sev-
eral dynamically changing factors, often making it complicated
to be predicted accurately. Hence, the emphasis is put on the
prediction of job lead times as control-driver parameters, at the
time when a job is on entering the system (release).

This can be performed by having information about histori-
cal job completions including job features and their lead times,
and also knowing the actual state of the system—that always
changes dynamically—when a given job is to be released. In
the paper, the LT prediction is applied by collecting data about
the jobs’ and the system’s state, synthesizing them into a single
dataset. This training set includes static data related features
(coming from the ERP), e.g., the jobs’ parameters, and also dy-
namic, event-based ones provided by the MES. As for the static
data, a job k is defined by its product type pk, that is a factor
with five levels (five product types are produced). Additionally,
from LT prediction perspective, important job parameter is the
priority nk that is an integer number in the range 1-10, and the
higher number denotes the larger priority. As mentioned earlier,
priority is the basis of sorting jobs in the buffers, influencing the
lead times in this way. Important to note that nk is not a static
number (although it has a default value), but a result of a deci-
sion, therefore, lead times are actively controlled based on the
production situations and job features. Important related param-
eter is the due-date dk of the job, which denotes the time until
job k need to be completed.

As for the other part of the training data, MES provides
event-based logs in near real-time. These events are either cor-
respond to jobs or resources. The logs include the start and end
times of job processing, including job ID, resource ID, and a
timestamp. The events are streamed by the system in JSON [8]
format, and processed online by the ML engine. In this way,
jobs are always tracked in the system, which information is uti-
lized to predict LTs. Similarly, resource events are also utilized,
as it is important in a control decision making process, whether
a certain resource is available or not. Resource log events corre-
spond to the machine downtimes, and such an event determines
whether a machine breakdown is happened (failure start event),
or a corrective action is completed (failure end event).

Based on the above data and information, the problem of
lead time prediction—as considered in the paper—is speci-
fied as it follows. Given a set of job features as a tuple Fk =

〈pk, nk, dk〉, and a list 〈E〉 of events e. The task is to predict the
lead time tL

k of a job k before it enters the system, utilizing the
information obtained from 〈E〉, and knowing Fk. The lead time
tL
k is defined as the timespan a job spends in the system, be-

tween its arrival ta
k and completion tk

c . As for the related control
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rect parts can left the line.
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data, a job k is defined by its product type pk, that is a factor
with five levels (five product types are produced). Additionally,
from LT prediction perspective, important job parameter is the
priority nk that is an integer number in the range 1-10, and the
higher number denotes the larger priority. As mentioned earlier,
priority is the basis of sorting jobs in the buffers, influencing the
lead times in this way. Important to note that nk is not a static
number (although it has a default value), but a result of a deci-
sion, therefore, lead times are actively controlled based on the
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eter is the due-date dk of the job, which denotes the time until
job k need to be completed.

As for the other part of the training data, MES provides
event-based logs in near real-time. These events are either cor-
respond to jobs or resources. The logs include the start and end
times of job processing, including job ID, resource ID, and a
timestamp. The events are streamed by the system in JSON [8]
format, and processed online by the ML engine. In this way,
jobs are always tracked in the system, which information is uti-
lized to predict LTs. Similarly, resource events are also utilized,
as it is important in a control decision making process, whether
a certain resource is available or not. Resource log events corre-
spond to the machine downtimes, and such an event determines
whether a machine breakdown is happened (failure start event),
or a corrective action is completed (failure end event).

Based on the above data and information, the problem of
lead time prediction—as considered in the paper—is speci-
fied as it follows. Given a set of job features as a tuple Fk =

〈pk, nk, dk〉, and a list 〈E〉 of events e. The task is to predict the
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k of a job k before it enters the system, utilizing the
information obtained from 〈E〉, and knowing Fk. The lead time
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k is defined as the timespan a job spends in the system, be-
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problem, the task is to minimize the overall lateness Λ of jobs
by adjusting their priorities, in the know of the predicted lead
time and the due date (target completion time). In case a job
is predicted to be completed later after its due date, its prior-
ity is adjusted, so as to make it proceed faster in the system.
This adjustment is done by real-time predictions, continuously
processing the MES log data, and monitoring the jobs’ status
information. The overall lateness as a target metric is defined as
follows, for a set K of job k:Λ =

∑
k∈K tk

c−dk =
∑

k∈K(tk
a+tL

k )−dk.
Therefore, the key of minimizing the total lateness is predicting
accurately the values of tL

k .

2.3. Descriptive statistical analysis

As part of the presented work, a descriptive statistical anal-
ysis was performed first in order to explore the data, so as gain-
ing insights about the operation and behavior of the system. The
orders arrive in the system with a random inter-arrival time, re-
sulting in diverse LTs (when no priorization is applied). Observ-
ing the histogram of LTs in Fig. 2, one can infer that tL

k cannot
be predicted simply by taking mean values of LTs, as the devia-
tion of those is rather high and their distributions do not follow
any statistical pattern.
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Fig. 2. Histogram of lead times, colored by product type.

Although this fact makes the prediction more complicated,
Little’s law can still be applied in its generic form, in case the
order arrival process is stationary. Considering the order arrival
rate as a series of time, stationarity of this process defines that it
remains around a statistical equilibrium with probabilistic prop-
erties that do not change over time, in particular varying around
a constant mean level and with constant variance [4]. Therefore,
stationarity test was performed to analyze the arrival process of
the jobs: in case the process is stationary, dynamic LT predic-
tion methods —especially those rely on Little’s law— can be
applied with higher probability of success. For the stationarity
analysis, the ADF [18] and KPSS [9] tests were applied using
tseries R package [20]. According to the test results, order ar-
rival process is stationary around a mean over the entire hori-
zon, therefore, Little’s law can be applied in its canonical form
for LT prediction. In the experimental section of the paper, this
analytical prediction will provide the baseline of comparison
with the ML-based approach.

3. Closed-loop control with online LT prediction

This section provides the overview of the proposed, closed-
loop control method with real time prediction of LTs. Before
describing the proposed architecture and workflow, the ML
models are introduced, utilizing the results of offline experi-
ments first presented by the authors in [7].

3.1. Utilization of offline machine learning results

In the aforementioned paper, offline experiments were per-
formed to investigate the accuracy of lead time prediction, ap-
plying different machine learning models. The test results show
that both linear and tree-based models could provide reasonable
accuracy. The preference in selecting the model to be deployed
in an online prediction method relies on two main aspects: on
the one hand, linear models provide reasonable accuracy, and
their greatest advantages are the short training time and the
ease of interpretation. On the other hand, tree-based models—
especially ensemble ones like random forests—provide high
prediction accuracy and feature importance ranking, while they
are hard to interpret and the training process can be time con-
suming. Another important conclusion of the previous study
was the impact of model retraining frequency on the predic-
tion accuracy: the ML model—implementing the digital data
twin of the system—need to be retrained periodically, in or-
der to represent the actual state of the physical system. In case
the retraining is performed too frequently, the models will rely
on a small, non-representative subset of production data, there-
fore, they cannot provide the desired prediction accuracy. On
the contrary, rare retraining can take much time due to the larger
training dataset, moreover, the training data can include obso-
lete samples, not representing the actual state of the system.

According to the above guidelines, a random forests model
was applied in the current experiments, and a retraining fre-
quency of 5000 event samples (which equals to the data of cca.
1000 jobs) was set. These settings resulted in reasonable predic-
tion accuracy with cca. 10% normalized root mean square error
(NRMSE), with a training time around 1 sec. applying 50 de-
cision trees. The features of the prediction include all elements
of the tuple Fk, additionally, as a result of feature selection, the
actual WIP (when a job is released) and the arrival time are also
added to the features. These settings were resulted by offline
experiments, implementing the ML models in R language [16].
This final model was deployed to be the prediction engine of
the controller, as described next.

3.2. Closed-loop production controller with ML engine

As a proof-of-the-concept that real time prediction of LTs
can be utilized to increase efficiency by decreasing the late-
ness, a simple production controller is implemented that applies
the above described machine learning model in its core. The
schematic architecture of the controller (prepared by following
the scheme in Fig. 1) is illustrated on Fig. 3, on which col-
ors denote the main elements of the system. The manufacturing
system—replaced by its simulation model in the test case—is
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completed with and MES system that is responsible for stream-
ing event data towards the controller applications (orange). This
data is completed with the job features, stored separately in an
ERP system (or in a similar database).

Simulation model (replacing real production system)

Data transfer layer (MES)

Event streaming
(JSON mesages)

ERP data

Job attributes

C# .NET
ML model

New job arrival

Predicted lead time

Parsed training data

Controller: job 
priorization

Decision: job priority

R

Periodical model retraining

Fig. 3. Architecture of the closed-loop production controller with real time LT
prediction engine.

The data processing application, and also the controller it-
self are implemented in C# .NET (blue), and they are respon-
sible for receiving production data, consolidating and parsing
the event stream and the static data, and also making decisions
that means the job priorization in this particular case. The data
parsing is done by applying a combination of R and .NET tech-
nologies, and includes the JSON parsing and matching the event
data entries with the job features based on the job IDs. Similarly
to the model training, this process is performed periodically in
order to reduce computation times: the event stream is buffered,
until the ML model is retrained, and data parsing is done in par-
allel with it applying the R computation engine (green). This
engine is part of a periodically trained model in the R ker-
nel, and predicts the lead times with the trained model when
an event data entry about a job arrival is received. The predic-
tion process is rather fast, therefore, the predicted lead time is
immediately applied for job priorization by the controller. The
result of this decision making process is a single job-priority
(based on the LT prediction) that is sent back to the MES sys-
tem as a JSON message, still before the job is released. This
workflow enables to priorize jobs based on their predicted lead
times. Various techniques and rules can be applied to do so,
such an example is introduced in the following, experimental
section.

4. Experimental results

The purpose of the experiments was twofold: the first and
main objective was the evaluation of the proposed closed-loop
control method, namely, to verify if the model can be applied in
the proposed workflow and can provide sufficient predictions.
The second, minor objective was the evaluation of the proposed,
LT-based job priorization. As for the latter, three main methods
were analyzed. First, jobs were priorized according to a FIFO
rule, therefore, jobs that arrived later got lower priority. As a

more realistic baseline, LTs were predicted (upon job arrival)
with Little’s law. In the third case, the proposed, ML-based lead
time priorization was applied as it follows. Upon the arrival of
a job, its lead time was predicted by applying the training ML
model. In the know of the job due date and the predicted lead
time, jobs with predicted late completion were given higher pri-
ority, which was proportional with the expected late (the higher
the late, the higher the priority). This rule was also applied in
the second scenario, the only difference was the applied predic-
tion method (analytical vs. ML one).

Accordingly, the expectation before the experiments were
the following. First (i), if the simulation as a testbed was pre-
pared correctly, FIFO priorization should provide the worst re-
sults with the highest overall lateness Λ. Second (ii), analyti-
cal prediction need to outperform significantly the FIFO rule.
If this holds, one can verify that job due-dates are correctly
set, and lateness is sensitive to the lead times and the prioriza-
tion. Third (iii), ML-based prediction models need to perform
as good as the analytical ones, and in case they perform the
best, the efficiency of the overall approach can be proven. Six
different—considered to be representative—scenarios were an-
alyzed, which differed in the job arrival rates and the random
parameters (e.g. processing times and machine breakdowns),
and each of them had the same horizon of seven days. The over-
all results are summarized in Table 1.

Table 1. Experimental results: total lateness of jobs on a 7-days horizon, ex-
pressed in hours; negative values indicate early (overall) completion.

Λ [hours]

Scenario [#] FIFO Little’s law ML

1 215.7 96.0 16.1
2 220.2 203.8 195.6
3 85.5 78.7 -39.7
4 184.4 114.0 105.0
5 7.3 -59.6 -171.8
6 80.4 2.9 -49.9

The average prediction accuracy of the ML model was simi-
lar to those obtained within the offline study (9-10% NRMSE).
Due to the dynamics of the system, in some cases, a drift in the
accuracy was identified. This drift was periodically terminated
by the model retraining, so as recovering a reasonable overall
accuracy (Fig. 4). The numerical results prove the assumption
that the online prediction based control can increase the overall
effectiveness by reducing the lateness of jobs. Referring back to
the expectations, the scenarios were defined correctly, as (i) the
FIFO priorization provided the worst results in all cases, there-
fore, one can derive that job priorization influences the lateness.
Observing the third column of the table including the results
achieved with Little’s law, (ii) jobs’ due date assignment pol-
icy is considered to be correct, as the online prediction with an
analytical model could decrease the lateness with a better pri-
orization than the simple FIFO rule. The most important over-
all result is the fact that ML-based prediction could outperform
the other two methods, therefore, (iii) the results mark that it
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sible for receiving production data, consolidating and parsing
the event stream and the static data, and also making decisions
that means the job priorization in this particular case. The data
parsing is done by applying a combination of R and .NET tech-
nologies, and includes the JSON parsing and matching the event
data entries with the job features based on the job IDs. Similarly
to the model training, this process is performed periodically in
order to reduce computation times: the event stream is buffered,
until the ML model is retrained, and data parsing is done in par-
allel with it applying the R computation engine (green). This
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nel, and predicts the lead times with the trained model when
an event data entry about a job arrival is received. The predic-
tion process is rather fast, therefore, the predicted lead time is
immediately applied for job priorization by the controller. The
result of this decision making process is a single job-priority
(based on the LT prediction) that is sent back to the MES sys-
tem as a JSON message, still before the job is released. This
workflow enables to priorize jobs based on their predicted lead
times. Various techniques and rules can be applied to do so,
such an example is introduced in the following, experimental
section.

4. Experimental results

The purpose of the experiments was twofold: the first and
main objective was the evaluation of the proposed closed-loop
control method, namely, to verify if the model can be applied in
the proposed workflow and can provide sufficient predictions.
The second, minor objective was the evaluation of the proposed,
LT-based job priorization. As for the latter, three main methods
were analyzed. First, jobs were priorized according to a FIFO
rule, therefore, jobs that arrived later got lower priority. As a

more realistic baseline, LTs were predicted (upon job arrival)
with Little’s law. In the third case, the proposed, ML-based lead
time priorization was applied as it follows. Upon the arrival of
a job, its lead time was predicted by applying the training ML
model. In the know of the job due date and the predicted lead
time, jobs with predicted late completion were given higher pri-
ority, which was proportional with the expected late (the higher
the late, the higher the priority). This rule was also applied in
the second scenario, the only difference was the applied predic-
tion method (analytical vs. ML one).

Accordingly, the expectation before the experiments were
the following. First (i), if the simulation as a testbed was pre-
pared correctly, FIFO priorization should provide the worst re-
sults with the highest overall lateness Λ. Second (ii), analyti-
cal prediction need to outperform significantly the FIFO rule.
If this holds, one can verify that job due-dates are correctly
set, and lateness is sensitive to the lead times and the prioriza-
tion. Third (iii), ML-based prediction models need to perform
as good as the analytical ones, and in case they perform the
best, the efficiency of the overall approach can be proven. Six
different—considered to be representative—scenarios were an-
alyzed, which differed in the job arrival rates and the random
parameters (e.g. processing times and machine breakdowns),
and each of them had the same horizon of seven days. The over-
all results are summarized in Table 1.

Table 1. Experimental results: total lateness of jobs on a 7-days horizon, ex-
pressed in hours; negative values indicate early (overall) completion.
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2 220.2 203.8 195.6
3 85.5 78.7 -39.7
4 184.4 114.0 105.0
5 7.3 -59.6 -171.8
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The average prediction accuracy of the ML model was simi-
lar to those obtained within the offline study (9-10% NRMSE).
Due to the dynamics of the system, in some cases, a drift in the
accuracy was identified. This drift was periodically terminated
by the model retraining, so as recovering a reasonable overall
accuracy (Fig. 4). The numerical results prove the assumption
that the online prediction based control can increase the overall
effectiveness by reducing the lateness of jobs. Referring back to
the expectations, the scenarios were defined correctly, as (i) the
FIFO priorization provided the worst results in all cases, there-
fore, one can derive that job priorization influences the lateness.
Observing the third column of the table including the results
achieved with Little’s law, (ii) jobs’ due date assignment pol-
icy is considered to be correct, as the online prediction with an
analytical model could decrease the lateness with a better pri-
orization than the simple FIFO rule. The most important over-
all result is the fact that ML-based prediction could outperform
the other two methods, therefore, (iii) the results mark that it

5

Gyulai et al. / Procedia CIRP 00 (2018) 000–000 6

Fig. 4. Sample chart of the real-time LT predictions and the accuracy evalu-
ation (when a job is completed), with a drift effect and the accuracy recov-
ering with retraining. Outlier (inaccurate) predictions typically correspond to
reworked items.

is worth to further investigate and improve the proposed, ML-
based online production control method.

5. Conclusions and outlook

Although the results obtained during the experiments are
very promising, the authors consider this work only as a step to-
wards a sophisticated, real-time and situation-aware production
control framework. As a conclusion of the experiments, one can
identify that there is a potential in the application of ML meth-
ods in PPC: they can react on the dynamic changes of the pro-
duction environment, while still capable of providing accurate
predictions that can be directly applied in control-related deci-
sion making processes. As for the application of the method in
a real manufacturing environment, candidate test environments
are from the the mass customization field, e.g., from the optics
industry, where on-time delivery and, therefore, manufacturing
lead times are of crucial importance, and batch production is
not possible.

As for the future work, major steps towards the desired con-
trol framework include the extension of considered control pa-
rameters, e.g. OEE related metrics. Besides, in case data is
streamed in a higher frequency, more sophisticated, advanced
data analytics tools might be required, e.g., Apache SparkTM,
StormTMor Flink R©. These tasks ask for a more generic reference
control architecture with data collection, storage (e.g. corporate
data lake) and processing layers, that can be applied in vari-
ous PPC environments. In this regard, more complex decisions
will be also considered, including resequencing, mid-progress
priorization and resource selection tasks.
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