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On the Computational Complexity of Tariff
Optimization for Demand Response Management

András Kovács

Abstract—Different modeling and solution approaches to elec-
tricity tariff optimization for demand response management have
received considerable attention recently. Yet, there are hardly
any results available on the computational complexity of these
problems. The clarification of the complexity status is crucial to
understand for which models an efficient, polynomial algorithm
or a closed-form analytical solution can be expected, and when
the application of heuristics delivering sub-optimal solutions or
time consuming search procedures is justifiable. In this note, we
define the Simple Multi-period Energy Tariff Optimization Problem
(SMETOP) and prove its NP-hardness. The result naturally
applies to many models in the literature that generalize SMETOP,
and whose complexity status has been unknown to date.

Index Terms—Demand-side management, optimization, com-
putational complexity.

I. INTRODUCTION

A wide variety of models and algorithms for electricity
tariff optimization have been advised and investigated recently
for demand response management, where Stackelberg game
approaches are dominant for capturing the interplay of the self-
interested energy retailers and consumers. For some simpler
problem models, e.g., most of those focusing on a single time
instant, the Stackelberg equilibrium (i.e., optimal solution)
can be computed easily in closed form or by polynomial
algorithms [1]. On the other hand, richer models, e.g., those
that investigate a discrete time horizon consisting of multiple
time periods, are typically addressed either by heuristics that
may produce sub-optimal solutions [2] or by computationally
demanding exact approaches [3, 4]. However, there are hardly
any results available on the computational complexity of these
models, which implies that it is unclear to date when an
efficient algorithm can be expected, and when the application
of sub-optimal heuristics or computationally expensive search
approaches is justifiable.

In this note, we prove for the first time in the literature
that computing the optimal solution of multi-period electricity
tariff optimization problems is NP-hard. For this purpose,
we define the Simple Multi-period Energy Tariff Optimization
Problem (SMETOP), which captures the core features of
Stackelberg game models for tariff optimization, including a
profit-maximizing electricity retailer and multiple consumers
who schedule their controllable loads to maximize their utility
and minimize their cost of energy. We formally prove that
SMETOP is NP-hard. It is emphasized that the simplicity
of SMETOP is not a shortcoming, but a benefit: any richer
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model that generalizes SMETOP is also NP-hard. This result
also clarifies the complexity status of various earlier problem
formulations from the literature.

II. BACKGROUND ON STACKELBERG GAMES, BILEVEL
PROGRAMMING, AND COMPLEXITY THEORY

Demand response management in smart grids is a paragon
of decision situations whose outcome is decided by multiple
players with conflicting interests. Operational-level models
typically focus on the interaction of a profit-maximizing
electricity retailer and its multiple consumers interested in
minimizing their cost of energy and maximizing their utility.
Game theoretic approaches therefore provide a natural means
for modelling these decision situations. Specifically, Stackel-
berg games can be applied to modelling tariff optimization
for demand response. In these sequential games, the decision
maker called the leader makes its choice first (the retailer
determines the electricity tariff). Then, a single or multiple
followers optimize their response (consumers schedule their
consumption) according to their own objective in view of the
leader’s choice. The outcome of the game, as well as the
payoffs of both the leader and the followers, are mutually
affected by the decisions of the other players.

The particularly interesting optimization problem is that
of the leader, who must make its choice by taking into
consideration the rational response of the followers. Obviously,
this assumes that the leader has a perfect knowledge of the
followers’ decision model. In mathematical programming, this
problem can be formulated as a so-called bilevel program,
i.e., an optimization problem that includes a nested, parametric
optimization problem (the followers’ problem embedded into
the leader’s one) [5, 6]. Bilevel optimization problems have
been applied to solving problems in various domains, such as
toll setting in networks [7], regulatory problems in economic
or social systems [8], or more recently, diverse problems in
energy systems [9, 10].

While bilevel programs are powerful tools for modeling
Stackelberg games, solving them is inherently challenging.
Even linear bilevel programs are NP-complete in general [5],
whereas problems with discrete variables in the followers’
sub-problems are representatives of the still more complicated
PSPACE complexity class. Yet, this does not mean that all
Stackelberg game models would be NP-hard, as demonstrated
by, e.g., the efficiently solvable tariff optimization problem
with a single time instant in [1]. A methodological approach
to developing efficient algorithms for a novel class of optimiza-
tion problems requires first understanding which problems and
special cases can be solved in polynomial time, and which ones
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are NP-hard. The most frequently applied method to prove the
NP-hardness of a decision problem is Karp reduction [11, 12]
from a source problem that is already know to be NP-hard.
This involves the polynomial conversion of any instance of
the source problem into an instance of the target problem that
gives the same output as the source instance. It is noted that
the result of the conversion is often a target problem with some
special structure, but irrespective of this, the complexity result
is valid for the target problem without any restrictions. This
paper applies Karp reduction from the set cover problem (SCP)
[11, 13] into SMETOP in order to prove the NP-completeness
of the latter.

III. PROBLEM DEFINITION

SMETOP captures the optimization problem faced by an
electricity retailer (leader in the Stackelberg game) who buys
electric energy from the wholesale market and supplies it to
multiple independent consumers (i = 1, ..., N ) in a smart grid
setting. The problems is solved on a finite time horizon (t =
1, ..., T ), where all parameters are assumed to be deterministic
and fully known. The retailer addresses the maximization of its
profit,

∑T
t=1

∑N
i=1 (Qt − Pt)xi,t, where Qt is the electricity

price offered to the consumers (decided by the retailer), Pt

is the price on the wholesale market (input parameter), and
xi,t denotes the consumption of consumer i (decided by the
consumer).

As a response to the tariff announced by the retailer, each
consumer i (followers in the Stackelberg game) determines its
consumption by scheduling a total consumption of Mi over the
time horizon to maximize its linear utility,

∑T
t=1 Ui,txi,t, and

to minimize its cost of energy,
∑T

t=1Qtxi,t. Here, Ui,t denotes
(the monetary equivalent of) the utility of scheduling one unit
of controllable consumption in time period t. Consumption in
period t is bounded from above by L̄i,t.

The relation of the parties is regulated by an a priori
contract that defines minimum, maximum, and max. average
electricity prices Q, Q, and Q̃, respectively. Such an agreement
is necessary to prevent the profit maximizing retailer from
increasing purchase prices without any limit. The system
architecture is depicted in Figure 1. SMETOP can be cast as
a bilevel program as follows.

Electricity prices, Q
t

Consumption, x
i,t

Retailer

Consumers

Fig. 1. System architecture with a retailer and multiple consumers.

Maximize
T∑

t=1

N∑
i=1

(Qt − Pt)xi,t (1)

subject to

Q ≤ Qt ≤ Q ∀ t (2)

1

T

T∑
t=1

Qt ≤ Q̃ (3)

(xi,t) ∈ arg min

{
T∑

t=1

(Qtxi,t − Ui,txi,t)

∣∣∣∣∣ (4a)

xi,t ≤ L̄i,t ∀ t (4b)
T∑

t=1

xi,t = Mi

}
∀ i (4c)

In this formulation, the upper-level objective (1) is max-
imizing the retailer’s profit, while constraints (2) and (3)
enforce the a priori contract on electricity prices. Lines (4a)-
(4c) capture the followers’ optimization problem embedded
as a constraint into the leader’s problem, which states that
consumption xi,t is chosen by follower i to minimize its
objective, computed as its energy cost minus the (monetary
equivalent) utility. Inequality (4b) sets an upper bound on the
consumption in each time period, while constraint (4c) ensures
that consumption over the horizon sums up to Mi. It is noted
that this formulation implicitly includes the so-called optmistic
assumption, which states that if a follower has multiple optimal
solutions according to its own objective, then it chooses the
optimal response that is the most favorable for the leader.

IV. COMPUTATIONAL COMPLEXITY

Lemma 1: The decision version of SMETOP is NP-
complete.
Proof: In the decision version of SMETOP, the questions
asked is whether there exist a solution in which the retailer’s
profit is at least κ. NP-hardness is shown by Karp reduction
from the set cover problem (SCP) to the decision version of
SMETOP. In an instance of SCP, there is given a universe
V = {1, 2, .., N}, a collection of sets over this universe
S = {S1, S2, ..., ST } with St ⊆ V and

⋃T
t=1 St = V , and

an integer k. The question is whether the universe can be
covered by at most k members of S, i.e., if there exist sets
{S[1], S[2], ..., S[k]} such that

⋃k
j=1 S[j] = V .

This SCP instance can be reduced to an instance of SME-
TOP with N + 1 consumers and T + 1 time periods, where
consumers i = 1, ..., N represent the elements of the universe
V , and each time period t = 1, ..., T corresponds to set St in
the SCP. Covering element i by set St in the SCP corresponds
to offering an attractive electricity price to consumer i in time
period t in SMETOP. The additional time period t = 0 is a
peak period from which as much load as possible should be
deferred, whereas the additional consumer i = 0 is required
for encoding the SCP cover size into the optimal SMETOP
solution value.
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Formally, such a SMETOP instance is constructed as fol-
lows. For all consumers i = 1, ..., N , the total consumption
is Mi = 1 and it can be scheduled to time period t (i.e.,
L̄i,t = 1) if and only if i ∈ St. Otherwise, L̄i,t = 0.
There is an initial time period t = 0 with L̄i,0 = 1 ∀i.
All consumers prefer scheduling their load to the initial time
period (Ui,0 = 2 ∀i) to scheduling it later (Ui,t = 1 ∀i, t ≥ 1).
Finally, the consumption profile of the additional consumer
0 is perfectly determined by input parameters L̄N+0,0 = 0,
L̄0,t = 1 ∀t ≥ 1, and M0 = T , resulting in x0,0 = 0 and
x0,t = 1 for t ≥ 1.

The agreement between the retailer and the consumers
defines the price limits as Q = 1 and Q = Q̃ = 2. The retailer
can buy electricity from the market at a price extremely high
in the initial period (P0 > 2(N + T )) and constantly low
afterwards (Pt = 1 ∀t ≥ 1).

In the optimal solution of the SMETOP instance, the retailer
must motivate each consumer to postpone their controllable
load from the preferred, but extremely costly, initial time
period to some later period. This can be achieved only by
setting Q0 = 2, and Qt = 1 ∀t ∈ Θ for an appropriately
selected set of cheap time periods Θ. Then, Θ must be selected
in such a way that it covers the universe of all consumers in
the sense that ∀i∃t ∈ Θ : i ∈ St. Obviously, there exists such
a Θ with |Θ| ≤ k in the SMETOP instance if and only if the
SCP is feasible with constant k. Finally, the retailer must set
Qt = 2 for t 6∈ Θ to maximize its income from consumer 0.

The retailer’s profit in this optimal solution can be calculated
as follows. The cost paid by the retailer on the market is N+T
(one unit for the consumption of each consumer i = 1, ..., N
and T units for consumer 0), whereas the income from the
consumers is N + 2T − |Θ| (one unit from each consumer
i = 1, ..., N , |Θ| units from consumer 0 in the cheap periods,
and 2(T−|Θ|) units in the expensive periods). Hence, the SCP
decision problem is solvable with the given constant k if and
only if the SMETOP instance admits a solution with |Θ| ≤ k,
i.e., where the retailer’s profit is at least κ = N + 2T − k.
With this, SCP is successfully reduced to SMETOP, and the
NP-hardness of SMETOP is proven.

Finally, the membership of the decision version of SME-
TOP in NP is obvious, since with a given price vector Qt,
calculating the consumers’ response and solving the decision
problem reduces to solving a linear program, which can be
carried out in polynomial time, see, e.g., [3]. 2

V. DISCUSSION AND CONCLUSIONS

This note introduced SMETOP, a simple Stackelberg
game model that captures the decision situation of a profit-
maximizing electricity retailer and its consumers with con-
trollable consumption on a finite time horizon. It has been
formally proven that SMETOP is NP-hard. The significance
of this result is that it naturally applies to all richer multi-
period tariff optimization models in the literature that gen-
eralize SMETOP, and whose complexity status has not been
proven to date. Such earlier models include an extension of
SMETOP with more sophisticated cost and utility models [2],
another extension with battery storage and energy production

at consumers [14], and a two-stage robust optimization model
with battery storage at the retailer [4]. The proof of complexity
can be adjusted trivially to other optimization criteria of the
retailer that assign different costs to consumption in different
time periods. An example is minimizing the squared deviation
from a target consumption profile, investigated in [3].

The same result also suggests that polynomial-time solution
approaches can be expected only for simpler models that lack
the complicated interdependency between sub-problem related
to different time periods in SMETOP, such as real-time pricing
models focusing on a single time instant.
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