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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

The accurate prediction of manufacturing lead times (LT) significantly influences the quality and efficiency of production planning and schedul-
ing (PPS). Traditional planning and control methods mostly calculate average lead times, derived from historical data. This often results in the
deficiency of PPS, as production planners cannot consider the variability of LT, affected by multiple criteria in today’s complex manufacturing
environment. In case of semiconductor manufacturing, sophisticated LT prediction methods are needed, due to complex operations, mass pro-
duction, multiple routings and demands to high process resource efficiency. To overcome these challenges, supervised machine learning (ML)
approaches can be employed for LT prediction, relying on historical production data obtained from manufacturing execution systems (MES). The
paper examines the use of state-of-the-art regression algorithms and their effect on increasing accuracy of LT prediction. Through a real industrial
case study, a multi-criteria comparison of the methods is provided, and conclusions are drawn about the selection of features and applicability of
the methods in the semiconductor industry.
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Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

Keywords: Lead time; prediction; machine learning; regression methods; comparison; features

1. Intoduction

Predictive data analytics refers to building and using mod-
els that make predictions based on the patterns extracted from
historical data [1]. Considering the six key phases of a pre-
dictive data analytics project lifecycle —as defined by the
Cross Industry Standard Process for Data Mining (CRISP-DM)
[2], namely (i) business understanding, (ii) data understand-
ing, (iii) data preparation, (iv) modeling, (v) evaluation and
(vi) deployment—, the fourth phase (modeling) is where ma-
chine learning (ML) algorithms are employed to build predic-
tion models [1,3]. The best model which fits for the purpose
of prediction, for instance lead-time prediction, will be evalu-
ated and proved for deployment e.g. in manufacturing execu-
tion systems (MES). In particular, ML is defined as an auto-
mated process that extracts patterns from (historical) data [1].
To this end, one can distinguish between two main approaches:
(1) Supervised ML, which assumes that training examples are
classified (labeled) (i.e. learning relationship between a set of
descriptive features and a target feature), and (2) Unsupervised
ML, which concerns the analysis of unclassified examples [1,3].

Other types of ML include semi-supervised and reinforcement
learning. In this paper, we focus exclusively on supervised ML
in particular on regression algorithms.

The task of predicting a continuous target or value is referred
to as a regression task/problem [1]. The most common algo-
rithms for a regression task are linear and logistic regression,
i.e. modeling relationship between the continuous variable (e.g.
lead-time) and one or more predictors (e.g. operation time,
number of orders in progress, work in progress (WIP), etc.) us-
ing a linear or logit link function, respectively [1].Addressing
this line of research in the semi-conductor manufacturing, the
key research question is ”which logistical measures are needed
in order to achieve an accurate lead time prediction for sin-
gle, connected and repetitive production steps using ML algo-
rithms”? The challenge is to identify ML algorithms that are
suitable for discovering interrelations between the aforemen-
tioned measures. To tackle this problem, we employ supervised
ML methods applied to solve regression tasks.

The paper is structured as follows: Section 2 presents the
state-of-the-art methods in lead-time prediction using regres-
sion algorithms. Section 3 provides a methodology for handling
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regression tasks which is exemplified in the context of semi-
conductor manufacturing. Finally, we discuss the key findings
and identify future research potentials.

2. Lead time prediction with ML algortihms

In this section, we firstly discuss knowledge discovery ap-
proaches in production planning and control (PPC) (cf. Section
2.1). Secondly, we explore state-of-the-art regression-based re-
proaches in lead time prediction (cf. Section 2.2.).

2.1. Knowledge discovery in production planning and control

Statistical learning, data mining or knowledge discovery was
first defined in 1989 [4] as a new intelligent tool for extracting
useful information and knowledge (actionable information or
hidden patterns) from different databases. In the first time pe-
riod, knowledge discovery was extensively applied in many dif-
ferent fields —such as in medicine- and biotechnology, finance,
marketing— but compared to these fields, there has been less
research interest in the manufacturing domain [5]. However, in
the past few years there have been a significant growth in the
number of papers discussing the usage of different data analyt-
ics methods and techniques in production management [4,6,7].
According to Rainer, after applying different data mining tech-
niques for converting big data to smart data, companies have
experienced payback of at least ten times of their investment
[5].

The output information of data mining can be split into two
main categories based on the functions and the goals of the ap-
plied technique. Descriptive statistical analytics (like associ-
ation analysis or clustering) focuses on the discovery of rules
or patterns to describe the data, while predictive data mining
(such as classification or regression) is used to analyze the rel-
evant and actual data in order to predict future values for one
or more key variables [4]. Regression is one part of predic-
tive data mining, where the objective is to predict the value of
a continuous variable. Cheng et al. revised the relevant pa-
pers since 2010 and discussed the typical knowledge mining
techniques in production management [4]. According to this
survey, the four most reflected typical application areas are ad-
vanced planning and scheduling, quality improvement, fault di-
agnosis and defect analysis. A fifth category was defined, in
which flow time/cycle time prediction could be found –among
life and yield prediction. PPC was identified as a research gap
already in 2009 [8], and the review [4] in 2017 has revealed just
a few applications in this passed 9 years. Consequently, more
attention from the research community would be needed to data
mining in PPC.

2.2. Lead time prediction with regression: state-of-the-art
methods

In the present paper, lead time –as one of the most important
control parameter and target figures of PPC– is analyzed and
predicted with the help of different ML algorithms and based
on MES data. The literature survey revealed that most research
of time related data mining analysis (flow time, (lot) cycle time,
lead time): i) have focused on the whole process flow, ii) have
used a dataset generated by simulation and iii) have applied and

compared just a few ML algorithms. Pfeiffer et al. [9] com-
pared the results of three ML models predicting the lead time
with eight features and data gained by discrete-event simula-
tion. In particular, they employed random forest model outper-
formed linear regression and regression tree models. Ozturk
et al. [10] applied regression trees to a simulated data source
of four shop types in order to determine the most relevant at-
tributes having a relatively high predictive power. Meidan et
al. [11] focused on the waiting time rather than the whole
lead time. After discretization of all continuous variables se-
lective naive Bayesian classifier, decision tree, artificial neural
network (ANN) and multinomial logistic regression were eval-
uated. It is revealed that, the 182 features of the original dataset
generated by simulation could be reduced to 20. Alenzi et al.
[12] used a thoroughly tuned support vector regression model
(SVM) for real-time flow time prediction and compared it with
an ANN model and traditional time series models. On the ap-
plied dataset obtained from a simulation model the SVM per-
formed best. The comparison of a Bayesian network to an ANN
and to a SVM model was executed by Mori et al. [13] for pro-
duction times in the steel industry. It was concluded that all
methods could accurately predict the output variables in case of
completely observed variables, however, with partially known
input data the Bayesian network had the best performance for
the simulated example with binarized variables. De Cos Juez et
al. [14] analyzed the results of a SVM model with 8 features
(reduced from 12) to predict whether a batch is going to be
completed in the forecasted time or not. A stepwise regression
model was implemented by Li et al. [15] in order to estimate the
relationship between the characteristic of the flow time distri-
bution and the predictor variables. In the work of Raaymakers
et al. [16] the ANN performed slightly better than regression
models for estimating the makespan of job sets in batch process
industries.

3. Research methodology

The methodological approach applied in the use case orien-
tates on the CRISP-DM model, with the focus on the first five
phases. According to Figure 1, the first three phases, namely
business understanding, data understanding and data prepara-
tion are consolidated in the section Description of process and
data. The section ML algorithm - Toolbox of Figure 1 contains
the modeling phase, while the evaluation is done in the Results
section, where relevant features have been selected and the ac-
curacy of prediction model itself has been evaluated.

Fig. 1. Data analysis process steps applied in PPC

3.1. Description of manufacturing process and data

As stated above, the case study has been conducted in the
semiconductor industry. A special characteristic of this indus-
try is that most of the products are built in multiple layers.
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Moreover, most production plants do not have rigidly linked
machines, but the machines are organized in operation specific
workcenters. This leads to a job shop organized production sys-
tem, where products have to run on the same machines several
times in order to build integrated circuits on the layers. Al-
though the classification for the production type is mainly mass
production, normally many different products and also smaller
lot sizes for qualification of new products have to be handled on
the same equipment. Due to the complexity described above,
the semiconductor industry traditionally invested a lot in ad-
vanced IT-systems in the production area, resulting in a large
amount, detailed data available about products, processes and
equipment.

The company of under study is characterized by these at-
tributes. Within their use case, we concentrated on a sequence
of three process steps, namely Sorter, Bakefuse and Sputter il-
lustrated on Figure 2. The Sorter initializes the process se-
quence and is carried out to sort all wafers of one lot and bring
them into the correct sequence for the next process steps. This
is needed, as throughout the production, it might occur that the
sequence of the wafers within one lot can be mixed up, thus
the sorter reorganizes the lot. After this process, there is the
main buffer before the lot goes to the Bakefuse stage. This pro-
cess step is necessary for the preparation of the wafers for the
Sputter process where a thin layer of metal gets sputterd on the
wafer’s surface. There is a process related maximum lay time
between the Bakefuse and the Sputter process that limits the
buffer size and leads to the blocking of lots before. Therefore,
the measurement and later on also the prediction of the lead
time is done not only per lot but also per layer. This means,
that a lot can arrive several times —depending on the product
structure, up to three times, what means that the product has 3
layers— in the observed process sequence, within a time span
of several days.

Fig. 2. Illustration of the analyzed manufacturing process steps

Process confirmation data from the MES system, historical
information about the equipment/machine status and customer
relating information were provided by the company for a period
of two years. The characteristics of input data are summarized
in Table 1. In the first two columns the name and the type of
the data are described. The third column contains information
about the range of the particular variable — how many unique
values the variable has or how detailed information about the
variable was provided. The company supplies 33 customers

with 106 different products. The production of wavers is fa-
cilitated in these three analyzed process steps by 43 different
equipments and 38 various routings. During these three ana-
lyzed process steps 14 different operations can be distinguished.
Time stamp information about move-in and move-out of the
various operations are available with the precision of seconds.
Graphical illustration of the time stamp data is presented on
Figure 3. In case of the analysis of machine utilization we keep
our focus on the 5 machines in the process Sputter illustrated
on Figure 2.

Table 1. Description of raw data
Name Type Granularity
Product number Alphanumeric string 106
Customer Alphanumeric string 33
Production lot Alphanumeric string 23819
Operations Alphanumeric string 14
Routings Alphanumeric string 38
Time stamp Date and time Seconds
Production quantity Integer 0-25
Equipment Alphanumeric string 43
Priority Integer 3
Status of operations Alphanumeric string 22

These process confirmation data and information about the
machine status and customers were used to generate a ML
database, which included a number of 18,532 observations
about lot-layer combinations. For the evaluation, the ML
dataset was split up into training and testing datasets randomly,
applying a 70/30 sampling ratio. Out of the raw data, we de-
rived 41 features (35 numerical and 6 categorical features) that
were analyzed according their impact on the lead time. The
features can be divided according to their characteristics into
static features that characterize the lot —e.g, product, customer,
planned time— and dynamic ones. The latter features reflect
the status of the production system, especially the three ob-
served processes, at the entry time of the lot at a specific layer.

Fig. 3. Time stamp data of the lot-layer combinations

The lead time is calculated for the processes steps Bakefuse
and Sputter separately. For those processes the lead time is
defined as time span from the end confirmation of the previ-
ous process and the observed process, i.e. the lead time in
Bakefuse is calculated from the end confirmation date and time
in Bakefuse minus the end confirmation date and time of the
previous process, the Sorter process. For the Sputter the pre-
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variable was provided. The company supplies 33 customers

with 106 different products. The production of wavers is fa-
cilitated in these three analyzed process steps by 43 different
equipments and 38 various routings. During these three ana-
lyzed process steps 14 different operations can be distinguished.
Time stamp information about move-in and move-out of the
various operations are available with the precision of seconds.
Graphical illustration of the time stamp data is presented on
Figure 3. In case of the analysis of machine utilization we keep
our focus on the 5 machines in the process Sputter illustrated
on Figure 2.

Table 1. Description of raw data
Name Type Granularity
Product number Alphanumeric string 106
Customer Alphanumeric string 33
Production lot Alphanumeric string 23819
Operations Alphanumeric string 14
Routings Alphanumeric string 38
Time stamp Date and time Seconds
Production quantity Integer 0-25
Equipment Alphanumeric string 43
Priority Integer 3
Status of operations Alphanumeric string 22

These process confirmation data and information about the
machine status and customers were used to generate a ML
database, which included a number of 18,532 observations
about lot-layer combinations. For the evaluation, the ML
dataset was split up into training and testing datasets randomly,
applying a 70/30 sampling ratio. Out of the raw data, we de-
rived 41 features (35 numerical and 6 categorical features) that
were analyzed according their impact on the lead time. The
features can be divided according to their characteristics into
static features that characterize the lot —e.g, product, customer,
planned time— and dynamic ones. The latter features reflect
the status of the production system, especially the three ob-
served processes, at the entry time of the lot at a specific layer.

Fig. 3. Time stamp data of the lot-layer combinations

The lead time is calculated for the processes steps Bakefuse
and Sputter separately. For those processes the lead time is
defined as time span from the end confirmation of the previ-
ous process and the observed process, i.e. the lead time in
Bakefuse is calculated from the end confirmation date and time
in Bakefuse minus the end confirmation date and time of the
previous process, the Sorter process. For the Sputter the pre-
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vious process is Bakefuse. The overall leadtime for all three
process steps is calculated from the end confirmation at Sputter
and the end confirmation at Sorter. According to domain ex-
perts from the company the WIP before Sorter can be neglected
due to technical reasons and was therefore not considered. The
calculated overall lead time is illustrated on Figure 4 .

Fig. 4. Histogram of the lead time in the analyzed process steps

3.2. Exploring ML algorithms

Basically, statistical learning refers to a set of methods for
understanding data, recovering relationships between parame-
ters and for providing estimations about desired variables. In
case of regression, the value of a continuous variable is to be
predicted. The most fundamental regression methods are the
easily interpretable linear regression models (LM), which as-
sume an approximately linear relationship among the variables.
These models seek to find estimates of the parameters so that
the sum of mean squared error is minimized. While ordinary
linear regression focuses on the model bias, ridge and lasso re-
gression concentrate on the model variance [17]. There are var-
ious regression models that are inherently nonlinear in nature,
such as ANN, multivariate adaptive regression (MARS), SVM,
k-nearest neighbor (kNN) and tree based models. ANN is a
powerful regression technique inspired by the working of the
human brain. The output variable is modeled by an intermedi-
ary set of unobserved variables, by the so called hidden layer(s)
[13,16,17]. MARS is a non-parametric regression method and
can be used for modeling complex nonlinearities and relation-
ships between variables [17]. The main idea of SVMs –which
can be used for both classification and regression– is the in-
dividualization of hyperplanes parallel to error minimization
[12,14,17]. kNN approach predicts outcomes using the k clos-
est samples from the training set [17]. Regression trees (RT)
partition data into more homogeneous with respect to the re-
sponse variable groups. Although regression trees are easy to

interpret and implement, they have less-than-optimal predictive
performance and they are instable. Ensemble techniques could
be used in order to reduce the variance of the prediction and
to increase the accuracy and stability of the model. But the
improved performance has its trade-offs, such as computational
costs, memory requirements and loss in interpretation. Bagging
and boosting are among the most widespread ensemble meth-
ods. Bagging (bootstrap aggregation) is a general approach that
uses bootstrapping. The prediction of a bagged regression tree
model is the average of the predictions of each regression tree in
the bagged ensemble. Random forest (RF) is a special case of
a bagged regression tree, where just randomly selected predic-
tors are used in the tree construction process, in order to reduce
the correlation among predictors. While in RF all trees are in-
dependent, they contribute to the final model equally and each
tree is created to have maximum depth, in boosting however the
trees are dependent on past trees, have different contributions to
the final model and they have a minimum depth [17].

3.3. Application and evaluation of the selected ML techniques

Eleven various statistical learning methods were evaluated in
the analysis, by using R and R Studio [18,19]. In case of linear
models (LM, Ridge and Lasso) and ANN regression, only nu-
merical features were applied. During the model building and
feature selection, 10-fold cross validation was performed to es-
timate the prediction accuracy of the models on the independent
test set. The accuracy of the models were measured with 5 var-
ious error measures, namely with mean absolute error (MAE),
mean absolute percentage error (MAPE), mean squared error
(MSE),root mean squared error (RMSE) and normalized root
mean squared error (NRMSE). The NRMSE gives the average
prediction error in the percentage of the real lead time values.
The calculation of NRMSE is provided by Equation 1, where Pi

and Ri are the predicted and real lead time values, respectively.
The results of the regression models are summarized in Table
2.

NRMSE = 100

2
√

1
n
∑N

i=1(Pi − Ri)

Rmax − Rmin
(1)

It can be concluded that nearly the same accuracy was
achieved by all the three linear models (see the different er-
ror measures in Table 2). The results of the RF model were
calculated with the default parameters: 500 trees, 13 random
variables from the 41 —as the suggested value is the third of
the number of all predictors in case of regression. The boosted
RT model had 20000 trees. In the SVM model radial kernel was
applied. The optimal value of k of the kNN model proved to be
9, after resampling k from 5 to 23. The ANN model had one
hidden layer with 26 neurons —as the recommended value is
two third of the number of input variables (a minor increase in

Table 2. Accuracy of the tested ML algorithms based on different error measures
LM Ridge Lasso RT bagged RT RF boosted RT SVM MARS kNN ANN

MAE 487 510 508 563 394 390 397 423 488 504 535
MAPE 42.7 45.0 44.7 53.5 33.9 33.8 33.9 30.9 43.15 44.0 53.4
MSE 529408 573520 572939 639617 369993 360780 369414 500693 513638 554897 658852
RMSE 727 757 756 799 608 600 607 707 716 745 771
NRMSE 15.2 15.8 15.8 16.7 12.7 12.5 12.7 14.77 14.9 15.5 17.3
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Table 3. Description and sensitivity analysis results of the ten most important variables of the models
Feature Description RF boosted RT
MovDeparture Moving average of the inter departure times of the last 20 lot-layers 2,7 3.3
ArrivalHour Hour of the arrival time -7,6 -13.9
WD Weekday of the arrival time 3.6 2.7
SumMedOTs Median of the product‘s lead time (in the analyzed process steps) 5.2 1.5
WIP Work in progress: number of lot-layers in the analyzed process steps 5.3 2.6
WIPtimeBfMed Work in progress: expected work content in minutes by process step bakefuse 2.9 1.7
SpEffPrevDay Capacity utilization of machines in process step sputter on the previous day 0.1 1.9
MovArrival Moving average of the inter arrival times of the last 10 lot-layers -1.3 -1.3
medOTProdRout Mean of median operations times of a product on a given route 3.6 2.1
SBPrevDay Time in standby status of the machines of sputter on the previous day 1.2 0.8

the NRMSE was found with with 20 and 30 neurons). Accord-
ing to the results summarized in Table 2, ensemble tree based
methods could outperform all models, and the best result was
provided by RF. Bagging and RF models were built by using
randomForest package [20,21] and the boosted RT model was
constructed with the gbm package [22]. The ensemble nature of
these models makes it impossible to gain an understanding of
the relationship between the input and output variables. How-
ever, it is possible to quantify the impact of predictors in the
ensemble [17]. The importance function of the randomFor-
est package can evaluate the importance of all variables with
two different approaches: i) random permutation of the values
of each predictor or ii) improvement in node purity based on
the performance metric for each predictor [17]. Variable im-
portance for boosting is a function of the reduction in squared
error due to each predictor. The intersection of the most im-
portant variables, found by randomForest and gbm packages,
are summarized and described in the first two columns of Ta-
ble 3. With the help of the ten most important variables a new
RF and a boosted RT model were built —as suggestion for lead
time prediction. During the fine tuning of the model, it was
discovered, that the optimal number of trees in the RF model
construction is between 100-125, as the NRMSE of 13.1 with
500 trees (running time is about 2 minutes) does not increases
till the number of trees are decreased to 125 (running time is
less then a minute). The running time is about 20-30 seconds
with 100 trees and the increase in the NRMSE is only 0.1. The
running time of the boosted RT model was significantly more
(6 minutes with 25000 trees and 5 minutes with 20000 trees)
and the accuracy results never outperformed the results of the
RF model (NRMSE of 13.5 and 13.6 respectively).

After the construction of the final RF and boosted RT mod-
els, the variable importance of all 10 variables was studied with
the help of sensitivity analysis. The sensitivity analysis results
are summarized in the last two columns of Table 3, where the
increase in MSE (in %) without the particular variable can be
seen (in case of the RF model the results of 5 runnings are
averaged). According to the results, the number of lot-layers
in the analyzed process steps (WIP) appears to be the most
important variable, as disregarding this feature from the final
model had the most significant impact on the MSE. Removing
the WIP as a feature from the final RF and boosted RT model
resulted in a 5.3% and in a 2.6% increase in the MSE. The
sensitivity analysis results for two variables (ArrivalHour and
MovArrival) are negative, so in these particular cases better re-
sults were achieved without these features. As mentioned in
Kuhn and Johnson [17], there could be bias in RF variable im-

portance measure. Two examples are named that could have
serious effect on the importance values; (i) the correlations be-
tween predictors and the (ii) number of random variables during
the model construction. Further analysis is needed in order to
understand the interrelations between these two and the other
features.

Our final model suggested for lead time prediction in this
particular case is a RF model with all the eight variables
with positive sensitivity analysis results in Table 3. With 125
trees and 2 random variables during the model construction —
running time is 20 seconds— the original (with all the 41 fea-
tures) NRMSE of 12.5 is reached.

4. Future research agenda

Further research will be conducted by the authors. First, the
scope of the analysis will be extended and the developed ap-
proach will be applied to other process steps and to the pro-
duction system as a whole to analyse, if the identified approach
with its eight variables is also suitable for different processes.
Another future research agenda would be the application of the
approach to other industries to check the suitability of the vari-
ables and learning methods.

From the literature studies and from the conducted research
the need for a feature codebook came up. Therefore new fea-
tures need to be defined and tested and existing features need
to be tuned and their applicability and suitability for different
production process types (e.g. batch processes, continuous pro-
cesses etc.) and industries need to be studied and documented.

Last but not least, the analysis of interrelations between vari-
ables with negative sensitivity will be investigated.
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vious process is Bakefuse. The overall leadtime for all three
process steps is calculated from the end confirmation at Sputter
and the end confirmation at Sorter. According to domain ex-
perts from the company the WIP before Sorter can be neglected
due to technical reasons and was therefore not considered. The
calculated overall lead time is illustrated on Figure 4 .

Fig. 4. Histogram of the lead time in the analyzed process steps

3.2. Exploring ML algorithms

Basically, statistical learning refers to a set of methods for
understanding data, recovering relationships between parame-
ters and for providing estimations about desired variables. In
case of regression, the value of a continuous variable is to be
predicted. The most fundamental regression methods are the
easily interpretable linear regression models (LM), which as-
sume an approximately linear relationship among the variables.
These models seek to find estimates of the parameters so that
the sum of mean squared error is minimized. While ordinary
linear regression focuses on the model bias, ridge and lasso re-
gression concentrate on the model variance [17]. There are var-
ious regression models that are inherently nonlinear in nature,
such as ANN, multivariate adaptive regression (MARS), SVM,
k-nearest neighbor (kNN) and tree based models. ANN is a
powerful regression technique inspired by the working of the
human brain. The output variable is modeled by an intermedi-
ary set of unobserved variables, by the so called hidden layer(s)
[13,16,17]. MARS is a non-parametric regression method and
can be used for modeling complex nonlinearities and relation-
ships between variables [17]. The main idea of SVMs –which
can be used for both classification and regression– is the in-
dividualization of hyperplanes parallel to error minimization
[12,14,17]. kNN approach predicts outcomes using the k clos-
est samples from the training set [17]. Regression trees (RT)
partition data into more homogeneous with respect to the re-
sponse variable groups. Although regression trees are easy to

interpret and implement, they have less-than-optimal predictive
performance and they are instable. Ensemble techniques could
be used in order to reduce the variance of the prediction and
to increase the accuracy and stability of the model. But the
improved performance has its trade-offs, such as computational
costs, memory requirements and loss in interpretation. Bagging
and boosting are among the most widespread ensemble meth-
ods. Bagging (bootstrap aggregation) is a general approach that
uses bootstrapping. The prediction of a bagged regression tree
model is the average of the predictions of each regression tree in
the bagged ensemble. Random forest (RF) is a special case of
a bagged regression tree, where just randomly selected predic-
tors are used in the tree construction process, in order to reduce
the correlation among predictors. While in RF all trees are in-
dependent, they contribute to the final model equally and each
tree is created to have maximum depth, in boosting however the
trees are dependent on past trees, have different contributions to
the final model and they have a minimum depth [17].

3.3. Application and evaluation of the selected ML techniques

Eleven various statistical learning methods were evaluated in
the analysis, by using R and R Studio [18,19]. In case of linear
models (LM, Ridge and Lasso) and ANN regression, only nu-
merical features were applied. During the model building and
feature selection, 10-fold cross validation was performed to es-
timate the prediction accuracy of the models on the independent
test set. The accuracy of the models were measured with 5 var-
ious error measures, namely with mean absolute error (MAE),
mean absolute percentage error (MAPE), mean squared error
(MSE),root mean squared error (RMSE) and normalized root
mean squared error (NRMSE). The NRMSE gives the average
prediction error in the percentage of the real lead time values.
The calculation of NRMSE is provided by Equation 1, where Pi

and Ri are the predicted and real lead time values, respectively.
The results of the regression models are summarized in Table
2.
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It can be concluded that nearly the same accuracy was
achieved by all the three linear models (see the different er-
ror measures in Table 2). The results of the RF model were
calculated with the default parameters: 500 trees, 13 random
variables from the 41 —as the suggested value is the third of
the number of all predictors in case of regression. The boosted
RT model had 20000 trees. In the SVM model radial kernel was
applied. The optimal value of k of the kNN model proved to be
9, after resampling k from 5 to 23. The ANN model had one
hidden layer with 26 neurons —as the recommended value is
two third of the number of input variables (a minor increase in

Table 2. Accuracy of the tested ML algorithms based on different error measures
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Table 3. Description and sensitivity analysis results of the ten most important variables of the models
Feature Description RF boosted RT
MovDeparture Moving average of the inter departure times of the last 20 lot-layers 2,7 3.3
ArrivalHour Hour of the arrival time -7,6 -13.9
WD Weekday of the arrival time 3.6 2.7
SumMedOTs Median of the product‘s lead time (in the analyzed process steps) 5.2 1.5
WIP Work in progress: number of lot-layers in the analyzed process steps 5.3 2.6
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medOTProdRout Mean of median operations times of a product on a given route 3.6 2.1
SBPrevDay Time in standby status of the machines of sputter on the previous day 1.2 0.8

the NRMSE was found with with 20 and 30 neurons). Accord-
ing to the results summarized in Table 2, ensemble tree based
methods could outperform all models, and the best result was
provided by RF. Bagging and RF models were built by using
randomForest package [20,21] and the boosted RT model was
constructed with the gbm package [22]. The ensemble nature of
these models makes it impossible to gain an understanding of
the relationship between the input and output variables. How-
ever, it is possible to quantify the impact of predictors in the
ensemble [17]. The importance function of the randomFor-
est package can evaluate the importance of all variables with
two different approaches: i) random permutation of the values
of each predictor or ii) improvement in node purity based on
the performance metric for each predictor [17]. Variable im-
portance for boosting is a function of the reduction in squared
error due to each predictor. The intersection of the most im-
portant variables, found by randomForest and gbm packages,
are summarized and described in the first two columns of Ta-
ble 3. With the help of the ten most important variables a new
RF and a boosted RT model were built —as suggestion for lead
time prediction. During the fine tuning of the model, it was
discovered, that the optimal number of trees in the RF model
construction is between 100-125, as the NRMSE of 13.1 with
500 trees (running time is about 2 minutes) does not increases
till the number of trees are decreased to 125 (running time is
less then a minute). The running time is about 20-30 seconds
with 100 trees and the increase in the NRMSE is only 0.1. The
running time of the boosted RT model was significantly more
(6 minutes with 25000 trees and 5 minutes with 20000 trees)
and the accuracy results never outperformed the results of the
RF model (NRMSE of 13.5 and 13.6 respectively).

After the construction of the final RF and boosted RT mod-
els, the variable importance of all 10 variables was studied with
the help of sensitivity analysis. The sensitivity analysis results
are summarized in the last two columns of Table 3, where the
increase in MSE (in %) without the particular variable can be
seen (in case of the RF model the results of 5 runnings are
averaged). According to the results, the number of lot-layers
in the analyzed process steps (WIP) appears to be the most
important variable, as disregarding this feature from the final
model had the most significant impact on the MSE. Removing
the WIP as a feature from the final RF and boosted RT model
resulted in a 5.3% and in a 2.6% increase in the MSE. The
sensitivity analysis results for two variables (ArrivalHour and
MovArrival) are negative, so in these particular cases better re-
sults were achieved without these features. As mentioned in
Kuhn and Johnson [17], there could be bias in RF variable im-

portance measure. Two examples are named that could have
serious effect on the importance values; (i) the correlations be-
tween predictors and the (ii) number of random variables during
the model construction. Further analysis is needed in order to
understand the interrelations between these two and the other
features.

Our final model suggested for lead time prediction in this
particular case is a RF model with all the eight variables
with positive sensitivity analysis results in Table 3. With 125
trees and 2 random variables during the model construction —
running time is 20 seconds— the original (with all the 41 fea-
tures) NRMSE of 12.5 is reached.

4. Future research agenda

Further research will be conducted by the authors. First, the
scope of the analysis will be extended and the developed ap-
proach will be applied to other process steps and to the pro-
duction system as a whole to analyse, if the identified approach
with its eight variables is also suitable for different processes.
Another future research agenda would be the application of the
approach to other industries to check the suitability of the vari-
ables and learning methods.

From the literature studies and from the conducted research
the need for a feature codebook came up. Therefore new fea-
tures need to be defined and tested and existing features need
to be tuned and their applicability and suitability for different
production process types (e.g. batch processes, continuous pro-
cesses etc.) and industries need to be studied and documented.

Last but not least, the analysis of interrelations between vari-
ables with negative sensitivity will be investigated.
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