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Abstract. Technological development brings increasingly closer the era of widely available self-driving cars. However, presum-
ably there will be a time when human drivers and self-driving cars would share the same roads. In the current paper, we propose
a cognitive warning system that utilizes information collected from the behaviour of the human driver and sends warning signals
to self-driving cars in case of human related emergency. We demonstrate that such risk detection can identify danger earlier than
an external sensor would, based on the behaviour of the human-driven vehicle. We used data from a simulator experiment, where
21 participants slalomed between road bumps in a virtual reality environment. Occasionally, they had to react to dangerous road-
side stimuli by large steering movements. We used one-class SVM to detect emergency behaviour in both steering and vehicle
trajectory data. We found earlier detection of emergency based on steering wheel data, than based on vehicle trajectory data. We
conclude that tracking cognitive variables of the human driver means that we can utilize the outstanding power of the brain to
evaluate external stimuli. Information about the result of this evaluation (be it steering action or saccade) could be the basis of a
warning signal that is readily understood by the computer of a self-driving car.
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1. Introduction1

Since 2009, when Google started testing Google2

Chauffeur driven cars, they accomplished driving over3

1.5 million miles with only 22 documented minor ac-4

cidents [1]. Interestingly, human error was found un-5

derlying all but one of these [2]. This warns to the6

fact that in spite of self-driving cars being a safer7

mode of transportation [3], a hybrid traffic of human-8

driven and self-driving cars is still prone to human9
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faults. Human drivers are object to biological limita- 10

tions (e.g. drowsiness) and tend to do multitasking in 11

the car, thus providing suboptimal response in emer- 12

gency situations [4]. Several in-car warning system de- 13

signs have been implemented in order to reduce the 14

risk of fatal outcomes [5]. In the present paper, we 15

propose that these warning systems should not only 16

raise the driver’s attention, but could be also used to 17

inform other participants of the traffic, namely self- 18

driving cars. 19

Widespread availably of passenger cars in the mid- 20

dle of the 20th century raised attention to traffic 21

safety [9]. Since then, several different kinds of ac- 22

cident risk evaluation systems have been proposed. 23

Amongst these we can distinguish three main types 24
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based on the source of data they use for estimation.25

These are (1) traffic data based, (2) car position based,26

and (3) driver behaviour based approaches. Traffic27

data-based approaches are typically based on traffic28

surveillance data and use that to evaluate the risk of29

accident depending on timeslot, traffic frequency and30

area (highway, intersection) [10–14]. Not entirely dif-31

ferent from these systems [15–17] are those that work32

on the single car basis and use sensors of the master ve-33

hicle to predict risks of the peers. Current self-driving34

concept cars rely mostly on this technology [18]. The35

third type of risk evaluation systems is the set of sys-36

tems that collect information from the driver. Driver37

behaviour-based models use gaze [19,20], facial cod-38

ing [19,21], EEG [22,23], and motion trajectories [24–39

26] recorded with various sensors. These solutions give40

very good real-time estimates that can be used to warn41

the driver for a potential risk of falling asleep [24,27],42

driving through a red light [26], or for optimal lane-43

changing trajectory [28]. Here, we propose that these44

warnings could help the hybrid traffic of human-driven45

and self-driving cars in the future. This way they work46

more as a communication channel between two agents47

and not as a one-way sensor, hence the term cognitive48

in the title.49

While a human driver may not be able to evaluate50

a warning message from a lead car in a couple mil-51

liseconds, this is not a problem for the processor of a52

self-driving car. Automated vehicles constantly moni-53

tor their surroundings with several sensors to provide54

the safest transportation possible [29]. Nonetheless, in-55

formation collected inside the car’s cockpit may forego56

the externally detectable risk with tens or, sometimes,57

hundreds of milliseconds. This is true even if we take58

the steering wheel, where there is a few millisecond59

delay between the steering action and the chassis re-60

sponse [30]. Thus, these warnings may be extremely61

helpful for self-driving cars.62

The proposed solution could be a good example of63

how biological and artificial cognitive agents could64

co-evolve [31,32], emerging in a safer traffic infras-65

tructure. The current proposal is not the first that66

promote consideration of cognitive factors in traffic67

safety [9,33,34], or increased communication between68

traffic participants [35,36]. However, it is unique in its69

emphasis on human-to-machine information flow. On-70

going research [17,29,36,37] is focusing on the design71

of optimal wireless communication between vehicles72

(vehicle to vehicle, V2V) and between vehicles and73

road-side units (vehicle to infrastructure, V2I). These74

communication links support efficiently the drivers’ 75

situational awareness. Although situational awareness 76

often refers to human situational awareness [38], it 77

bears relevance also in human-machine (or possibly 78

even in machine-machine) situations as a general con- 79

cept of information availability and use in an interac- 80

tion [39]. To demonstrate whether we can potentially 81

facilitate situational awareness of a machine, we vali- 82

date our idea by predicting abrupt steering wheel turn 83

actions of a human driver in a virtual reality simula- 84

tor paradigm. Here, from time to time the driver had to 85

make emergency steering movements to roadside stim- 86

uli [40]. In the present analysis we used the car tra- 87

jectory and the steering wheel angle data to investigate 88

how early we can detect the initiation of an emergency 89

steering behaviour only based on data from either ex- 90

ternal sensor. 91

In the current proof-of-concept implementation we 92

used a one-class support vector machine (OC-SVM). 93

SVM [41–43] is a set of machine learning models that 94

uses support vectors (i.e. hyperplanes) in high dimen- 95

sional space for classification and regression problems. 96

Our choice of model was motivated by three main rea- 97

sons. First, SVM solutions are fast and are often used 98

in real-time applications [44]. Second, such a model 99

can be extended, for example, a recent study presented 100

a hybrid model of an OC-SVM and a deep belief net- 101

work that outperformed a deep autoencoder in terms 102

of speed on an anomaly detection task in high dimen- 103

sional data [45]. Third, SVM can be trained even on 104

computers with modest processing power. This latter 105

argument is important since the current ideas may later 106

give birth to an actual product. Presumably, people 107

who cannot afford buying new self-driving cars would 108

adhere to using human-driven cars, and thus would be 109

the target audience of such an instrument. This facili- 110

tates the design of an efficient, yet inexpensive device. 111

We hypothesized that abrupt steering movements 112

can be readily detected using both steering and car 113

trajectory data. Moreover, we predicted that emer- 114

gency events are detected earlier based on steering 115

than on trajectory data. We aimed to propose a general 116

anomaly detection system that could potentially use 117

multidimensional data (e.g. EEG, eye-tracking etc.). 118

These sensors could provide even earlier detection of 119

an emergency [46]. Therefore we did not include any 120

prior expectation of the dangerous events, only data of 121

normal driving and hence the use of OC-SVM.122
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Fig. 1. The experimental design. (a) Participants had to slalom through road bumps on a rural road. (b) From time to time, a deer raised up its
head from the bushes. If the animal was facing to the road they had to steer to the other end of the road. If the deer looked the other direction they
did not have to do anything. The red rectangle serves illustrative purposes.

2. Methods123

2.1. Participants124

Twenty-three participants took part in the virtual125

reality experiment. Two of them experienced simula-126

tor sickness, therefore their data was excluded. The127

training and test data were extracted from the steer-128

ing and trajectory data of the remaining 21 partici-129

pants (age M = 25.29, SD = 5.54 years; age range:130

19–37 years; 10 men and 11 women). All of them131

reported normal hearing and normal or corrected-to-132

normal vision. They were also tested for stereo vision133

(Randot test) and stereo-projection was adjusted ac-134

cordingly with the interpupillary distance. All partic-135

ipants were right-handed. Neither of the participants136

had a history of neurological disorder or epilepsy. All137

of them had valid driving license and frequently drove138

a car in the past months. As inclusion criteria they had139

at least 50,000 km driving experience prior to the ex-140

periment. Participants were recruited volunteers from141

students of the Aix-Marseille University. Written in-142

formed consent was collected prior to the experiment,143

and the experimental protocol was designed according144

to the Declaration of Helsinki and was approved by the145

local ethical committee.146

2.2. Experiment147

The experiment took place in a cave automatic vir-148

tual environment (CAVE [47]) at the Centre de la 149

Realité Virtuelle de la Mediterranean (CRVM), Aix- 150

Marseille University. The CAVE consisted of three 151

backprojected, 3 by 4 meter side screens and a fiber- 152

glass screen of 3 by 3 meter on the floor. Two Barco 153

5000 lumen projectors illuminated each screen. Partic- 154

ipants sat in a custom built car simulator consisting of 155

a car seat frame and a force feedback steering wheel 156

(Logitech G27). Sounds were coming from two loud- 157

speakers placed on both sides of the car frame. 158

We designed a driving simulator game in Unity 3D, 159

where participants were told to drive on a rural road 160

bounded by bushes on both sides. The road was flat 161

and the scene did not contain other landmarks that may 162

have distracted the driver’s attention. The experiment 163

contained two kinds of tasks. Most of the time they had 164

to slalom between road bumps. The task required con- 165

tinuous left/right steering movements. The road bumps 166

appeared on both sides of the road to guarantee that 167

only small steering movements were used, and the trial 168

was only successful if the participant passed between 169

the two road bumps (see Fig. 1). A green disk placed 170

between the road bumps indicated the ideal position of 171

passing. Running over a road bump was signalled by 172

a small vibration on the steering wheel. This task was 173

sometimes interrupted by an emergency event. 174

The emergency event was the appearance of a deer 175

in the bushes, either on the left or on the right side of 176

the road. The orientation of the deer’s jaw signalled 177

whether a response was required or not (Go-NoGo 178

task). If the deer was facing the road it signalled emer- 179

gency (Go signal), if it turned away then no response180
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was required (NoGo signal). In case of emergency, par-181

ticipants were instructed to steer to the other side (i.e.182

large steering movement) in order to avoid a collision.183

If the orientation of the deer did not implicate emer-184

gency, the participants were instructed to execute the185

primary task and not to react to the deer.186

2.3. Procedure187

The experiment started with a practice phase where188

participants were familiarized with the task. We looked189

for signs of simulator sickness to avoid unwanted dis-190

comfort caused by performing the task for a prolonged191

period. The data used in the current analysis was col-192

lected from four 5 minute-long blocks. The partici-193

pants were free to take a rest, stand up, walk and drink194

between the blocks. The total duration of the experi-195

ment was approximately one hour, including breaks.196

During the experiment, emergency events appeared197

with 20% chance. Time between road bumps varied198

between 300 and 1700 msec (distance: 5.9 m to 34 m199

at 70 km/h speed). Emergency events always followed200

a road bump with 650 to 700 msec and when they201

appeared they were the closest visual target stimuli.202

Emergency events were followed by road bump with203

300 to 350 msec. This way the distance between the204

two road bumps bounding the emergency event was205

equal to the average distance of two road bumps. We206

used this configuration to avoid that participants could207

anticipate the emergency events.208

2.4. Data preprocessing209

Data preprocessing and modelling was done in210

Python [48] using Pandas [49], Scikit-learn [50], visu-211

alisation was done using Matplotlib [51] and Seaborn.212

Trajectory and steering angle data was logged in every213

50 msec with high precision, according to the Unity214

environment internal physics. Normal driving data was215

extracted from the trajectories by selecting data points216

outside the emergency events. Emergency event onsets217

were defined as the moment when the deer become vis-218

ible.219

We defined the time window of the emergency220

events from −100 msec 1900 msec, 0 msec being the221

onset of the emergency stimulus. Both for the tra-222

jectory and for the steering angle we calculated first223

(speed), second (acceleration) and third order (jerk)224

derivatives using finite difference approximation, for-225

mulated as 226

X =


~x4
~x5
...
~xn

→

r4 ∇1

4 ∇2
4 ∇3

4

r5 ∇1
5 ∇2

5 ∇3
5

...
...

...
...

rn ∇1
n ∇2

n ∇3
n

 ,
~xi ∈ R

where X is the input data of ~x vectors for n time 227

points. The dimensions of ~xi are r, which is either the 228

raw measurement of steering wheel angle or vehicle 229

position in the ith time point, and ∇1, ∇2, ∇3, which 230

are the first, second and third order finite backward 231

differences in that time point i, respectively. The time 232

points start at 4 because third order finite backward dif- 233

ferences were defined only after 3 data points. 234

Consequently, we had a four dimensional vector 235

available for every time point, which was used as the 236

input of the risk prediction model. This way the model 237

was able to handle short range dependencies of the 238

time-series data. 239

In the following we will refer the normal driving 240

data as no event and the emergency data as event. Thus 241

data points were in theory either normal (S) or emer- 242

gency (S̄) points labels, these were denoted as +1 or 243

−1 such as 244

y =

{
+1 if ~x ∈ S
−1 if ~x ∈ S̄

where S = {no event} and S̄ = {event}

This means that we could have used the S̄ data 245

points and train a binary classifier. However, our aim 246

was to design a model that could detect any anoma- 247

lies outside the normal range. Hence, we trained 248

separate one-class support vector machine models 249

(OC-SVM) for the steering angle and for the trajectory 250

data. The OC-SVM is finding a hyperplane that identi- 251

fies the boundaries of the training pattern from the ori- 252

gin of the feature space F [52]. Because this is often 253

difficult in the original feature space, we mapped them 254

using function Φ and using a Gaussian (RBF) kernel 255

space transformation [53]. The kernel function was for- 256

mulated as 257

exp(−γ‖~x− ~x′‖2), γ = 0.25,

where γ is the kernel coefficient that defines how far 258

the influence of a single training example reaches, 259

where low values mean far and γ ∈ R|γ > 0, ~x′ are 260

the centroids. During training, one needs to solve the 261

quadratic programming problem of262
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Fig. 2. Detection time of Emergency from steering wheel and po-
sition data. We were able to predict emergency from steering data
earlier than from lateral position because of the non-linear relation
between steering angle and vehicle position. Whiskers show 95 %
confidence intervals for the mean.

min(~ω, ξ, ρ)
1

2
‖~ω‖2+

1

νn

n∑
i=4

ξi − ρ, ν = 0.1

that is subject to263

(~ω · Φ (~xi)) > ρ− ξi, ξi > 0

here, n is the number of samples, ξi are the slack vari-264

ables, ~ω is the hyperplane weight vector, ρ is the bias265

term. ν ∈ (0, 1] and this regularization parameter adds266

an upper bound on the fraction of training errors and a267

lower bound on the fraction of resulting support vec-268

tors. If ω and ρ solved the problem the following deci-269

sion function is yielded270

ŷ = sign ((~ω · Φ(~x))− ρ)

which yields positive values for S. Parameters were271

chosen to generate the least amount of false alarms.272

However because we cannot be certain that the train-273

ing set does not include any accidental anomalies (i.e.274

quick/large steering movements), we set the ν parame-275

ter so that the false alarm rate was around 5% (i.e. this276

would mean 1 package/sec on average with the 20 Hz277

sampling rate). This was used a fair trade-off between278

earlier detection of emergency and more false alarms.279

Shrinking heuristic was used in the training to speed280

up optimization [54].281

3. Results282

As a first step, we divided the whole no event data to283

training and validation sets by randomly assigning half 284

of the time points to one and the other half to the other. 285

Because our aim was to build a model that uses both 286

general and personalized information, we did not split 287

the data to two pools of participants. The model gave 288

very small amount of false alarms on the validation set: 289

4.86% for the steering angle data and 4.06% for the 290

trajectory data. After this, we used the support vectors 291

of this model to detect the earliest anomaly point in 292

the event data. We expected significantly high detec- 293

tion rate of the emergency events, and earlier detection 294

of anomalies in the steering wheel data than in the tra- 295

jectory data. 296

Emergencies were detected 645.15 (± 219.67) msec 297

after the onset of the event. In total 2735 emergency 298

events were detected and 8 remained undetected. As 299

can be seen in Fig. 2 this is in the beginning of the 300

trajectory curvature in the emergency trials meaning 301

that we detected emergency very early in time. On 302

the trajectory data anomalies were detected 734.54 (± 303

269.44) msec after the onset of the event, significantly 304

later than in the steering angle data (t(1530) = −17.24 305

p < 0.001). The detection rate was not different: 2736 306

emergency events were detected and 7 were unde- 307

tected. The reason why steering angle made earlier de- 308

tection possible is the non-linear relationship between 309

steering angle and vehicle position (see Fig. 3). 310

We visualized the anomaly detection thresholds 311

based on the validation set and emergency event data 312

points using the t-Distributed Stochastic Neighbour 313

Embedding (t-SNE) method [55]. This method effi- 314

ciently visualizes high-dimensional data by using joint 315

probabilities of a low-dimensional embedding. The 316

transformation was run using the Barnes-Hut approx- 317

imation in order to perform calculation in quasi-linear 318

time. The results of the t-SNE show that the no event 319

and emergency event data points are easily differen- 320

tiable (see Fig. 4). 321

Summarizing the results, we found that emergency 322

events were readily detected both in wheel angle and in 323

trajectory data using a OC-SVM. Steering data made 324

possible earlier detection of emergency events than tra- 325

jectory data. 326

4. Discussion 327

In the current work we proposed an in-car risk de- 328

tection and warning system that could inform auto- 329

matic vehicles on the road about the cautious actions 330

of the human driver (e.g. abrupt steering movement, 331

falling asleep). We illustrated the benefits of the risk332



Galley Proof 15/12/2017; 14:54 File: idt–1-idt305.tex; BOKCTP/xhs p. 6

6 Á. Török et al. / Towards a cognitive warning system for safer hybrid traffic

Fig. 3. Relationship between steering angle and vehicle position. It can be on the two dimensional histogram, that the position of the vehicle
changes in a rather curvilinear manner relative to the steering angle (nova from the centres). The two dense centres are results of the slaloming
task, where the car was either going slightly left or slightly right, the smaller circular pattern around the centres also resulted from the slaloming
task. The histogram uses jet colormapping, which goes from blue through green to red.

Fig. 4. t-SNE embedding of no event and earliest detected emer-
gency event data. The embedding method clearly visualizes the de-
cision boundaries between event and no event data. Only a fraction
of 30.000 data points are displayed.

detection component by predicting dangerous steering333

movements earlier from wheel angle data than from334

vehicle trajectory data, because of the non-linear rela-335

tionship between steering angle and vehicle lateral po-336

sition [56,57].337

We used one class support vector machine for learn-338

ing and prediction. These type of models are com-339

mon in outlier detection scenarios for various prob-340

lems [45,58,59]. Note, that by controlling the sparsity 341

parameter of the SVM we can limit the number of sup- 342

port vectors used for prediction [54], there are even so- 343

lutions to find the optimal number of support vectors 344

for a given problem [60]. Moreover, while training an 345

SVM (and potentially multitude of SVMs for each car 346

on the road) would be infeasible inside a master ve- 347

hicle, our proposal leads to computational efficiency 348

since training and prediction could run on the individ- 349

ual peer vehicles. This fact opens the door to highly 350

individualized models. 351

We found earlier detection of risk in wheel angle 352

data than in trajectory data. Although this is in line 353

with the expectations (i.e. because of steering back- 354

lash, vehicle inertia, tire stiffness), a limitation of the 355

current study is that it was done in virtual reality. 356

While reactions in virtual reality are comparable to 357

those in the real-world [61], the physics of the virtual 358

environment are simpler than reality. Not speaking of 359

the large variance of normal driver behaviour in real 360

world scenarios. While in our case there were only two 361

tasks, outside of the simulator the driver faces all the 362

challenges of traffic. This necessitates further explo- 363

ration under more naturalistic circumstances. Nonethe- 364

less, our choice of virtual reality was motivated by the 365

fact that only this way we were able to generate large 366

amount of clean and labelled data for training and test 367

without real risk of accident. Further studies should 368

evaluate the effectiveness of such a system with more 369

degrees of freedom. Here participants were only able 370

to control the steering wheel angle but not the speed371
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of the car, in reality steering wheel angle changes de-372

pends on the speed of the car too, also manufacturers373

apply speed steering solutions in today’s cars [56].374

Worthy to note, that the change of the steering wheel375

angle is indicative of rather distant elements of the376

perception-action cycle. Hence, presumably more ben-377

efit we earn from such a model when more proximal378

cognitive variables are tracked. Eye and face tracking379

in the cockpit could help detecting drowsiness very380

early in time [21], but also – in situations like the381

current experiment – could also help identifying sac-382

cades to certain stimuli inside and outside the car [8].383

Wearable sensors can monitor heart rate, and therefore384

can be used to inform traffic peers of medical emer-385

gency. Moreover, given the increasing availability of386

consumer EEG headsets, it is promising that research387

shows electrophysiological patterns can be extremely388

helpful as well [22,23].389

Another interesting field of exploration is the study390

of information transmission and potentially further391

propagation of data in a vehicle network [17,62,63].392

This way the risk information is not only locally use-393

ful but can change the state of the global network. For394

example, the network could start organizing detours395

even when an inevitable accident has not happened396

yet. On the one hand, creating such a one-directional397

inter-cognitive link between an artificial and a bio-398

logical cognitive system is an important step forward399

from the perspective of the applied field of cognitive400

infocommunications [31]. On the other hand though,401

it raises important concerns regarding privacy and se-402

curity. These systems would monitor the driver’s re-403

actions and while communication is only intended in404

case of risk, it is still a potential data breach. Moreover,405

malicious attack is also possible against the automated406

car by sending large amount of risk notifications. The407

communication link therefore must be secured. Indeed,408

current research on intelligent automated traffic, smart409

cities and situation awareness of self-driving cars is410

aware of these challenges [17,35,64,65].411

Researchers working on self-driving cars say that412

fully automated cars are still years or even decades413

ahead [29,66]. Meanwhile, semi-automatic solutions414

are increasingly available (automatic parking, highway415

autopilot) [67,68]. Thus, roads are becoming more and416

more a niche of biological and artificial drivers. In this417

situation we may want artificial cognitive agents to co-418

evolve with our biological cognitive systems. In the419

present work we detailed one aspect of this endeav-420

our, namely inter-cognitive warning systems. The core421

of arguments was the importance of communication of422

the human drivers’ cognitive and behavioural states to423

self-driving cars to increase road safety in the future. 424
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