
Tracing Distributed Data Stream Processing Systems
Zoltán Zvara∗†, Péter G.N. Szabó∗‡, Gábor Hermann∗§, András Benczúr∗¶

∗ Hungarian Academy of Sciences
Institute for Computer Science and Control (MTA SZTAKI)

13-17 Kende u., H-1111 Budapest, Hungary
† Email: zoltan.zvara@sztaki.mta.hu
‡ Email: peter.szabo@sztaki.mta.hu

§ Email: gabor.hermann.dms@sztaki.mta.hu
¶ Email: andras.benczur@sztaki.mta.hu

Abstract—Interconnected stream processing components of
distributed compute topologies suffer from a variety of problems
on shared-nothing clusters. A wide array of issues remain hard
to identify on the underlying data processing systems due to the
irregular characteristics of incoming data. Moreover, bottlenecks
and data anomalies propagate unexpectedly through system
boundaries. Developers and system administrators spend count-
less hours on identifying these problems and debugging streaming
applications. By the tracing of individual input records, issues
caused by outliers become tractable even in complex topologies.
Existing tracing solutions are only suitable for single-system
batch workloads, and solely provide debugging capabilities in
most cases. We present a distributed, platform-wide tracing
design and framework for production streaming applications that
helps to solve a variety of optimization problems in real-time.
We provide a prototype implementation for an open-source data
processing engine, Apache Spark, and we give problems that we
have solved in this setting as illustration. Our implementation
consists of wrappers suitable in general for JVM environments.

I. INTRODUCTION

Monitoring cloud computing platforms is a complex task
of high practical relevance [1]. These platforms host dis-
tributed data processing systems (DDPS), implemented as
standalone streaming components, usually written in different
languages and maintained independently. Processing elements
are combined into a distributed compute topology in order to
implement a user-facing application. Due to the complexity,
scale and heterogeneity of these systems, it can be extremely
challenging to understand, troubleshoot operation and to detect
the cause of performance degradation. Figure 1 shows an
example compute topology under discussion.

Lineage, another name of data provenance [2], describes
the origins and the processing history of an output record.
Lineage can be reconstructed from traces, per-record infor-
mation collected at runtime, that capture causality relations
between past, present and future records at specific points of
the topology. Traces are usually collected and analyzed by an
external service, that is separate from the tracing framework
that records data-mutation. Collecting lineages of individual
records during data processing helps to identify many appli-
cation or platform-wide problems: experience has shown that
identifying load imbalances, sub-optimal co-locations between
services and tracking outliers are important in order to attain
ideal, platform-wide operation of user-facing applications.

Fig. 1. A distributed compute topology that consists of different processing
elements, implemented on top of different runtimes. In this setting, batch
and streaming DDPS (square boxes), as well as databases (DB, round boxes)
are combined to implement a production application. Solid lines represent
continuous streams of data, and dotted lines denote batch access to DBs.
Entry and exit points represent boundaries in which stable performance and
operation must be maintained.

Data processing systems are connected for a longer period
of time or temporarily, on-demand. Bottlenecks propagate
from one system to another, resulting in system operators and
developers spending countless hours detecting and resolving
issues with misconfiguration and application code. In addition
to bottlenecks inherited from incorrect configuration or faulty
code, complex streaming applications tend to suffer from
temporal changes in data (concept drifts) and from outliers.
These anomalies related to data characteristics introduce hot
spots in the compute topology, causing nodes to fall behind or
even to crash. Without low level data tracing in such systems,
a straggler node could be misidentified as a problematic
hardware in heterogeneous cluster environments.

Tracing is especially difficult for a streaming DDPS. Stream
processing systems preserve no data and temporary steps
during execution unlike batch computing, where stages of
workloads are replayable [3]. Recording causality at the
record-level might add an undesirable overhead to the compute
topology. Moreover, it is important to maintain uninterrupted
operation and stable tail-latency. One of our main goals is
to trace individual records in both batch and streaming data
processing systems.

Previous works solely focus on single batch DDPS and pro-
vide debugging capabilities offline. Although several solutions



have been proposed on top of existing frameworks, low-level
metrics of User Defined Functions (UDFs) and low overhead
can not be provided without intrusionistic modification of data
processing engines [3]. Moreover, efficient design to achieve
platform-wide tracing in multi-system scenarios has not been
studied previously.

We consider holistic tracing of record lineages [4]. Our
goal is to detect inefficiencies to increase performance of the
compute topology, reduce tail-latency and better utilize the
underlying platform. In this paper we focus on the tracing
design and practical problems that can be solved using our
framework. Due to space limitations, we chose not to dis-
cuss our external system, which provides trace analytics. We
consider the following sample use cases that can be simulta-
neously identified by visualizing the traces of the streaming
system:

• Data skew: most DDPS redistribute data between stages
of computation using key-grouping, well-known from
map-reduce. We may identify “elephant keys” or keys
with increased computational cost, that overload certain
nodes in the topology (for example in a skewed join).
With a tracing framework, key distributions at all inter-
mediate steps can be approximated, that allows online
and balanced partitioning of data.

• Operator fission: in a DDPS, processing is split into
stages of computation logically, then deployed as parallel
operator instances on different nodes. The DDPS’ own
execution optimizer may pipeline many UDFs into a
single operator instance, which may then overuse memory
or other resources. Using distributed tracing, processing
times of sample records can be provided for each operator
(and for all of their pipelined UDFs), so that the logical
execution plan can be optimized.

• Records with latent properties: input records with cer-
tain keys might not be frequent, but may grow very large
by aggregations and external joins, causing problems at
later stages of computation. These outliers can be traced
back, filtered out or partitioned efficiently in advance.

• Records that lead to temporal deadlocks or excep-
tions: typical scenarios include high-effort parsing of
certain records or inconsistent record state at later stages
of the computation, which leads to exceptions in user
code. Tracing can identify and filter out such records as
they appear in the traced compute topology for the first
time.

• Sub-optimal co-location: interconnected DDPS and
other systems (for example distributed database sys-
tems) require their corresponding data partitions to be
co-located onto the same machine in order to reduce
unnecessary communication over the network. Using
distributed tracing, inefficient communication patterns
can be recognized across the platform, and an optimal
placement can be provided.

Our contribution is the following:

1) We present a generic tracing framework design for batch

Fig. 2. Schematic illustration of the parallel word count MapReduce execu-
tion.

and streaming DDPS on holistic compute platforms.
2) We provide a prototype implementation on Apache

Spark [5], that yields low-level UDF metrics and detailed
representation of causality of individual records.

3) Using the tracing framework, we show that common
complex, inter- or intra-system data pipelines can be
optimized by identifying issues which are hard to detect
otherwise.

The rest of the paper is organized as follows. First, we
outline the general DDPS architecture (Section II). Then,
we describe our tracing mechanism and functional API in
Section III, while Section IV contains the details of the
implementation in Apache Spark. We evaluate the tracing
framework in Section V and conclude the paper with an
overview of the related works in Section VI.

II. DDPS ARCHITECTURE

In a DDPS, user programs are executed in numerous parallel
tasks that process certain partition of the data. The user
program consists of UDFs, which are first order functions
plugged into second order functions such as map and reduce.
As an illustration of the principle of parallel second order
functions, the WordCount Spark code snippet below counts the
number of times a word appears in a very large text document.

textFile
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

As illustrated in Fig. 2, the text is first split and partitioned
to operator instances. The first two parallel operations are
flatmap and map, where text is shuffled between operator
instances, split into words, and the words again shuffled.
Shuffling mechanisms can, for example, be round robin or
random hashing. Map and flatmap are the simplest second
order functions, which execute an UDF independently on all
records of a partition.

In the example of Fig. 2, the next second order parallel
function is reduce, when the first order UDF produces a single
value for each key by observing all corresponding records.
Reduce uses a special case of shuffling called key grouping
when the data is represented by key-value pairs and the records



with the same key are assigned to the same instance. Another
example of key grouping includes a map side combiner, an
optional second order function that pre-aggregates records into
key-groups before they are shuffled over the network.

DDPS differ in when data is passed between operators. If
synchronous redistribution is used, each operator instances in
a stage must be completed before tasks of the next stage can
be started, whereas with asynchronous redistribution, data is
buffered for a short period of time (usually for milliseconds),
then sent to the next operator immediately for further pro-
cessing. For example, Apache Spark1 is a synchronous and
Apache Flink2 is an asynchronous DDPS. Since in Hadoop
MapReduce3, reducers can be started after a few mappers fin-
ish, the framework is a hybrid of both models. In a streaming
scenario, data is preserved at each operator instance only for
a limited time.

III. THE TRACING FRAMEWORK

In this section, we describe our tracing framework that
traces individual records in a DDPS. We build record lineage
by a generic wrapper mechanism that encapsulates the record
and exposes it to a functional API. We incorporate three key
requirements into our design:

1) We model how bottlenecks propagate between intercon-
nected systems, therefore, we let records be traced across
several systems, probably implemented in different lan-
guages.

2) We ensure that existing user programs can run under the
modified DDPS with no user code change required.

3) We trace the execution of real time data streaming
frameworks, hence we allow fast and online analytics
of lineage graphs to identify bottlenecks in the shortest
time possible. To this end, we report and collect traces
with low latency unlike in state-of-the-art solutions for
batch systems.

It is already known that without certain level of invasive mod-
ification in the DDPS, we cannot provide low-level runtime
information and maintain low system overhead [6]. Our goal
is to minimize the level of invasiveness and in particular
require absolutely no modification over the user code. Our
system for Apache Spark is implemented in 1,200 lines of
patch over the base system so that any Spark user code can
be traced under our modified framework.

Some of the pivotal points where records are traced outside
user code is shown in Figure 3. The event in which record
causality is observed is called a checkpoint. Our framework
captures record-by-record causality, measures important UDF
characteristics (runtime, callsite, etc.) and collects other useful
information from the underlying DDPS. In addition to UDF
metrics, we collect valuable information from the internals of
the DDPS’ engine, for example, the time spent in intermediate
buffers or the time spent on network by a record or serializa-
tion overhead.

1https://spark.apache.org/
2https://flink.apache.org/
3https://hadoop.apache.org/

Fig. 3. Records are traced through tasks, each consisting of a shuffle read,
a UDF pipeline and a shuffle write phase. Traces are recorded at the pivotal
points numbered 1–7. Each dot represents a checkpoint. For one checkpoint
at UDF g, we show how the reporting service is invoked over the wrapped
record.

When a record d of type T passes through a DDPS
with tracing capabilities, it is automatically wrapped into a
lightweight wrapper w(d) of type W [T ] at the entrance.
To reduce unnecessary overhead caused by traces, incoming
records are sampled randomly as candidates to build lineages.

In order to apply a UDF f on a record (the wrapper pay-
load), it must interact with the wrapper through a functional
API. This is further detailed in Subsection III-C. We enforce
immutability by returning a new wrapped record w(f(d)) on
each function apply.

In the rest of the paper, we consider and evaluate two funda-
mental ways of tracing, direct reporting and piggybacking
that we describe in detail in the following subsections. For
direct reporting, lineage information is pushed down to the
reporting service in each wrapper invocation and the lineage
is reconstructed by an external tool. For piggybacking, the
lineage information is carried along with the record packaged
into the wrapper object. Both methods share the same wrapper
mechanism and the underlying, low level tracking structure.

As another, orthogonal distinction, tracing can be forward
or backward. Forward tracing tracks causality by connecting a
record to its descendants, thus, it observes the DDPS from the
perspective of its entry points. In contrast, backward tracing
links records to their ascendants, thus views the topology from
the perspective of its exit points. This is the right approach if
we want to reconstruct the web of records that contributed
to an output entry. With the sampling turned on, only partial
backward tracing can be achieved: the backward lineages of
output records will be incomplete because the contribution of
untracked records will be inevitably lost.

The possible combinations of the tracing approaches and
their main applicability and limitation is summarized in Ta-
ble I.



TABLE I
THE COMBINATION OF DIFFERENT TRACING APPROACHES.

Direct reporting Piggybacking

Forward possible not possible

Backward possible, partial possible, partial

A. Direct reporting

In this section, we describe our first tracing solution, which
produces reports directly by continuously pushing down the
lineage information of tracked records to a reporting service.
The service stores traces for later use by external analytic tools.
Direct reporting supports both forward and partial backward
tracing.

We internally identify each record by a unique trace ID that
we store in the reporting service. It generates a new trace ID
whenever it encounters a new record. Our tracing framework
communicates with the reporting service by sending trace
reports asynchronously at the predefined pivotal points of the
DDPS.

To trigger checkpointing in the tracing-enabled DDPS, a
checkpoint() function is called from the reporting API, either
without arguments or with a sequence of trace IDs and a report.

In the general case, when checkpoint() is called with a
list of parent trace IDs and a report r, the reporting service
saves r in a key-value store, where the corresponding key
will be a newly generated trace ID. The framework measures
different metrics of the UDF (runtime, callsite, etc.), appends it
to the report, then returns the trace ID supplied by the external
service.

If checkpoint() is called without arguments, which usually
happens at the entry points of the compute topology, then
the reporting service decides whether the record should be
tracked at all. Records are marked for tracking by a user-
specified sampling strategy. If the record is selected, then the
same process happens as above, with the exception that the
report corresponding to the newly generated trace ID will be
empty.

The reporting library is utilized in a DDPS to track record
lineages as follows. When a record enters the DDPS for the
first time, it is wrapped and registered to the reporting library
by calling checkpoint(). If a trace ID is returned, it is set in the
wrapper object. Wrappers without a trace ID will be treated as
“untracked” and flow silently through the compute topology,
without triggering any further reporting.

Next, suppose that there is an operator in the compute
topology that applies a general UDF f that takes n records
as input and produces a list of m records as output. Figure
3 illustrates the reporting process with n = 1 and m = 2.
When f is called on the wrappers w(d1), w(d2), . . . , w(dn),
then first the result f(d1, d2, . . . , dn) = [c1, c2, . . . , cm] is
calculated, as would happen normally in the DDPS (this step
is further detailed in Subsection III-C). Then, a report r is
prepared and each ci is wrapped with the trace ID returned by
a call of checkpoint((q1, q2, . . . , qn), r), where qi is the trace

ID of the wrapper w(di). Finally, the whole UDF call returns
with [w(c1), w(c2), . . . , w(cm)], and the wrapped records are
forwarded to the next operators.

B. Piggybacking

Next we describe piggybacking, our second tracing ap-
proach. Compared to direct reporting, now the lineage of a
tracked object is piggybacked into its wrapper for the whole
course of processing, until the record is served to other
systems where traces are not relevant. This approach allows
optimization engines to acquire traces quickly and to pre-
aggregate the record lineages under different requirements.
One notable drawback of this approach is, however, that it
is practically not suitable for forward tracing.

The lineage graph is an immutable graph that represents the
lineage of a record and stores metrics and additional metadata
on its edges and nodes. It supports two operations, merge()
that merges two lineage graphs along the overlapping paths,
and append() that appends a new node to the graph and
adds collected metrics to the new edges. Upon a UDF call,
the lineage graphs of input records are retrieved from their
wrappers and merged into a single graph G. Then for each
output record ci, a new node is appended to G along with the
collected metrics, and this new lineage graph is placed in the
output wrapper w(ci).

C. The functional wrapper interface

Below, we outline the functional interface that is used by
UDFs to interact with wrappers. Let T and U be two arbitrary
data types, and suppose that a UDF f : T → U is called on a
wrapper of type W [T ]. Because this cannot be done directly,
f is instead handed to the wrapper, whose interface defines
several lift() methods to handle the most common types of
UDFs as follows:

• lift(f : T → U) : W [T ] → W [U ] makes a unary UDF
applicable on a wrapped record;

• lift(f : T → Um) : W [T ] → W [U ]m makes a multi-
valued unary UDF applicable on a wrapped record;

• lift(f : T → {true, false}) : W [T ] → W [T ] ∪ {∅}
makes a filtering criterion applicable on a wrapped
record; the returned object is either a wrapper or an empty
collection;

• lift(f : T → ∅) : W [T ] → ∅ makes a side-effecting
function applicable on a wrapped record;

• lift(f : (T, T ) → T ) : (W [T ],W [T ]) → W [T ] makes
a binary UDF applicable on two wrapped records of the
same type;

• lift(f : (T,U) → T ) : (W [T ],W [U ]) → W [T ] makes
a binary UDF applicable on two wrapped records of
different types;

Note that filtering must return the actual result of the operation
not just a boolean, in order to keep track of records being
filtered out. The two lift() methods for binary UDFs are added
to support folding operators, e.g. in Spark (Section IV). Any
mutation of the tracked records are captured by the wrapper,
and if tracing mechanism is used, we call the wrappers and



the records as Traceables. Traceables implement and extend
the default wrapper interface.

To observe the characteristics of the underlying system on
which the record is passing through, and to identify system-
specific bottlenecks, the wrapper can be poked on which event
no mutation is going to occur:

• poke(w(d) : W [T ], e : Event) : W [U ] applies a DDPS
specific transformation on the wrapped record w(d).

For example, when data is streaming through map-reduce
architecture, tracked records are poked immediately before
being written onto the shuffle system, or read back. In this way
we may measure throughput and latency on arbitrary phases of
data-passing (with no UDF involved), which helps to identify
problems that are hard to diagnose otherwise.

IV. IMPLEMENTATION FOR APACHE SPARK

We integrated the tracing framework described in the previ-
ous section into Apache Spark in order to provide a prototype
implementation4 on top of an open-source data processing
engine. As we have pointed out earlier, no code change in
existing Spark applications is required for our distributed
tracing system to work.

We wrapped all operators in Spark’s rich functional API
of second order functions such as map (one-to-one), flatmap
(one-to-many), reduce (many-to-one), filter, foreach (side-
effecting) and also key-grouping operators (e.g. groupByKey,
reduceByKey, coGroup, etc.) that group records by key and
then applies the UDF to the values only.

The core of our Spark implementation consists of a thin
functional layer for the wrapper API and two wrapper im-
plementations, Traceable for direct reporting and Piggyback-
Traceable for piggybacking. Here, we will only discuss the
direct reporting approach. We give schematic Scala codes for
the wrapped Map operation next.

def map(f: T => U): RDD[U] = {
new MapPartitionsRDD[U, T](this,
(self, iterator: Iterator[Wrapper[T]]) =>
// wrapper.apply is called instead of f
iter.map(wrapped => wrapped.apply(f,
// attaching metadata to report
new Attachment() + (callSite))))

}

override def apply(f: T => U,
attchmnt: Attachment): Traceable[U] = {
new Traceable[U](f(this.payload),

// report returns a new traceID
report(attchmnt + ("op" -> f.toString)))

}

UDF lifting in the wrapper API has been implemented
by Scala apply() methods. All of these methods can receive
an attachment in addition to the UDF. The attachment is a
general purpose key-value map, which transmits additional
UDF metadata to the reporting system.

The wrapper mechanism works the same as described in
Section III with the addition of some trace-specific side effects.

4Implementation is available at https://github.com/zzvara/spark/tree/tracing

For example, Spark’s aggregation based operators and their
keyed counterparts work in a folding manner, processing their
input in a series of intermediate steps, each merging two
consecutive records. Implementing tracing for such functions
was a challenging task, because we had to suspend reporting
during the intermediate processing steps of such operators and
report only when the final result of the aggregation is known.
We solved this problem by designing a set of Spark-specific
poke events.

Finally, the direct reporting mechanism relies on a closed
source reporting library implemented in C++. Native bindings
to this library have been developed for certain runtimes, for
example for JVM and Python. This design helps to achieve
high performance and minimum overhead.

V. EXPERIMENTS

A. Performance overhead

The performance overhead introduced by our tracing frame-
work is negligible in practice, when well configured. For most
use-cases we have measured an overhead of 10% or lower
using direct reporting. The piggybacking approach, however,
is impractical as it incurs more than 70% overhead for most
use-cases. It can dramatically increase memory consumption,
computation complexity (since trace graph is aggregated on-
the-fly) as well as the serialization overhead for sending the
trace graph to the next operator. Therefore we will focus on
tracing with direct reporting in the rest of the performance
evaluation.

Generally, the overhead depends on several factors. The
cluster environment, the complexity of jobs and the sampling
rate all affect the performance. Tracing every record might in-
cur a 300% overhead, but lowering the sampling rate achieves
better performance. In practice, tracing every 10,000th record
(a sampling rate of 0.01%) could be enough for detecting
bottlenecks. However, the tracing framework allows adaptive
sampling rate in order to trade-off between its overhead and
accuracy.

We have measured the overhead of different sampling rates
using a streaming windowed WordCount job in Spark (see
Fig. 4). We generated random sentences between 3 and 10
words in length, sampled from uniform and Zipf distributions
(with a vocabulary of size of 8,000). Frequencies of words
were computed in tumbling windows of 20,000 sentences.
Experiments were conducted on a cluster of 8 machines with 4
CPU cores and 8 GB RAM each. We show the processing time
of multiple jobs for the same sampling rates, and the average
processing time. We can see that even a higher sampling rate
of 0.5% (every 200th record) has an overhead of around 50%.
Even though our topology could sustain performance under a
high sampling rate such as 0.5%, it resulted in unnecessary
resource consumption in our cluster.

B. Operator-fission

Data processing engines usually pipeline as many UDFs
as possible into a single operator to reduce unnecessary data
transfer over network. Such greedy operator compositions are



(a) (b)

Fig. 4. Overhead measurements.

Fig. 5. On the left hand side, we detect two heavy UDFs, f and g by
examining their average runtime per record. Instead of naively scaling the
region horizontally, two optimizations are detected. First, split the operators by
refactoring f and g into separate containers. Second, increase the parallelism
of the operator that includes the heaviest UDF, f .

prone to introduce bottlenecks because of computationally
heavy UDFs that are not identified in advance. Instead of
eager pipelining, several UDFs should be refactored into a
single parallel region (stage) in the physical execution plan.
Moreover, the weight of certain UDFs can change over time,
which calls for a dynamic, online fission [7]. Fig. 5 shows an
example of useful operator split and fission.

Next we describe a telecommunication analytic use case,
where we fetch and aggregate contextual information for user,
communication tower, region, radio cell, gateway, session,
device and operator, in order to compute user specific business
KPIs such as network stability, download speed and latency.
On Apache Spark, we split heavy flattener operators during the
enrichment phase of an analytic workload. From the commu-
nication packet log stream, we compute user KPIs periodically
by enriching with contextual data. In the analytic workload, a

Spark parallel region with 20 partitions and 8 pipelined UDFs,
tracing reported 18,000 records/second throughput, with 8%
time spent on deserializing and serializing data. Each UDF
called an external data store and performed a simple lookup
for each record to retrieve contextual information, for example
user or tower record. Retrieved data are then attached to
the records. Each parallel operator ran in a container with 2
VCPUs and 8GB RAM. UDFs roughly spent the same amount
of time, 0.093 milliseconds, processing each record.

Our adaptive monitoring system operates as follows. When-
ever high latency is detected, it raises an alert. In this case we
query the trace database for each stage of all DDPS in the
compute topology. Stages with the most compute complexity
are examined in a decreasing order, to identify heavy UDFs
subject to horizontal splitting.

Using traces of the stage, we identified that 8 complex UDFs
could be split into two operators. We utilized Spark’s feature
that provides a simple elastic scale-out of the system (Dynamic
Allocation), which dynamically adds or removes new execu-
tors to the streaming job. After each operator instance was
splitted into two containers of the same dimensions (4 UDFs
in each), total serialization overhead of the workload increased
by 34% on rack (due to another network hop introduced),
while throughput increased to roughly 25,000 records/second
on both newly created operators.

C. Outlier filtering

Incoming records with unreliable, latent properties can
cause problems in later stages of the compute topology. By
collecting the lineage of such records, we redirected them to
another processor pipeline right at the entry point of the traced
topology. As an example, when problematic input can only be
identified via its lineage consider incoming TCP packet logs
from a mobile network operator’s monitoring system (Fig. 6).
In order to compute KPIs of user communication, first, each
record is enriched with session, user, cell, region and appli-
cation information during several stages, by joining records
with data from different external sources as in Subsection
V-B. Then data is filtered, transformed and produced to other
applications for further use. Complex aggregations are applied
on multiple dimensions and in multiple sliding windows. The



Fig. 6. A typical aggregation workload, where a pipeline could be released
from a bottleneck by detecting the problematic UDF, then using the record’s
linage. Records that constitute bottlenecks or failures could be filtered out.

characteristics of the TCP packet data received for a certain
mobile network cell can heavily influence the computational
complexity of a UDF, which is hard to recognize. Due to
aggregations, properties that otherwise would characterize
outliers will already be eliminated by then. In such scenarios,
we lose the ability to trace back problematic records, but it is
achievable by exploiting a distributed tracing framework.

We identified outliers for certain workloads by analyzing
the lineage graph of many traces at once. First, we identify
problematic records during online trace analysis, then we
extract their lineages, which are then traversed in a backward
direction until topology or application entry points has been
reach. Usually the algorithm which looks for entry points goes
through many DDPS’s. When the problematic input records
have been traced back, we update the filter rule to match those
records therefore discarding them from processing. In this
setting we reduced tail-latency from 14 seconds to 9 seconds
of the processing pipeline (Fig. 6) implemented in Apache
Spark, by detecting and filtering out 0.01% of the records.

D. Handling data skew

Using distributed tracing we can identify elephant keys at
any given parallel region where key-grouping is used without
a map-side combine. In Spark, typical operations sensitive to
data-skew include groupBys and joins as seen on Fig. 7.

We detect imbalance by examining the traces at stage
boundaries. During trace analysis, a separate module inspects
trace reports for every operator instance in the topology.
Combiners in general perform pre-reduction, which wipe out
the effects of data skew. However aggregation is not possible
if every record is enriched by additional data that makes
the records unique. In this case, for each record, its key is
extracted from the report. As more reports arrive to the same
operator instance, we build a global key-histogram periodically
in a time decaying window. Using the key-histograms, we
construct hybrid hash functions introduced by Gedik [8]. The
new hash function is supplied for the shuffle writer module
of the operator. Apache Spark is capable to change hash
functions, and in a streaming scenario, due to the micro-batch
nature of Spark Streaming, operators may migrate their state
automatically.

For common workloads, data skew mitigation can lead to a
38 to 60 percent speedup in case of power-law distributions.

Fig. 7. Key grouping operations may produce imbalanced partition sizes on
the reducer side. In this example, the heaviest key, us, results in a straggler
task with additional random keys (represented by empty areas) also mapped
there. Spark being a synchronous DDPS, a straggler task affects the runtime
of the whole stage. Explicitly assigning us records to a partition alone and
reassigning other keys reduces job completion time.

We experimented with data stream processing of 3 GB LastFM
data of (user, artist, timestamp) triplets. Tracing yielded a
24% map-side overhead, and running time increased from
78 seconds to 95 seconds. After manually assigning heavy
keys, reducer time was reduced from 116 to 55 seconds. In
Spark, the performance of a parallel region is determined by
the slowest task (partition). On 17 partitions, the size of the
maximum partition has been reduced from 13.30M to 8.43M
records at the reducer side. A naive idea to mitigate data skew
is overpartitioning, which however increases reducer time to
240 seconds.

VI. RELATED WORK

The starting point of our work is [4], [9] where hetero-
geneous distributed computing workflows are monitored by
attaching monitoring tags to sample records. In order to tag
and monitor data, access points are necessary, which consist
of connectors between different systems in [4] and low-level
I/O operations and external RPC calls in [9]. In our work, we
complement monitoring by enabling all Spark execution steps
to serve as monitoring access points.

As another solution for Apache Spark, Titian [10] adds
data provenance extension to Spark’s dataset API abstraction
(RDD) to ease debugging. Such a data lineage could be useful
for offline reasoning, but it is unsuitable for identifying bottle-
necks, sub-optimal processing pipelines in production environ-
ments. We argue that the most time is spent on optimizing and
reasoning about online data processing systems. However, our
solution provides the same debugging capabilities on a lower
level, if required.

BigDebug [3] provides real-time debugging primitives for
batch jobs with deep modifications of Apache Spark’s RDD



primitive. BigDebug supports several distributed debugging
features such as simulated breakpoints, fine-grained tracing
and latency monitoring, and real-time quick fixes to running
jobs. These features are proved to be useful for batch jobs [11],
[12]. However, their techniques are not feasible for production
streaming jobs, because they rely on the capability to replay
stages of computation.

X-Trace [13] is a framework for inter-system tracing. It
provides a holistic view on the data movement on the net-
work between different applications. However, it cannot trace
records inside the same DDPS that does not involve network
transfer.

Magpie [6] provides end-to-end tracing of request-response
systems. It supports only non-intrusive monitoring without
modifying the monitored system. However, this non-intrusive
approach does not allow low-level monitoring. Also, due to
focusing on request-response systems, Magpie cannot trace
more complex data transformations like joins. Pinpoint [14]
takes a similar non-intrusive approach for monitoring request-
response systems. Dapper [15] extends the ideas in X-Trace
and Magpie with sampling and additional monitoring. How-
ever, the analysis of monitoring data has a larger (10 minutes)
latency, which is impractical for streaming scenarios.

Several systems provide tracing for various batch systems
that is not suitable for streaming applications. Arthur [16]
selectively replays parts of the computation on map-reduce
dataflow systems. While this enables debugging with minimal
overhead, leaves a wide variety of bottlenecks undetected and
optimizations harder to employ. RAMP [17] wraps map and
reduce functions in Hadoop to achieve backward and forward
tracing. Newt [18] aids batch jobs with a generic lineage
instrumentation that allows the replay of captured lineage
and support offline analytics on captured traces. We are not
considered about replays in our streaming setting, and offline
analytics are impractical. Finally, Facebook’s The Mystery
Machine [19] and lprof [20] target batch systems with offline
analysis of monitoring data.

VII. CONCLUSIONS

Our distributed tracing framework for interconnected DDPS
simplifies monitoring and aids confident reasoning on perfor-
mance issues. In contrast to the state of the art, our framework
design and implementation is suitable for batch and streaming
workloads as well on any DDPS. In addition, compared to
previous work, by capturing record lineage with low level
UDF metrics across all connected systems, most bottlenecks
of complex compute topologies become tractable. We also
demonstrated our system design by providing an Apache Spark
batch and streaming integration with real world use-cases and
bottlenecks. In contrast to specialized frameworks designed to
solve one bottleneck at a time, we showed that distributed and
holistic tracing of records can solve many critical issues in
complex user-facing applications, under one framework.

REFERENCES

[1] J. S. Ward and A. Barker, “Observing the clouds: a survey and taxonomy
of cloud monitoring,” Journal of Cloud Computing, vol. 3, no. 1, p. 24,
2014.

[2] P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A char-
acterization of data provenance,” in Proceedings of the 8th International
Conference on Database Theory. Springer, 2001, pp. 316–330.

[3] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein,
and M. Kim, “Bigdebug: Debugging primitives for interactive big
data processing in spark,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: ACM, 2016, pp. 784–795.

[4] D. Géhberger, P. Mátray, and G. Németh, “Data-driven monitoring
for cloud compute systems,” in Proceedings of the 9th International
Conference on Utility and Cloud Computing, ser. UCC ’16. New York,
NY, USA: ACM, 2016, pp. 128–137.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). San Jose, CA: USENIX, 2012, pp.
15–28.

[6] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online
modelling and performance-aware systems.” in HotOS, M. B. Jones, Ed.
USENIX, 2003, pp. 85–90.

[7] N. Hidalgo, D. Wladdimiro, and E. Rosas, “Self-adaptive processing
graph with operator fission for elastic stream processing,” Journal of
Systems and Software, vol. 127, pp. 205–216, 2017.

[8] B. Gedik, “Partitioning functions for stateful data parallelism in stream
processing,” The VLDB Journal, vol. 23, no. 4, pp. 517–539, 2014.

[9] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proceedings of the 25th Sympo-
sium on Operating Systems Principles, ser. SOSP ’15. New York, NY,
USA: ACM, 2015, pp. 378–393.

[10] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie, “Titian: Data provenance support in spark,”
Proc. VLDB Endow., vol. 9, no. 3, pp. 216–227, Nov. 2015.

[11] C. Olston and R. Benjamin, “Inspector gadget: A framework for cus-
tom monitoring and debugging of distributed dataflows,” Proc. VLDB
Endow., vol. 4, no. 12, pp. 1237–1248, 2011.

[12] M. A. Gulzar, X. Han, M. Interlandi, S. Mardani, S. D. Tetali, T. D.
Millstein, and M. Kim, “Interactive debugging for big data analytics.”
in HotCloud, 2016.

[13] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
a pervasive network tracing framework,” in Proceedings of the 4th
USENIX conference on Networked systems design & implementation,
ser. NSDI’07. Berkeley, CA, USA: USENIX Association, 2007, pp.
20–20.

[14] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proceed-
ings of the 2002 International Conference on Dependable Systems and
Networks, ser. DSN ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 595–604.

[15] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[16] A. Dave, M. Zaharia, S. Shenker, and I. Stoica, “Arthur: Rich post-facto
debugging for production analytics applications,” 2013.

[17] H. Park, R. Ikeda, and J. Widom, “Ramp: A system for capturing and
tracing provenance in mapreduce workflows,” 2011.

[18] S. De, “Newt: an architecture for lineage-based replay and debugging
in disc systems,” 2012.

[19] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 217–231.

[20] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “Lprof: A non-intrusive request flow profiler for distributed
systems,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 629–644.


