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Efficient weight vectors from pairwise comparison matrices

Sándor BOZÓKI 1,2,3 János FÜLÖP 2,4

Abstract

Pairwise comparison matrices are frequently applied in multi-criteria decision making. A
weight vector is called efficient if no other weight vector is at least as good in approximating
the elements of the pairwise comparison matrix, and strictly better in at least one position.
A weight vector is weakly efficient if the pairwise ratios cannot be improved in all non-
diagonal positions. We show that the principal eigenvector is always weakly efficient, but
numerical examples show that it can be inefficient. The linear programs proposed test
whether a given weight vector is (weakly) efficient, and in case of (strong) inefficiency, an
efficient (strongly) dominating weight vector is calculated. The proposed algorithms are
implemented in Pairwise Comparison Matrix Calculator, available at pcmc.online.

Keywords: multiple criteria analysis, decision support, pairwise comparison matrix, Pareto
optimality, efficiency, linear programming

1 Introduction

1.1 Pairwise comparison matrices

Pairwise comparison matrix [32] has been a popular tool in multiple criteria decision making, for
weighting the criteria and evaluating the alternatives with respect to every criterion. Decision
makers compare two criteria or two alternatives at a time and judge which one is more important
or better, and how many times. Formally, a pairwise comparison matrix is a positive matrix A

of size n × n, where n ≥ 3 denotes the number of items to compare. Reciprocity is assumed:
aij = 1/aji for all 1 ≤ i, j ≤ n. A pairwise comparison matrix is called consistent, if aijajk = aik
for all i, j, k. Let PCMn denote the set of pairwise comparison matrices of size n × n. Once
the decision maker provides all the n(n − 1)/2 comparisons, the objective is to find a weight
vector w = (w1, w2, . . . , wn)

⊤ ∈ Rn such that the pairwise ratios of the weights, wi/wj , are
as close as possible to the matrix elements aij . Several methods have been suggested for this
weighting problem, e.g., the eigenvector method [32], the least squares method [5, 9, 21, 23], the
logarithmic least squares method [11, 12, 13], the spanning tree approach [7, 26, 30, 33, 34, 36, 37]
besides many other proposals discussed and compared by Golany and Kress [22], Choo and
Wedley [8], Lin [25], Fedrizzi and Brunelli [18]. Bajwa, Choo and Wedley [3] not only compare
seven weighting methods with respect to four criteria, but provide a detailed list of nine earlier
comparative studies, too.

1.2 Weighting as a multiple objective optimization problem

The weighting problem itself can be considered as a multi-objective optimization problem which
includes n2 − n objective functions, namely |xi/xj − aij |, 1 ≤ i 6= j ≤ n. Let A = [aij ]i,j=1,...,n
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be a pairwise comparison matrix and write the multi-objective optimization problem

min
x∈R

n
++

∣

∣

∣

∣

xi

xj

− aij

∣

∣

∣

∣

1≤i6=j≤n

. (1)

Efficiency or Pareto optimality [27, Chapter 2] is a key concept in multiple objective opti-
mization and multiple criteria decision making. See Ehrgott’s historical overview [16], beginning
with Edgeworth [15] and Pareto [31].

Consider the functions
fij : Rn

++ → R, i, j = 1, . . . , n,

defined by

fij(x) =

∣

∣

∣

∣

xi

xj

− aij

∣

∣

∣

∣

, i, j = 1, . . . , n, (2)

as in Blanquero, Carrizosa, Conde [4, p.273]. Since fii(x) = 0 for every x ∈ Rn
++ and i = 1, . . . , n,

these constant functions are irrelevant from the aspect of multi-objective optimization, so they
will be simply left out from the investigations.

Let the vector-valued function f : Rn
++ → Rn(n−1)

++ defined by its components fij , i, j =
1, . . . , n, i 6= j. Consider the problem of minimizing f over a nonempty set X ⊆ Rn that can be
written in the general form of the vector optimization problem

min
x∈X

f(x). (3)

With X = Rn
++, where the latter denotes the positive orthant in Rn, we get problem (1) in a bit

more general form.
Recall the following basic concepts used for multiple objective or vector optimization. A

point x̄ ∈ X is said to be an efficient solution of (3) if there is no x ∈ X such that f(x) ≤ f(x̄),
f(x) 6= f(x̄), meaning that fij(x) ≤ fij(x̄) for all i 6= j with strict inequality for at least one
index pair i 6= j. In the literature, the names Pareto-optimal, nondominated and noninferior
solution are also used instead of efficient solution.

A point x̄ ∈ X is said to be a weakly efficient solution of (3) if there is no x ∈ X such that
f(x) < f(x̄), i.e. fij(x) < fij(x̄) for all i 6= j. Efficient solutions are sometimes called strongly
efficient.

A point x̄ ∈ X is said to be a locally efficient solution of (3) if there exists δ > 0 such that
x̄ is an efficient solution in X ∩B(x̄, δ), where B(x̄, δ) is a δ-neighborhood around x̄. The local
weak efficiency is defined similarly for a point x̄ ∈ X , the only difference is that weakly efficient
solutions are considered instead of efficient solutions.

Several multi-objective optimization models have been proposed in the research of pairwise
comparison matrices. Departing from [28], Mikhailov and Knowles [29] include two objective
functions, the sum of least squares, written for the upper diagonal positions, and the number of
minimum violations, then apply an evolutionary algorithm to generate the Pareto frontier. A
third objective function, the total deviation from second-order indirect judgments, is added in
[35].

The n(n − 1)/2 objective functions |xi/xj − aij |, 1 ≤ i 6= j ≤ n, of the multi-objective
optimization problem (1) can be aggregated into a single objective function in several ways.
Their sum gives the weighting method least absolute error [8, Section 4, LAE]. If their maximum
is taken into consideration, weighting method least worst absolute error [8, Section 4, LWAE]
is resulted in. The sum of their squares is the classical least squares method [5, 9, 21, 23]. A
(parametric) linear combination of the sum and the maximum is proposed by Jones and Mardle
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[24] to find a compromise weight vector. A similar idea is applied in the proposal of Dopazo
and Ruiz-Tagle [14], developed for group decision problems with incomplete pairwise comparison
matrices.

In the rest of the paper efficiency for problem (1), including n(n− 1)/2 objective functions,
is considered. The explicit presentation will be unavoidable for the problem specific concept of
internal efficiency introduced recently in [6].

1.3 Efficiency of weight vectors

Let w = (w1, w2, . . . , wn)
⊤ be a positive weight vector.

Definition 1.1. Weight vector w is called efficient for (1) if no positive weight vector w′ =
(w′

1, w
′
2, . . . , w

′
n)

⊤ exists such that
∣

∣

∣

∣

∣

aij −
w′

i

w′
j

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

aij −
wi

wj

∣

∣

∣

∣

for all 1 ≤ i, j ≤ n, (4)

∣

∣

∣

∣

akℓ −
w′

k

w′
ℓ

∣

∣

∣

∣

<

∣

∣

∣

∣

akℓ −
wk

wℓ

∣

∣

∣

∣

for some 1 ≤ k, ℓ ≤ n. (5)

Weight vector w is called inefficient for (1) if it is not efficient for (1).

If weight vector w is inefficient for (1) and weight vector w′ fulfils (4)-(5), we say that w′

dominates w. Note that dominance is transitive.
It follows from the definition that an arbitrary rescaling does not influence (in)efficiency.

Remark 1. A weight vector w is efficient for (1) if and only if cw is efficient for (1), where
c > 0 is an arbitrary scalar.

Example 1.1. Consider four criteria C1, C2, C3, C4, pairwise comparison matrix A ∈ PCM4

and its principal right eigenvector w as follows:

A =









1 1 4 9
1 1 7 5
1/4 1/7 1 4
1/9 1/5 1/4 1









, w =









0.404518
0.436173
0.110295
0.049014









, w′ =









0.441126
0.436173
0.110295
0.049014









.

In order to prove the inefficiency of the principal right eigenvector w, let us increase its first
coordinate: w′

1 := 9w4 = 0.441126, w′
i := wi, i = 2, 3, 4. The consistent approximations generated

by weight vectors w,w′,

[

wi

wj

]

=









1 0.9274 3.6676 8.2531
1.0783 1 3.9546 8.8989
0.2727 0.2529 1 2.2503
0.1212 0.1124 0.4444 1









, (6)

[

w′
i

w′
j

]

=









1 1.0114 3.9995 9

0.9888 1 3.9546 8.8989
0.2500 0.2529 1 2.2503
0.1111 0.1124 0.4444 1









,

show that inequality (4) holds for all 1 ≤ i, j ≤ 4, and the strict inequality (5) holds for (k, ℓ) ∈

{(1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}. For example, with k = 1, ℓ = 2, |
w′

1

w′

2

−a12| = |1.0114−1|=
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0.0114 < |w1

w2
− a12| = |0.9274 − 1| = 0.0726. Weight vector w′ dominates w. Note that the

principal right eigenvector w ranks the criteria as C2 ≻ C1 ≻ C3 ≻ C4, while the dominating
weight vector w′ ranks them as C1 ≻ C2 ≻ C3 ≻ C4.

Blanquero et al. (2006) considered the local variant of efficiency:

Definition 1.2. Weight vector w is called locally efficient for (1) if there exists a neighborhood
of w, denoted by V (w), such that no positive weight vector w′ ∈ V (w) fulfilling (4)-(5) exists.

Weight vector w is called locally inefficient if it is not locally efficient.

Another variant of (in)efficiency has been introduced by Bozóki (2014):

Definition 1.3. Weight vector w is called internally efficient for (1) if no positive weight vector
w′ = (w′

1, w
′
2, . . . , w

′
n)

⊤ exists such that

aij ≤
wi

wj
=⇒ aij ≤

w′

i

w′

j
≤ wi

wj

aij ≥
wi

wj
=⇒ aij ≥

w′

i

w′

j
≥ wi

wj







for all 1 ≤ i, j ≤ n, (7)

akℓ ≤
wk

wℓ
=⇒

w′

k

w′

ℓ

< wk

wℓ

akℓ ≥
wk

wℓ
=⇒ w′

k

w′

ℓ

> wk

wℓ







for some 1 ≤ k, ℓ ≤ n. (8)

Weight vector w is called internally inefficient if it is not internally efficient.

If weight vector w is inefficient for (1) and weight vector w′ fulfils (7)-(8), we say that w′

dominates w internally. Note that internal dominance is transitive.

Example 1.2. Consider the pairwise comparison matrix A ∈ PCM4 of Example 1.1 and its
principal right eigenvector w. Now let us increase the first coordinate of w until it reaches the
second one,

w′′ =









0.436173
0.436173
0.110295
0.049014









.

The consistent approximation generated by weight vector w′′ is as follows:

[

w′′
i

w′′
j

]

=









1 1 3.9546 8.8989
1 1 3.9546 8.8989

0.2529 0.2529 1 2.2503
0.1124 0.1124 0.4444 1









. (9)

Inequality (7) holds for all 1 ≤ i, j ≤ 4, and the strict inequality (8) holds for
(k, ℓ) ∈ {(1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}. Weight vector w′′ dominates w internally. Ob-
serve that weight vector w′ in Example 1.1 does not dominate w internally. Note that the
internally dominating weight vector w′′ ranks the criteria as C1 ∼ C2 ≻ C3 ≻ C4.

The local inefficiency of weight vector w can be checked by the fact that weight vector (w1 +
ε, w2, w3, w4)

⊤ dominates w for all ε < 2(w2 − w1) = 0.0633, furthermore it dominates w

internally for all ε < w2 − w1 = 0.0316, providing the same ranking C2 ≻ C1 ≻ C3 ≻ C4 as of
the principal right eigenvector w.
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A natural question might arise. How can dominating weight vectors in Examples 1.1–1.2 be
found? We premise that algorithmic ways of finding a dominating efficient weight vector shall
be given in details in Section 4.

It follows from the definitions that if weight vector w is internally inefficient, then it is
inefficient. Blanquero, Carrizosa and Conde proved that the two definitions are in fact equivalent:

Theorem 1.1. [4, Theorem 3] Weight vector w is efficient for (1) if and only if it is locally
efficient for (1), i.e., Definitions 1.1 and 1.2 are equivalent.

Proposition 1.1. Weight vector w is efficient for (1) if and only if it is internally efficient for
(1), i.e., Definitions 1.1 and 1.3 are equivalent.

Proof. Sufficiency follows by definition. For necessity, it is more convenient to show that
inefficiency implies internal inefficiency. Let weight vector w be inefficient. Theorem 1.1 implies
that w is locally inefficient as well, i.e., there exists w′ in any neighborhood U(w) such that w′

dominates w. If U(w) is sufficiently small, then

aij <
wi

wj
=⇒ aij <

w′

i

w′

j
≤ wi

wj

aij >
wi

wj
=⇒ aij >

w′

i

w′

j

≥ wi

wj

aij =
wi

wj
=⇒ aij =

w′

i

w′

j

= wi

wj
,

(10)

implying that w is internally inefficient.

Corollary 1. Efficiency (Definition 1.1), local efficiency (Definition 1.2) and internal efficiency
(Definition 1.3) are equivalent.

Definition 1.4. Let A = [aij ]i,j=1,...,n ∈ PCMn and w = (w1, w2, . . . , wn)
T be a positive weight

vector. A directed graph G = (V,
−→
E )A,w is defined as follows: V = {1, 2, . . . , n} and

−→
E =

{

arc(i → j)

∣

∣

∣

∣

wi

wj

≥ aij , i 6= j

}

.

It follows from Definition 1.4 that if wi/wj = aij , then there is a bidirected arc between
nodes i, j. The fundamental theorem of Blanquero, Carrizosa and Conde using the directed
graph representation above is as follows:

Theorem 1.2 ([4, Corollary 10]). Let A ∈ PCMn. A weight vector w is efficient for (1) if and

only if G = (V,
−→
E )A,w is a strongly connected digraph, that is, there exist directed paths from i

to j and from j to i for all pairs of nodes i, j.

Blanquero, Carrizosa and Conde [4, Remark 12] and Conde and Pérez [10, Theorem 2.2]
consider weak efficiency as follows:

Definition 1.5. Weight vector w is called weakly efficient for (1) if no positive weight vector
w′ = (w′

1, w
′
2, . . . , w

′
n)

⊤ exists such that

∣

∣

∣

∣

∣

aij −
w′

i

w′
j

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

aij −
wi

wj

∣

∣

∣

∣

for all 1 ≤ i 6= j ≤ n, (11)

and weight vector w is called strongly inefficient if it is not weakly efficient.
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If weight vector w is strongly inefficient for (1) and weight vector w′ fulfils (11), we say that
w′ strongly dominates w. Note that strong dominance is transitive.

Example 1.3. Let n ≥ 3 integer and c, d > 0, c 6= d arbitrary. Let A ∈ PCMn be a consistent
pairwise comparison matrix defined as aij = cj−i, i, j = 1, . . . , n. Let weight vector w be defined
by wi = dn+1−i, i = 1, . . . , n. Then weight vector w′, defined by w′

i = cn+1−i, i = 1, . . . , n
provides strictly better approximation to all non-diagonal elements of A than w does, therefore
w is strongly inefficient. The example is specified for n = 4, c = 2, d = 3 below.

A =

[

w′
i

w′
j

]

i,j=1,...,4

=









1 2 4 8
1/2 1 2 4
1/4 1/2 1 2
1/8 1/4 1/2 1









, w′ =









8
4
2
1









,

[

wi

wj

]

i,j=1,...,4

=









1 3 9 27
1/3 1 3 9
1/9 1/3 1 3
1/27 1/9 1/3 1









, w =









27
9
3
1









.

1.4 Efficiency and distance minimization

Distance minimization does not necessarily induce efficiency. Blanquero, Carrizosa and Conde
[4] and Fedrizzi [17] showed that if the metric is componentwise strictly increasing, then efficiency
is implied.

Definition 1.6. ([17]) A metric D : PCMn × PCMn → R is called strictly monotonic, if
∣

∣

∣aij −
xi

xj

∣

∣

∣ ≤
∣

∣

∣aij −
yi

yj

∣

∣

∣ for all (i, j) and the inequality is strict for at least one pair of indices

(i, j), imply that D(A,
[

xi

xj

]

) < D(A,
[

yi

yj

]

).

Theorem 1.3. ([4, Section 2],[17]) A weight vector induced by a strictly monotonic metric is
efficient for (1).

Theorem 1.3 implies that the least squares method [5, 9, 21, 23] with the objective function
∑

i,j

∣

∣

∣aij −
wi

wj

∣

∣

∣

2

induces efficient weight vector(s). Furthermore, power 2 can be replaced by an

arbitrary p ≥ 1, efficiency is kept.

Blanquero, Carrizosa and Conde [4, Corollary 7] proved that the logarithmic least squares

method [11, 12, 13, 26] with the objective function
∑

i,j

(

log aij − log wi

wj

)2

yields an efficient so-

lution (the row geometric mean).

The eigenvector method [32] is special, because we have seen in Example 1.1 that the prin-
cipal right eigenvector can be inefficient. On the other hand, Fichtner [19, 20] showed that the
eigenvector method can be written as a distance minimizing problem. Note that Fichtner’s met-
ric is neither continuous, nor strictly monotonic.

1.5 Results of the paper

The rest of the paper is organized as follows. Section 2 investigates that the formally different
definitions of (weak) efficiency are in fact equivalent. It is shown that the set of (strongly)
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dominating weight vectors is convex. Weak efficiency of the principal eigenvector is proved in
Section 3. A linear program is developed in Section 4 in order to test whether a given weight
vector, with respect to a fixed pairwise comparison matrix, is efficient. If it is inefficient, an
efficient dominating weight vector is found. Another linear program is constructed in Section
5 for testing weak efficiency. Again, if the weight vector is found to be strongly inefficient, a
strongly dominating weight vector is calculated. Linear programs are implemented in Pairwise
Comparison Matrix Calculator, available at pcmc.online. Section 6 concludes and raises some
open questions.

2 Equivalent definitions of efficiency and weak efficiency

In line with the efficient case, locally and internally weakly efficient points can also be defined
in an explicit, problem-specific form.

Let E, EL and EI denote the set of the efficient, locally efficient and internally efficient
solutions, respectively. Similarly, let WE, WEL and WEI denote the set of the weakly efficient,
locally weakly efficient and internally weakly efficient solutions, respectively.

According to Definition (1.5),

WE = {w > 0 | there exists no w′ > 0 for which (11) holds}.

In the same way,

WEL = {w > 0 | there exists a neighbourhood U(w) such that

there exists no w′ ∈ U(w) for which (11) holds}

and

WEI = {w > 0 | there exists no w′ > 0 such that

aij ≤
wi

wj
=⇒ aij ≤

w′

i

w′

j

< wi

wj
for all 1 ≤ i 6= j ≤ n,

aij ≥
wi

wj
=⇒ aij ≥

w′

i

w′

j

> wi

wj
for all 1 ≤ i 6= j ≤ n}.

The above relations imply that if for a given w > 0, there exists an index pair (k, ℓ), k 6= ℓ,
such that akℓ =

wk

wℓ
, then w ∈ WE, w ∈ WEL and w ∈ WEI .

It is evident that E j WE, EL j WEL and EI j WEI . We show below that the relations
E = EL = EI and WE = WEL = WEI also hold. This means that the three definitions given,
regarding both the stronger and the weaker cases of efficiency, are equivalent. Example 1.1
demonstrates that E $ WE.

For a given w > 0, let D(w) denote the set of the points dominating the point w, i.e.

D(w) = {x > 0 |fij(x) ≤ fij(w) for all i 6= j and

fkℓ(x) < fkℓ(w) for some k 6= ℓ}.

Similarly, let SD(w) denote the set of the points strongly dominating the point w, i.e.

SD(w) = {x > 0 | fij(x) < fij(w) for all i 6= j}.

It is easy to see that if SD(w) 6= ∅, then SD(w) = int(D(w)) and cl(SD(w)) = cl(D(w)), where
int and cl denote, the interior and closure, respectively, of the relating set.
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Proposition 2.1. D(w) and SD(w) are convex sets, and if any of them is nonempty, then w

lies in its boundary.

Proof. We start with the proof of the simpler case of SD(w). Clearly,

x ∈ SD(w) ⇐⇒

∣

∣

∣

∣

xi

xj

− aij

∣

∣

∣

∣

< fij(w) for all i 6= j ⇐⇒

xi

xj

− aij < fij(w), −
xi

xj

+ aij < fij(w) for all i 6= j ⇐⇒

xi + (−aij − fij(w))xj < 0, −xi + (aij − fij(w))xj < 0, for all i 6= j.

The set of points fulfilling the last system of strict inequalities is an intersection of finitely many
open halfspaces, it is thus an open convex set. At the same time, with x = w, the linear
inequalities above hold as equalities, consequently, w lies in the boundary of SD(w), of course,
if it is nonempty.

By applying similar rearranging steps, we also get that

x ∈ D(w) ⇐⇒xi + (−aij − fij(w))xj ≤ 0, −xi + (aij − fij(w))xj ≤ 0, for all i 6= j, and
(12)

xk + (−akℓ − fkℓ(w))xℓ < 0, −xk + (akℓ − fkℓ(w))xℓ < 0, for some k 6= ℓ. (13)

We show that D(w) is a convex set. Let y 6= z ∈ D(w), 0 < λ < 1 and x̂ = λy + (1 − λ)z.
The linear inequalities of (12) hold at the points x̂,y and z.

Let (k̂, ℓ̂), k̂ 6= ℓ̂ denote the index pair for which (13) also holds at the point x = y. Then,

with x = x̂, (13) also holds for the index pair (k̂, ℓ̂). This implies x̂ ∈ D(w) and the convexity
of D(w).

The point x = w fulfils (12) as equalities. Thus, w 6∈ D(w) but w is boundary point of D(w)
if it is nonempty.

Proposition 2.2. E = EL = EI and WE = WEL = WEI .

Proof. Obviously,

E = {w > 0 | D(w) = ∅},
EL = {w > 0 | D(w) ∩ U(w) = ∅}, where U(w) is a suitably small neighborhood

around w, and
EI = {w > 0 | D(w) ∩ VI(w) = ∅}, where

VI(w) = {x > 0 | aij ≤
xi

xj
≤ wi

wj
for aij ≤

wi

wj
, ∀i 6= j, aij ≥

xi

xj
≥ wi

wj
for aij ≥

wi

wj
, ∀i 6= j}

is a convex set containing w.

If w ∈ E, then D(w) = ∅, thus w ∈ EL and w ∈ EI , therefore, E ⊆ EL and E ⊆ EI .
We show that EL ⊆ E holds, as well. Let w ∈ EL and assume that w 6∈ E, i.e. D(w) 6= ∅.

Let x̂ ∈ D(w). Since w is a boundary point of the convex set D(w), every point of the half-open
line segment [x̂,w) is in D(w). However, the points of [x̂,w) that are close enough to w are
also in U(w). This contradicts w ∈ EL since D(w) ∩ U(w) 6= ∅. Consequently, w ∈ E, thus,
EL ⊆ E, and then EL = E .

The proof of EI ⊆ E is similar. Let w ∈ EI and assume that w 6∈ E. Let x̂ ∈ D(w). Now, if
aij =

wi

wj
, then also aij =

xi

xj
for every x ∈ [x̂,w]. If aij <

wi

wj
, then aij <

xi

xj
< wi

wj
for the points

x ∈ [x̂,w] being close enough to w. The same holds in case of aij > wi

wj
with opposite sign.
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These imply that [x̂,w) ∩ D(w) ∩ VI(w) 6= ∅, leading again to a contradiction. Consequently,
EI ⊆ E, so EI = E .

The proof of the relations WE = WEL = WEI can be carried out in the same way, we
have simply use the set SD(w) instead of D(w). The remainder part of the proof is left to the
reader.

3 The principal right eigenvector is weakly efficient

Blanquero, Carrizosa and Conde [4, p. 279] stated (without proof) that weak efficiency is equiv-
alent to that the directed graph, according to Definition 1.4, includes at least one cycle. Here
we rephrase the proposition and give a proof.

Lemma 3.1. Let A be an arbitrary pairwise comparison matrix of size n × n and w be an
arbitrary positive weight vector. Weight vector w is strongly inefficient for (1) if and only if its
digraph is isomorphic to the acyclic tournament on n vertices (including arc(i, j) if and only if
i < j).

Proof. Sufficiency. Assume without loss of generality that the rows and columns of pairwise
comparison matrix A are permuted such that digraph G includes arc(i, j) if and only if i < j.
Then

wi

wj

> aij for all 1 ≤ i < j ≤ n, (14)

and, equivalently, wi

wj
< aij for all 1 ≤ j < i ≤ n. We shall find a weight vector w′ such that (4),

moreover, wi

wj
>

w′

i

w′

j

≥ aij hold for all 1 ≤ i < j ≤ n.

Let

pj := max
i=1,2,...,j−1

{

aij
wi

wj

}

, j = 2, 3, . . . , n. (15)

It follows from (14) that pj < 1 for all 2 ≤ j ≤ n. Let w′
k := wk ·

n
∏

j=k+1

pj for all 1 ≤ k ≤ n− 1,

and w′
n := wn. It follows from the construction that

w′
k

w′
ℓ

=
wk

wℓ

n
∏

j=k+1

pj

n
∏

j=ℓ+1

pj

=
wk

wℓ

ℓ
∏

j=k+1

pj <
wk

wℓ

.

On the other hand, (15) ensures that
w′

k

w′

ℓ

≥ akℓ. Furthermore, for every 1 ≤ k ≤ n − 1 there

exists a (not necessarily unique) ℓ > k such that
w′

k

w′

ℓ

= akℓ. Especially
w′

1

w′

2

= a12.

For necessity let us suppose that digraph G includes a directed 3-cycle (i, j, k): wi

wj
> aij ,

wj

wk
>

ajk,
wk

wi
> aki. Assume for contradiction that weight vector w is strongly inefficient, that is, there

exists another weight vector w′ such that (4) holds. Then

9



wi

wj

>
w′

i

w′
j

, (16)

wj

wk

>
w′

j

w′
k

, (17)

wk

wi

>
w′

k

w′
i

, (18)

otherwise none of
∣

∣

∣

∣

∣

w′
i

w′
j

− aij

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

wi

wj

− aij

∣

∣

∣

∣

,

∣

∣

∣

∣

w′
j

w′
k

− ajk

∣

∣

∣

∣

<

∣

∣

∣

∣

wj

wk

− ajk

∣

∣

∣

∣

,

∣

∣

∣

∣

w′
k

w′
i

− aki

∣

∣

∣

∣

<

∣

∣

∣

∣

wk

wi

− aki

∣

∣

∣

∣

could hold. Multiply inequalities (16)-(18) to get the contradiction 1 > 1.

Corollary 2. Weight vector is strongly inefficient for (1) if and only if the set of outdegrees in
the associated directed graph is {0, 1, 2, . . . , n− 1}.

Theorem 3.1. The principal eigenvector of a pairwise comparison matrix is weakly efficient for
(1).

Proof. The principal right eigenvector w satisfies the equation

Aw = λmaxw. (19)

Assume for contradiction that weight vector w is strongly inefficient. Apply Lemma 3.1 and
consider the acyclic tournament associated to A and v. We can assume without loss of generality
that the Hamiltonian path is already 1 → 2 → . . . → n. Then

wi

wj

> aij for all 1 ≤ i < j ≤ n. (20)

The i-th equation of (19) is
n
∑

j=1

aijwj = λmaxwi, (21)

the left hand side of which is bounded above due to (20):

n
∑

j=1

aijwj <

n
∑

j=1

wi

wj

wj = nwi

which contradicts λmax ≥ n.

4 Efficiency test and search for an efficient dominating

weight vector by linear programming

Let a pairwise comparison matrixA = [aij ]i,j=1,...,n and a positive weight vectorw = (w1, w2, . . . , wn)
⊤

be given as before. First we shall verify whether w is efficient for (1) by solving an appropriate
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linear program. Furthermore, if w is inefficient, the optimal solution of the linear program pro-
vides an efficient weight vector that dominates w internally.

Recall the double inequality (7) in Definition (1.3). For every positive weight vector x =
(x1, x2, . . . , xn)

⊤

aij ≤
xi

xj

≤
(<)

wi

wj

⇐⇒

(

aijxj

xi

≤ 1,
xi

xj

wj

wi

≤
(<)

1

)

⇐⇒

⇐⇒

(

aijxj

xi

≤ 1,
xi

xj

wj

wi

1

tij
≤ 1 for some 0 < tij ≤

(<)
1

)

,

(22)

and

aij ≥
xi

xj

≥
(>)

wi

wj

⇐⇒

(

xi

aijxj

≤ 1,
xj

xi

wi

wj

≤
(<)

1

)

⇐⇒

⇐⇒

(

xi

aijxj

≤ 1,
xj

xi

wi

wj

1

tij
≤ 1 for some 0 < tij ≤

(<)
1

)

,

(23)

and
aij =

xi

xj

⇐⇒
xi

aijxj

= 1. (24)

This leads us to develop the following optimization problem.

Define index sets

I =

{

(i, j)

∣

∣

∣

∣

aij <
wi

wj

}

J =

{

(i, j)

∣

∣

∣

∣

aij =
wi

wj

, i < j

}

The index set I is empty if and only if pairwise comparison matrix A is consistent. In this case
weight vector w is efficient and |J | = n(n− 1)/2. It is assumed in the sequel that I is nonempty.
No assumptions are needed for the (non)emptiness of J .

min
∏

(i,j)∈I

tij

xj

xi

aij ≤ 1 for all (i, j) ∈ I,

xi

xj

wj

wi

1

tij
≤ 1 for all (i, j) ∈ I, (25)

0 < tij ≤ 1 for all (i, j) ∈ I,

aji
xi

xj

= 1 for all (i, j) ∈ J ,

x1 = 1

Variables are xi > 0, 1 ≤ i ≤ n and tij , (i, j) ∈ I.
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Proposition 4.1. The optimum value of the optimization problem (25) is at most 1 and it is
equal to 1 if and only if weight vector w is efficient for (1). Denote the optimal solution to

(25) by (x∗, t∗) ∈ Rn+|I|
+ . If weight vector w is inefficient, then weight vector x∗ is efficient and

dominates w internally.

Proof. The constraints in (22)-(24) are obtained by simple rearrangements. It is obvious that in
(22) xi

xj

wj

wi
≤ 1 if and only there exists a scalar 0 < tij≤1 such that xi

xj

wj

wi

1
tij

≤ 1. In addition,

the inequalities hold as strict inequalities simultaneously on both sides. The reasoning is similar
for (23), and (24) is evident.

In (25), only the constraints belonging to the index pairs from I and J appear. Due to
the reciprocity property, the remainder constraints are now redundant. First, we show that the
feasible set of problem (25) is a nonempty compact set. Therefore, since the objective function
is continuous, (25) has a finite optimum value and an optimal solution.

Problem (25) has a feasible solution, e.g. x = 1
w1

w and tij = 1, for all (i, j) ∈ I fulfill the
constraints. Due to the normalization constraint x1 = 1, the other variables xi, i 6= 1, have finite
positive lower and upper bounds over the feasible set. This comes from the property that for
all i 6= 1, either (i, 1) or (1, i) is in I ∪ J . The fourth constraint gives a fixed value for xi, and
positive lower and upper bounds can be computed from the first and second constraints. Since
the components of x have positive upper and lower bound, from the second constraint, positive
lower bounds can be computed for the variables tij , (i, j) ∈ I, too.

The objective function serves for testing the internal efficiency of w. Its value cannot exceed
1. If its value is less than 1, then there exists an index pair (i0, j0) for which

xi0

xj0

wj0

wi0

≤ ti0j0 < 1,

hence
xi0

xj0

<
wi0

wj0

. From this and the equivalent forms in (22) and (24), we get that x internally

dominates w. Conversely, assume that x internally dominates w. It is easy to see that the
normalized vector x with tij = xi

xj

wj

wi
, (i, j) ∈ I, is feasible to (25). In addition, for every index

pair (i0, j0) for which, due to the internal dominance,
xi0

xj0

<
wi0

wj0

holds, we have ti0j0 < 1, thus,

the considered feasible solution has an objective function value less than 1, implying that the
optimal value is also less than 1.

It remains to deal with the case when w turns out to be inefficient. It is obvious that the x-
part of the optimal solution (x∗, t∗) of (25) internally dominatesw, and t∗ij =

x∗

i

x∗

j

wj

wi
, for all (i, j) ∈

I. Assume that x∗ is inefficient. Then it is internally dominated by a vector x̄, For x̄,

we have aij = x̄i

x̄j
, for all (i, j) ∈ J . Also, aij ≤ x̄i

x̄j
≤ x∗

i

xj
∗

≤ wi

wj
, for all (i, j) ∈ I and

there exists at least one index pair (i0, j0) ∈ I for which the second inequality is strict. Let
t̄ij = x̄i

x̄j

wj

wi
, for all (i, j) ∈ I. It is easy to see that after a normalization, (x̄, t̄) is feasible to

(25). However, we also have t̄ij ≤ t∗ij , for all (i, j) ∈ I and t̄i0j0 < t∗i0j0 . This implies that the
objective function value at (x̄, t̄) is less than that at (x∗, t∗). This contradicts the fact that
(x∗, t∗) is an optimal solution to (25). Consequently, x∗ is an efficient solution.

Optimization problem (25) is nonlinear but it can be transformed to a linear program. Let
denote yi = log xi, vi = logwi, 1 ≤ i ≤ n; sij = − log tij , (i, j) ∈ I; and bij = log aij , 1 ≤ i, j ≤
n. Taking the logarithm of the objective function and the constraints in (25), we arrive at an
equivalent linear program
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min
∑

(i,j)∈I

−sij (26)

yj − yi ≤ −bij for all (i, j) ∈ I, (27)

yi − yj + sij ≤ vi − vj for all (i, j) ∈ I, (28)

yi − yj = bij for all (i, j) ∈ J , (29)

sij ≥ 0 for all (i, j) ∈ I, (30)

y1 = 0 (31)

Variables are yi, 1 ≤ i ≤ n and sij ≥ 0, (i, j) ∈ I.

Theorem 4.1. The optimum value of the linear program (26)-(31) is at most 0 and it is equal
to 0 if and only if weight vector w is efficient for (1). Denote the optimal solution to (26)-(31)
by (y∗, s∗) ∈ Rn+|I|. If weight vector w is inefficient, then weight vector exp(y∗) is efficient and
dominates w internally.

An example is given in the Appendix.

5 Test of weak efficiency and search for an efficient domi-

nating weight vector by linear programming

The test of weak efficiency and searching for a dominating weakly efficient point can be carried
out similarly to the case of efficiency. Consider a vector w > 0. Obviously, if J 6= ∅, i.e.
fij(w) = 0 for an index pair i 6= j, then w ∈ WE, so we are ready with the test of weak
efficiency.

Now, examine the case J = ∅. Then |I| = n(n− 1)/2. Note that if the rows and columns of
pairwise comparison matrix A are permuted according to Lemma 3.1, then I = {(i, j)|1 ≤ i <
j ≤ n}. Here are some equivalent forms for strong inefficiency. For all (i, j) ∈ I

aij ≤
xi

xj

<
wi

wj

⇐⇒

(

aijxj

xi

≤ 1,
xi

xj

wj

wi

< 1

)

⇐⇒

(

aijxj

xi

≤ 1,
xi

xj

wj

wi

1

t
≤ 1, 0 < t < 1

)

. (32)

Based on the last form of (32), we can establish a modification of problem (25), adapting it
to the case of weak efficiency.

min t
xj

xi

aij ≤ 1 for all (i, j) ∈ I,

xi

xj

wj

wi

1

t
≤ 1 for all (i, j) ∈ I, (33)

0 < t ≤ 1

x1 = 1.

Variables are xi > 0, 1 ≤ i ≤ n and t.
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Proposition 5.1. The optimum value of the optimization problem (33) is at most 1 and it is
equal to 1 if and only if weight vector w is weakly efficient for (1). Denote the optimal solution
to (33) by (x∗, t∗) ∈ Rn+1

+ . If weight vector w is strongly inefficient, then weight vector x∗ is
weakly efficient and dominates w internally and strictly.

Proof. The statements can be proved by analogy with the proof of Proposition 4.1. By using
the same reasoning as there, one can easily show that the feasible set of (33) is not empty, and
positive upper and lower bounds can be determined for each variable. Thus (33) has an optimal
solution and a positive optimal value t∗ ≤ 1.

If t∗ < 1, then xi

xj

wj

wi
≤ t∗ < 1 for all i 6= j, implying that x internally strongly dominates w.

Conversely, assume that x internally strongly dominates w. It is easy to see that the normalized
vector x with t = maxi6=j

xi

xj

wj

wi
is feasible to (33). It is obvious that 0 < t < 1 at this feasible

solution, implying that t∗ < 1 at the optimal solution.
Consider the case whenw has turned out to be weakly inefficient, i.e. it is strongly dominated.

It is obvious that the x-part of the optimal solution (x∗, t∗) of (33) internally dominates w, and

t∗ = maxi6=j
x∗

i

x∗

j

wj

wi
. Assume that x∗ is inefficient. Then it is internally strongly dominated by a

vector x̄. For x̄, aij ≤
x̄i

x̄j
<

x∗

i

xj
∗
≤ wi

wj
, for all i 6= j. Let t̄ = maxi6=j

x̄i

x̄j

wj

wi
. It is easy to see that

after a normalization, (x̄, t̄) is feasible to (33). It is however obvious that t̄ < t∗, implying that
the objective function value at (x̄, t̄) is less than that at (x∗, t∗) contradicting the optimality of
the latter one. Consequently, x∗ is a weakly efficient solution.

By using the same idea that was applied to get problem (26)-(31) from (25), problem (33) can
also be transformed to a linear program. By using the same notations as there, and introducing
the variable s = − log t, we arrive at an equivalent linear program

min−s

yj − yi ≤ −bij for all (i, j) ∈ I

yi − yj + s ≤ vi − vj for all (i, j) ∈ I (34)

s ≥ 0

y1 = 0

Variables are yi, 1 ≤ i ≤ n and s.

Theorem 5.1. The optimum value of the linear program (34) is at most 0 and it is equal to 0
if and only if weight vector w is weakly efficient for (1). Denote the optimal solution to (34) by
(y∗, s) ∈ Rn+1. If weight vector w is strongly inefficient, then weight vector exp(y∗) is weakly
efficient and dominates w internally and strictly.

Remark 2. If weight vector w is strongly inefficient for (1), then weight vector exp(y∗) in
Theorem 5.1 is weakly efficient, but not necessarily efficient. However, linear program (26)-(31)
in Section 4 can test its efficiency, and it if is inefficient, (26)-(31) find a dominating efficient
weight vector, that obviously dominates (internally and strictly) the strongly inefficient weight
vector w, too.
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6 Conclusions and open questions

6.1 Conclusions

The key problem of weighting is to approximate the elements of a pairwise comparison matrix,
filled in by the decision maker. The multi-objective optimization problem (1) has a unique
solution only for consistent pairwise comparison matrices. Numerical examples show that certain
weighting methods, such as the eigenvector, result in inefficient (for (1)) solutions. Less formally,
the pairwise ratios do not approximate the matrix elements in the best possible way, since some
of the estimations can be strictly improved without impairing any other one. Nevertheless, the
weak efficiency of the principal eigenvector has been proved in Section 3.

Linear programs have been developed in Sections 4 and 5 in order to test efficiency, and to
find an efficient dominating weight vector.

6.2 Open questions

Efficiency for (1) is a potential criterion in future comparative studies of the weighting methods.
Our opinion is that an inefficient weight vector is less preferred to any of its dominating weight
vectors, and, especially to the efficient dominating weight vector(s).

The use of models developed in Sections 4 and 5 enables the decision maker to improve a
possibly inefficient weight vector, however, the problem of generating the whole set of efficient
dominating weight vectors is open.

An extended analysis of numerical examples could show how often inefficiency occurs and
how large differences there are between an inefficient and an efficient dominating weight vector.

The efficiency analysis of the principal eigenvector is still incomplete. Sufficient conditions are
discussed in [1, 2]: if the pairwise comparison matrix can be made consistent by a modification
of one or two elements (and their reciprocal), then the eigenvector is efficient for (1). It is
shown in [6] that the eigenvector can be inefficient even if the level of inconsistency (as proposed
by Saaty [32], a positive linear transformation of the maximal eigenvalue) is arbitrarily small.
However, the necessary and sufficient condition for the efficiency of the principal eigenvector is
a challenging open problem.
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Appendix

Consider pairwise comparison matrix A ∈ PCM4 and its principal right eigenvector w in Ex-

ample 1.1, and the consistent pairwise comparison matrix
[

wi

wj

]

as in (6).

The linear program (26)-(31) is specified below. I = {(2, 1), (2, 4), (3, 1), (3, 2), (4, 1), (4, 3)}
and J = ∅.

y1 y2 y3 y4 s21 s24 s31 s32 s41 s43 remark
0 0 0 0 -1 -1 -1 -1 -1 -1 → min (26)

1 -1 0 0 0 0 0 0 0 0 ≤ 0 (27), i = 2, j = 1
-1 1 0 0 1 0 0 0 0 0 ≤ 0.0753 (28), i = 2, j = 1
0 -1 0 1 0 0 0 0 0 0 ≤ −1.6094 (27), i = 2, j = 4
0 1 0 -1 0 1 0 0 0 0 ≤ 2.1859 (28), i = 2, j = 4
1 0 -1 0 0 0 0 0 0 0 ≤ 1.3863 (27), i = 3, j = 1
-1 0 1 0 0 0 1 0 0 0 ≤ −1.2995 (28), i = 3, j = 1
0 1 -1 0 0 0 0 0 0 0 ≤ 1.9459 (27), i = 3, j = 2
0 -1 1 0 0 0 0 1 0 0 ≤ −1.3749 (28), i = 3, j = 2
1 0 0 -1 0 0 0 0 0 0 ≤ 2.1972 (27), i = 4, j = 1
-1 0 0 1 0 0 0 0 1 0 ≤ −2.1106 (28), i = 4, j = 1
0 0 1 -1 0 0 0 0 0 0 ≤ 1.3863 (27), i = 4, j = 3
0 0 -1 1 0 0 0 0 0 1 ≤ −0.8111 (28), i = 4, j = 3
0 0 0 0 1 0 0 0 0 0 ≥ 0 (30), i = 2, j = 1
0 0 0 0 0 1 0 0 0 0 ≥ 0 (30), i = 2, j = 4
0 0 0 0 0 0 1 0 0 0 ≥ 0 (30), i = 3, j = 1
0 0 0 0 0 0 0 1 0 0 ≥ 0 (30), i = 3, j = 2
0 0 0 0 0 0 0 0 1 0 ≥ 0 (30), i = 4, j = 1
0 0 0 0 1 0 0 0 0 1 ≥ 0 (30), i = 4, j = 3
1 0 0 0 0 0 0 0 0 0 = 0 (31)

The first two inequalities belong to i = 2, j = 1. Right hand sides are calculated as −b21 =
− log(a21) = − log 1 = 0 in (27) and v2 − v1 = log(w2)− log(w1) ≈ 0.0753 in (28).

The optimal solution is y∗1 = y∗2 = 0, y∗3 = −1.3749, y∗4 = −2.1859, s∗21 = s∗31 = s∗41 =
0.0753, s∗24 = s∗32 = s∗43 = 0, and the optimum value is −s∗21 − s∗31 − s∗41 = −0.226. In order to
make the weight vector x∗ = exp(y∗) = (1, 1, 0.2529, 0.1124) comparable to w, renormalize it by
a multiplication by w2/x

∗
2 = w3/x

∗
3 = w4/x

∗
4 = 0.436173 to get

w∗ =









0.436173
0.436173
0.110295
0.049014









,

that differs from w in its first coordinate only. Furthermore, w∗ equals to weight vector w′′ in
Example 1.2. One can check from the consistent approximation generated by weight vector w∗,

[

w∗
i

w∗
j

]

=









1 1 3.9546 8.8989
1 1 3.9546 8.8989

0.2529 0.2529 1 2.2503
0.1124 0.1124 0.4444 1









(

=

[

w′′
i

w′′
j

]

as in (9)

)

.

that weight vector w∗ internally dominates w, moreover, Theorem 4.1 guarantees that weight
vector x∗ is efficient, so is weight vector w∗.
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