Addendum:

Two short proofs regarding the logarithmic least squares optimality in Chen, K., Kou, G., Tarn, J.M., Song, J. (2015): Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices, Annals of Operations Research 235(1):155-175

Sándor Bozóki ${ }^{1,2,3}$

The incomplete logarithmic least squares (LLS) problem has been solved in [1, Section 4]. Theorems 1 and 2 in [2] are special cases, and short proofs can be given with the help of the Laplacian matrix.

Proof of Theorem 2 in [2]: We can assume without loss of generality that $i=1, j=$ 2 and elements $a_{1 k}, a_{2 k}$ and their reciprocals are known for $k=3,4, \ldots, n-m$, and the remaining elements a_{12}, a_{21} as well as $a_{1 k}, a_{2 k}$ and their reciprocals are unknown for $k=n-m+1, \ldots, n$. Let us write the conditions of LLS optimality, a system of linear equations (30) in [1], it is sufficient to detail the first two rows of the matrix of coefficients.

$$
\left(\begin{array}{cc|cccc|ccc}
n-m-2 & 0 & -1 & -1 & \ldots & -1 & 0 & \ldots & 0 \\
0 & n-m-2 & -1 & -1 & \ldots & -1 & 0 & \ldots & 0 \\
& \vdots & & \vdots & & \vdots \\
& \vdots & & & \vdots & & \vdots \\
& \vdots & & & \vdots & \vdots
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\hline y_{3} \\
\vdots \\
y_{n-m} \\
\hline y_{n-m+1} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\log \prod_{k=3}^{n-m} a_{1 k} \\
\log \prod_{k=3}^{n-m} a_{2 k} \\
\vdots \\
\vdots
\end{array}\right),
$$

where $y_{i}=\log w_{i}$. The first two equations are

$$
\begin{aligned}
& (n-m-2) y_{1}-\left(y_{3}+\ldots+y_{n-m}\right)=\log \prod_{k=3}^{n-m} a_{1 k} \\
& (n-m-2) y_{2}-\left(y_{3}+\ldots+y_{n-m}\right)=\log \prod_{k=3}^{n-m} a_{2 k}
\end{aligned}
$$

and their difference results in

$$
y_{1}-y_{2}=\frac{\log \prod_{k=3}^{n-m} a_{1 k}-\log \prod_{k=3}^{n-m} a_{2 k}}{n-m-2}
$$

[^0]or equivalently,
$$
\frac{w_{1}}{w_{2}}=\left(\prod_{k=3}^{n-m} \frac{a_{1 k}}{a_{2 k}}\right)^{\frac{1}{n-m-2}}
$$

Proof of Theorem 1 in [2]: Apply the previous proof with $m=0$.

References

[1] Bozóki, S., Fülöp, J., Rónyai, L. (2010): On optimal completion of incomplete pairwise comparison matrices, Mathematical and Computer Modelling, 52(1-2):318333
[2] Chen, K., Kou, G., Tarn, J.M., Song, J. (2015): Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices, Annals of Operations Research 235(1):155-175

[^0]: ${ }^{1}$ Laboratory on Engineering and Management Intelligence, Research Group of Operations Research and Decision Systems, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI); Mail: 1518 Budapest, P.O. Box 63, Hungary. E-mail: bozoki.sandor@sztaki.mta.hu
 ${ }^{2}$ Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest, Hungary
 ${ }^{3}$ Research was supported by the János Bolyai Research Fellowship no. BO/00154/16/3 of the Hungarian Academy of Sciences and by the Hungarian Scientific Research Fund, grant OTKA K111797.

