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Abstract: We say that a set system F ⊆ 2[n] shatters a given set S ⊆ [n] if 2S =
{F ∩ S : F ∈ F}. The Sauer-Shelah lemma states that in general, a set system F
shatters at least |F| sets. A set system is called shattering-extremal if it shatters exactly
|F| sets. In [9] and [13] an algebraic characterization of shattering-extremal set systems was
given, which offered the possibility to generalize the notion of extremality to general finite
vector systems. Here we generalize the results obtained for set systems to this more general
setting, and as an application, strengthen a result of Li, Zhang and Dong from [8].

Keywords: shattering-extremal set systems, standard monomials, Gröbner bases,
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All results of this note are part of the PhD dissertation of Tamás Mészáros. For proofs of the main
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1 Preliminaries

Before getting started with the main definitions, we introduce some notation. Throughout this note F
will stand for a field, and n will be a positive integer. The set {1, 2, . . . , n} will be referred to shortly
as [n] and its powerset as 2[n]. Vectors of length n will be denoted by boldface letters, and we denote
their coordinates by the same letter indexed by respective numbers, for example y = (y1, . . . , yn) ∈ Fn.
For the ring of polynomials in n variables over F we will use the usual notation F[x1, . . . , xn] = F [x]. To
shorten our notation, for a polynomial f(x1, . . . , xn) we will write f(x). If w ∈ Nn, we write xw for the
monomial xw1

1 . . . xwn
n ∈ F [x]. For a subset M ⊆ [n], the monomial xM will be

∏
i∈M xi (and x∅ = 1).

1.1 Shattering-extremal families

A set system shatters a given set S ⊆ [n] if 2S = {F ∩S : F ∈ F}. The family of subsets of [n] shattered
by F is denoted by Sh(F). In general we have that |Sh(F)| ≥ |F| for every set system F ⊆ 2[n]. This
statement was proved by several authors independently, and is often referred to as the Sauer-Shelah
lemma. For a proof see e.g. [2]. A set systems F ⊆ 2[n] is shattering-extremal, or s-extremal for short,
if it shatters exactly |F| sets, i.e. |F| = |Sh(F)|. For example, if F is a down-set (i.e. H ⊆ F and
F ∈ F imply H ∈ F) then F is s-extremal, simply because in this case Sh(F) = F . Many interesting
results have been obtained in connection with these combinatorial objects, among others by Bollobás,
Leader and Radcliffe in [3], by Bollobás and Radcliffe in [4], by Frankl in [5] and recently Kozma and
Moran in [7] provided further interesting examples of s-extremal set systems. For a graph theoretical
characterization of s-extremal systems see [11] and [12]. Anstee, Rónyai and Sali in [2] related shattering
to standard monomials of vanishing ideals. Based on this, the present authors in [9] and [13] developed
algebraic methods for the investigation of s-extremal families, which we recall now briefly.
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1.2 Algebraic description of s-extremal families

Given some set F ⊆ [n], let vF ∈ {0, 1}n be its characteristic vector, i.e. the i-th coordinate of vF is 1 if
i ∈ F and 0 otherwise. Therefore we can identify a set system F ⊆ 2[n] with the vector system

V(F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ Fn.

One can then associate to F the vanishing ideal I(V(F))E F[x], where

I(F) = I(V(F)) = {f ∈ F[x] : f(vF ) = 0 for every F ∈ F}.

Note that we always have {x2i − xi : i ∈ [n]} ⊆ I(F). The vanishing ideal of a general finite point set
V ⊆ Fn can be defined similarly. For more details about vanishing ideals of finite point sets see e.g. [13].

A total order ≺ on the monomials in F[x] is a term order, if 1 is the minimal element of ≺, and
≺ is compatible with multiplication with monomials. One well-known and important term order is the
lexicographic (lex) order. Here one has xw ≺lex xu if and only if for the smallest index k with wk 6= uk one
has wk < uk. One can build a lex order based on other orderings of the variables as well, so altogether we
have n! different lex orders on the monomials of F [x]. Given some term order ≺ and a non-zero f ∈ F[x],
the leading monomial Lm(f) of f is the largest monomial (with respect to ≺) appearing with non-zero
coefficient in the canonical form of f . For an ideal I E F[x] we denote the set of all leading monomials of
polynomials in I by Lm(I). A monomial is called a standard monomial of I if it is not a leading monomial
of any f ∈ I. Sm(I) denotes the set of standard monomials of I. Standard monomials have some very
nice properties; among other things, they form a linear basis of the F-vector space F[x]/I and in the
case of vanishing ideals of finite set systems they are all square-free monomials. In general for vanishing
ideals of finite vectors sets, not merely 0 − 1 vectors, their number equals the size of the defining point
set and for lex orders they can be computed in linear, O(n|F|k) time, where k is the number of different
coordinates appearing (see [6]).

For an ideal I E F[x] a finite subset G ⊆ I is called a Gröbner basis of I with respect to ≺ if for
every f ∈ I there exists a g ∈ G such that Lm(g) divides Lm(f). G is a universal Gröbner basis if it is a
Gröbner basis for every term order. Gröbner bases have many nice properties, for details the interested
reader may consult e.g. [1].

The first key result in the characterization of s-extremal set systems was the algebraic description of
the family of shattered sets, namely that

Sh(F) =
⋃

all term orders

Sm(I(F)) =
⋃

lex orders

Sm(I(F)),

where on the right hand side any square-free monomial xH is identified with the set H ⊆ [n]. Since the
number of standard monomials of I(F) equals |F| for every fixed term order, as a corollary we obtain
the following proposition.

Proposition 1 ([9],[13]) F ⊆ 2[n] is s-extremal if and only if the standard monomials of I(F) are the
same for every term/lex order.

As mentioned earlier, for lex orders Sm(I(F)) can be computed in linear time, however the number of
possible lex orders is n!, and so the above result does not offer directly a method to check the extremality
of a set system. However it turns out that we actually need only a significantly smaller collection of lex
orders.

Theorem 2 Take n orderings of the variables such that for every index i there is one in which xi is the
greatest element, and take the corresponding lex term orders. If F ⊆ 2[n] is not extremal, then among
these we can find two term orders for which the sets of standard monomials of I(F) differ.

Accordingly, by computing the standard monomials for n lex orders we can decide the extremality of
a set system in O(n2|F|) time.

To continue, for F ⊆ 2[n] define the downshift by the element i ∈ [n] as
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Di(F) = {F\{i} | F ∈ F} ∪ {F | F ∈ F , i ∈ F, F\{i} ∈ F}.

It is not hard to see that |Di(F)| = |F| and Sh(Di(F)) ⊆ Sh(F), hence Di preserves s-extremality
(see e.g. [4]). Downshifts are an important tool in the study of set systems, in particular they can be used
to give a possible combinatorial description of the family of standard monomials of the vanishing ideal
I(F) for lexicographic term orders. For indices i1, i2, . . . , i` put Di1,i2,...,i`(F) := Di1(Di2(. . . (Di`(F)))).

Proposition 3 ([9]) Let F ⊆ 2[n] and ≺ be a lexicographic term order for which xi1 � xi2 � · · · � xin .
Then

Sm(I(F)) = Din,in−1,...,i1(F),

where on the left hand side any square-free monomial xH ∈ Sm(I(F)) is identified with the set H ⊆ [n].

The results about s-extremal families also include a nice connection between s-extremal families and
the theory of Gröbner bases. Given a pair of sets H ⊆ S ⊆ [n] we define the polynomial fS,H(x) =
xH ·

∏
i∈S\H(xi−1). A useful property of these polynomials is that for a set F ⊆ [n] we have fS,H(vF ) 6= 0

if and only if F ∩ S = H, however much more is true.

Theorem 4 ([9],[13]) F ⊆ 2[n] is s-extremal if and only if there are polynomials of the form fS,H , which
together with {x2i − xi : i ∈ [n]} form a universal Gröbner basis of I(F).

We remark that in Theorem 4 it is enough to require a Gröbner basis of the above form for just one term
order to have an s-extremal family.

1.3 Extremal vector systems

There is a usual way of generalizing the notion of shattering (see e.g. [14]) for collections of vectors
from {0, 1, ..., k − 1}n. Let V be a class of [n]→ {0, 1, ..., k − 1} functions. We say that V shatters a set
S ⊆ [n] if for every function g : S → {0, 1, ..., k − 1} there exists a function f ∈ V such that f |S = g. As
previously let Sh(V) denote the family of shattered sets. In the definition of extremality the Sauer-Shelah
lemma played a key role, however in this case we cannot expect a similar inequality to hold. Indeed,
as Sh(V) ⊆ 2[n], there are at most 2n sets shattered, but at the same time the size of V can be much
larger, up to kn. This lack of a Sauer-Shelah-like inequality suggests to forget about shattering, and
define extremality according to Proposition 1.

Proposition 5 ([10]) If V ⊆ {0, 1, ..., k − 1}n ⊆ Rn is a finite set, then Sm(I(V)) is the same for every
lexicographic term order if and only if Sm(I(V)) is the same for every term order.

Accordingly we define a finite set of vectors V ⊆ {0, 1, ..., k − 1}n ⊆ Rn to be extremal if Sm(I(V))
is the same for every lexicographic term order, or equivalently if Sm(I(V)) is the same for every term
order. Proposition 5 was needed to guarantee that the definition of extremality in this general setting
is compatible with the special case of set systems. We remark that, although in the above definition
I(V) is considered inside R [x], our results remain true over an arbitrary field F and vector systems
V ⊆ {a1, . . . , ak}n ⊆ Fn (see the universality property of standard monomials in [6]).

For 1 ≤ i ≤ n, the i-section of V ⊆ {0, 1, . . . , k−1}n for arbitrary elements α1, . . . , αi−1, αi+1, . . . , αn ∈
{0, 1, . . . , k − 1} is defined as

Vi(α1, . . . , αi−1, αi+1, . . . , αn) = {α | (α1, . . . , αi−1, α, αi+1, . . . , αn) ∈ V}.

Using i-sections one can define the downshift at coordinate i in the general case. For any finite point set
V ⊆ {0, 1, . . . , k − 1}n, Di(V) is the unique point set in {0, 1, . . . , k − 1}n, for which

(Di(V))i(α1, .., αi−1, αi+1, .., αn) = {0, 1, .., |Vi(α1, .., αi−1, αi+1, .., αn)| − 1}

whenever Vi(α1, . . . , αi−1, αi+1, . . . , αn) is non-empty, and empty otherwise. For indices i1, i2, . . . , i` let
as before Di1,i2,...,i`(V) := Di1(Di2(. . . (Di`(V)))). Now using these definitions Proposition 3 generalizes
naturally to this setting as well.
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Proposition 6 ([9]) Let V ⊆ {0, 1, . . . , k − 1}n ⊆ Rn be a finite point set and ≺ the lexicographic term
order order for which xi1 � xi2 � · · · � xin . Then

Sm(I(V)) = Din,in−1,...,i1(V).

Note that according to Proposition 6 we could have defined extremal vector systems fully combinato-
rially as demonstrated by the following corollary.

Corollary 7 A finite point set V ⊆ {0, 1, . . . , k − 1}n is extremal if and only if Dπ(n),π(n−1),...,π(1)(V) is
the same for every permutation π of [n].

In [9], beside Proposition 6, several other results concerning this general setting were proved, however
the general versions of the two main results about set systems, Theorem 2 and Theorem 4, were missing.

2 Main results

A polynomial f(x) ∈ F [x] is called degree dominated with dominating term xw if it is of the form

f(x) = xw +
∑`
i=1 αix

vi , where xvi |xw for every i. By basic properties of term orders we have that the
dominating term of such a polynomial is also its leading term for every term order. As an example of a
degree dominated polynomial one can consider any polynomial of the form fS,H or for i = 1, . . . , n the
polynomial x2i − xi, all of them appearing in Theorem 4.

Theorem 8 ([10]) A finite set of vectors V ⊆ {0, 1, ..., k − 1}n ⊆ Rn is extremal if and only if there is
a finite family G ⊆ R[x] of degree dominated polynomials that form a universal Gröbner basis of I(V). �

We remark that similarly as in the case of Theorem 4, in Theorem 8 it is also enough to require that
I(V) has a suitable Gröbner basis for some term order. Similarly, Theorem 2 also generalizes to this
vector setting.

Theorem 9 ([10]) Take n orderings of the variables such that for every index i there is one in which
xi is the greatest element, and take the corresponding lex orders. If V ⊆ {0, 1, ..., k − 1}n ⊆ Rn is not
extremal, then among these we can find two term orders for which the sets of standard monomials of I(V)
differ. �

Theorem 9 has several interesting consequences. First of all, it means that in the definition of ex-
tremality it would have been enough to require that the family of standard monomials is the same for a
particular family of lex orders of size n. Next, Theorem 9, just like Theorem 2 for set systems, also results
an efficient, O(n2|V|k) time algorithm for deciding whether a finite set of vectors V ⊆ {0, 1, ..., k−1}n ⊆ Rn
is extremal or not. Finally, Theorem 9, when considered over an arbitrary field F and vector systems
V ⊆ {a1, . . . , ak}n ⊆ Fn, allows a strengthening of a result by Li, Zhang and Dong from [8], where they
investigated the standard monomials of zero dimensional polynomial ideals.

An ideal I /F [x] is called zero dimensional if the factor space F [x] /I is a finite dimensional F-vector
space. It is easy to see that vanishing ideals of finite point sets are special types of zero dimensional
ideals.

A term order ≺ is called an elimination order with respect to the variable xi if xi is larger than any
monomial from F[x1, . . . , xi−1, xi+1, . . . , xn]. As an example one can consider any lex order where xi is
the largest variable.

For 1 ≤ i ≤ n let ≺i be an elimination order with respect to xi. Part (2) ⇔ (3) of Theorem 4 in
[8] states that if F has characteristic zero, then the standard monomials of any zero dimensional ideal
I /F [x] are the same for every term order if and only if they are the same for ≺1, . . . ,≺n. We claim that
(the general form of) Theorem 9 together with the universality property of standard monomials (see [6])
prove the same result for arbitrary fields. For this we remark, that the proof of Theorem 9 uses only
the elimination property of lex orders and the fact that the number of standard monomials of the ideal
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considered is the same for every term order. Accordingly, the result remains true if we substitute the lex
orders by arbitrary elimination term orders with respect to the variables and the vanishing ideal I(V)
by a zero dimensional ideal I. For the second part here note that as the standard monomials form a
linear basis of the F-vector space F [x] /I, their number is the same, namely the dimension of this space,
for every term order. With these observations in mind one gets the following form of Theorem 9, which
generalizes part (2)⇔ (3) of Theorem 4 from [8] to arbitrary fields instead of fields of characteristic zero.

Theorem 10 ([10]) Let F be an arbitrary field and for 1 ≤ i ≤ n let ≺i be an elimination order with
respect to xi. Then the standard monomials of any zero dimensional ideal I /F [x] are the same for every
term order if and only if they are the same for ≺1, . . . ,≺n. �
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