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We present an experimental method for mapping English words to real-
valued vectors using entries of a large crowd-sourced dictionary. Intuition tells
us that most of the information content of the average utterance is encoded
by word meaning (Kornai (2010) posits 85%), and mappings of words to vec-
tors (commonly known as word embeddings) have become a core component of
virtually all natural language processing (NLP) applications over the last few
years. Embeddings are commonly constructed on the basis of large corpora,
approximating the semantics of each word based on its distribution. In a set
of pilot experiments we hope to demonstrate that dictionaries, the most tradi-
tional genre of representing lexical semantics, remain an invaluable resource for
constructing formal representations of word meaning.

1 Background
Nearly all common tasks in natural language processing (NLP) today are per-
formed using deep learning methods, and most of these use word embeddings –
mappings of the vocabulary of some language to real-valued vectors of fixed di-
mension – as the lowest layer of a neural network. While many embeddings are
trained for specific tasks, the generic ones we are interested in are usually con-
structed with the objective that words with similar distributions (as observed
in large corpora) are mapped to similar vectors. In line with the predictions of
the distributional hypothesis, this approach causes synonyms and related words
to cluster together. As a result, these general-purpose embeddings serve as ro-
bust representations of meaning for many NLP tasks; however, their potential is
necessarily limited by the availability of data. Lack of training data is a major
issue for all but the biggest languages, and not even the largest corpora are
sufficient to learn meaningful vectors for infrequent words. Lexical resources
created manually, such as monolingual dictionaries, may be expensive to create,
but crowdsourcing efforts such as Wiktionary or UrbanDictionary provide large
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and robust sources of dictionary definitions for large vocabularies and – in the
case of Wiktionary – for many languages.

Recent efforts to exploit dictionary entries for computational semantics in-
clude a semantic parser that builds concept graphs from dependency parses of
dictionary definitions (Recski, 2016; Recski, to appear) and a recurrent neural
network (RNN) architecture for mapping definitions and encyclopaedia entries
to vectors using pre-trained embeddings as objectives (Hill et al., 2016). In
this paper we construct embeddings from dictionary definitions by encoding
directly the set of words used in some definition as the representation of the
given headword. We have shown previously (Kornai et al., 2015) that apply-
ing such a process iteratively can drastically reduce the set of words necessary
to define all others. The extent of this reduction depends on the – possibly
non-deterministic – method for choosing the set of representational primitives
(the defining vocabulary). The algorithm used in the current experiment will
be described in Section 2. Embeddings are evaluated in Section 3, Section 4
presents our conclusions.

2 Word vectors from dictionary definitions
In this research, we eschew a fully distributional model of semantics in favor
of embeddings built from lexical resources. At first glance, the two approaches
seem very different: huge corpora and unsupervised learning vs. a hand-crafted
dictionary of a few hundred thousand entries at most. Looking closer, however,
similarities start to appear. As mentioned previously, generic (“semantic”) em-
beddings are trained in such a way that synonyms and similar words cluster
together; not unlike how definitions paraphrase the definiendum into a synony-
mous phrase (Quine, 1951). The two methods thus can be viewed as two sides
of the same empirical coin; we might not fully go against Quine then when we
“appeal to the nearest dictionary, and accept the lexicographer’s formulation
as law”. Representing (lexical) semantics as the connections between lexical
items has a long tradition in the NLP/AI literature, including Quillian’s classic
Semantic Memory Model (Quillian, 1968), widely used lexical ontologies such
as WordNet (Miller, 1995) and recent graph-based models of semantics such as
Abstract Meaning Representations (Banarescu et al., 2013) and 4lang (Kornai,
2012; Recski, to appear).

In the model presented below, word vectors are defined not by count distri-
butions (as in e.g. Pennington et al. (2014)), but by interconnections between
words in the dictionary. For the purpose of this paper, we chose the English
Wiktionary1 as the basis of our embedding, because it is freely available; how-
ever, the method would work on any monolingual dictionary. The word vectors
are computed in three steps.

First, we preprocess the dictionary and convert it into a formal structure,
the definition graph: a directed graph whose vertices correspond to headwords
in the dictionary. Two vertices A and B are connected by an edge A← B if the

1https://www.wiktionary.org/
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definition of the head contains the tail, e.g. A: B C D. Definition graphs can be
weighted and unweighted. In the former, each vertex distributes the unit weight
among its in-edges equally; in the latter, each edge has a weight of 1. Continuing
the previous example, the edges from B, C and D to A have a weight of 1

3 in
the weighted graph and 1 in the unweighted one.

Next, an iterative algorithm is employed to find an “Ouroboros” set of words,
which satisfies two conditions:

1. the whole vocabulary can be defined in terms of it, i.e. all directed
paths leading to a word in the definition graph can be traced back to
the Ouroboros set

2. it can define itself, so no words outside the set appear in the definitions of
its members (we call this self-containedness the ouroboros property).

The idea that a small set of primitives could be used to define all words in
the vocabulary is not new (Kornai, in press); several such lists exist. The most
relevant to the current work is probably the Longman Defining Vocabulary
(LDV), used exclusively in the definitions of earlier versions of the Longman
Dictionary of Contemporary English (LDOCE) (Bullon, 2003). The LDV is not
minimal, and in previous work it served as our starting point to reduce the size
of the essential word set as much as possible (Kornai et al., 2015). Here we
chose a different approach, not least because no such list exists for Wiktionary.

Finding the Ouroboros set would be easy if the definition graph was a DAG.
However, due to the interdependence of definitions in the dictionary, the graph
contains (usually many) cycles. Our algorithm deals with this by choosing a
“defining” node in each cycle, and collecting these in a set. Then, all arrows from
outside of the set to inside it are removed. It is clear that this set is defining,
as every non-member vertex is reachable from the nodes in it. Furthermore,
after the removal of inbound edges, the set satisfies the second condition and
therefore it is an Ouroboros.

Trivially, the whole dictionary itself is an Ouroboros set, provided that dan-
gling edges (corresponding to words in definitions that are themselves not de-
fined in the dictionary) are removed from the definition graph2. Needless to say,
we are interested in finding the smallest possible (or at least, a small enough)
set that satisfies the property.

Mathematically inclined readers might recognize our Ouroboros as the feed-
back vertex set of the definition graph. In the remainder of this paper, we shall
stick to the former (perhaps inaccurate) name, as it also hints at the way it is
generated – see section 2.2. Furthermore, elements of the set shall be referred to
– perhaps even more incorrectly than the singular term – with the plural form,
ouroboroi.

In the final step of the algorithm, the vertices of the definition graph are
mapped into real valued vectors in Rn, where n is the size of the Ouroboros set.
The vectors that correspond to the ouroboroi serve as the basis of the vector

2This move might sound dubious, but justifiable if the dictionary encompasses a large
enough portion of the vocabulary of the language.
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space; they are computed from the structure of the Ouroboros subgraph. Other
words are assigned coordinates in this space based on how they are connected
to the ouroboroi in the definition graph.

It is worth noting that in our case, the dimensionality of the embedding is
dictated by the data; this is in sharp contrast to regular embeddings, where n
is a hyperparameter.

The steps are explained in more detail below.

2.1 Preprocessing the dictionary
A dictionary is meant for human consumption, and as such, machine readability
is, more often than not, an afterthought. Wiktionary is no exception, although
its use of templates makes parsing a bit easier. We used the English dump of
May 2017, and extracted all monolingual entries with the wiktionary_parser
tool from the 4lang library3. The definitions are then tokenized, lemmatized
and tagged for POS by the corresponding modules of the Stanford CoreNLP
package (Manning et al., 2014).

At a very basic level, tokenization is enough to produce a machine readable
dictionary. However, further transformations were applied to the dictionary
to improve recall and decrease its size by removing irrelevant data, as well as
to correct inconsistencies in how it was compiled. Raw word forms generally
give low recall because of the difference in inflection between definienda and
definientia. To solve this problem, we employed two essential techniques from
information retrieval (IR): lemmatization and lowercasing. Our aim with the
dictionary is to build a definition graph of common words. Looking at the
dictionary from this angle, it is clear that it contains a large amount of irrelevant
data.

• multiwords: Wiktionary has entries for multiword units, such as expres-
sions and noun compounds. While this poses no problems for the algo-
rithm described below, currently we have no means to evaluate such lexical
units.

• proper nouns: proper nouns often cluster into strongly connected groups,
such as mythologies (Étaín, Midir and the Dagda, amongst others, rep-
resent Ireland) or country-capital pairs (e.g. Dehradun and Uttarakhand
from French India). Each such group inevitably “delegates” one of its
members to the ouroboros, increasing its size for negligible gains.

• punctuation: punctuation marks clearly have no role on the semantic level;
on the syntactic side, our BOW approach renders them superfluous.

• stopwords: similarly to punctuation, function words bring very little to
the table; removing them is a common practice in IR.

3https://github.com/kornai/4lang/
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Preprocessing steps Vocabulary size Ouroboros size
none 175,648 3,263
lowercasing 176,814 3,591
lemmatization 179,212 3,703
no multiword 140,058 3,231
no proper nouns 151,652 2,688
no punctuation 175,651 3,263
no stopwords 171,389 3,196
all 122,397 3,346

Table 1: Effect of filtering steps on vocabulary and Ouroboros size

We created a dictionary file for every combination of the transformations
described above. Proper nouns and punctuation were filtered by their POS
tags; stopwords according to the list in NLTK (Bird et al., 2009). In case
of the latter two, not only were the tokens removed from the definitions, but
their entries were also dropped. Table 1 lists the most important versions, as
well as the effect of the various filtering methods on the size of the vocabulary
and the Ouroboros of the resulting dictionary. It can be seen that lowercasing
and lemmatization indeed increase the recall, and that multiwords and proper
nouns make up about one third of the dictionary. The effect on the size of
the Ouroboros seems more incidental; it is certainly not linear in the change in
vocabulary size.

The linguistic transformations above have been straightforward. However,
we are also faced with lexicographical issues that require further consideration.
The first of these concerns entries with multiple senses: homonymous and pol-
ysemous words. While the former needs no justification, the interpretation of
polysemy, as well as the question of when it warrants multiple definitions, is
much debated (see e.g. Bolinger (1965) and Kirsner (1993) and the chapter on
lexemes in Kornai (in press)). Aside from any theoretical qualms one may have,
there is also a practical one: even if the different senses of a word are numbered,
its occurrences in the definitions are not, preventing us from effectively using
this information. Therefore, we decided to merge the entries of multi-sense
words by simply concatenating the definitions pertaining to the different senses.

The second problem is inconsistency. One would logically expect that each
word used in a definition is itself defined in the dictionary; however, this is not
the case. Such words should definitely be added to the ouroboros, but having
no definition themselves, would contribute little to its semantics. As such, we
eliminated them with an iterative procedure that also deleted entries whose
definition became empty as a result. The procedure ran for 3–4 iterations, the
number of removed entries / tokens ranging from 5342 / 912,373 on the raw
dictionary to 707 / 125,509 on the most heavily filtered version.

Finally, in some entries, the definiens contains the definiendum. Since the
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presence or absence of these references – an artifact of the syntax of the language
the definition is written in, not the semantics of the word in question – is
arbitrary, they were removed as well.

2.2 The Ouroboros
Once the dictionary is ready, the next step towards the embedding is creating
the Ouroboros set, which will serve as the basis of the word vector space. The
Ouroboros is generated by an iterative algorithm that takes the definition graph
as input and removes vertices at each iteration. The vertex set that remains at
the end is the Ouroboros. A high-level pseudocode of the algorithm is included
at the end of this section.

An iteration consists of two steps. In the first, we iterate through all words
and select those that can be replaced by their definition. A word can be replaced
if the following conditions hold:

1. no other words connected to the word in question in the definition graph
(via both in- or out-edges) have been marked for replacement;

2. the vertex that corresponds to the word has no self-loop.

The first condition is simply a way of preventing race conditions in the
replacement process. The second one, however, calls for some explanation. As
we made sure that no definition contains its headword in the dictionary, initially,
the definition graph contains no self-loops. However, as more and more words
are removed, self loops start to appear. This is also our final stopping condition:
the algorithm exits when all remaining vertices are connected to themselves.
One can look at this condition as a way of saying that a word in the Ouroboros
cannot be defined solely in terms of other words – in a way, it eats its own tail.

The second step performs the actual replacement. It removes the vertices
marked by the first step, and connects all of their direct predecessors in the graph
to their directs successors. In the weighted version, the weights are updated
accordingly: the weight of a new edge will be equal to the product of the weights
of the two edges it replaces. Figure 1 illustrates the replacement procedure with
an example.

This step is also responsible for building the embedding graph. At first,
the graph is empty. Each vertex removed by the algorithm, together with its
in-edges, is added to it. By the time the algorithm stops, all vertices will have
been added to the embedding graph. It is easy to see that this graph is a DAG,
with the ouroboroi as its sources: what the whole algorithm effectively does
is decrease the size of the cycles in the definition graph, vertex-by-vertex and
edge-by-edge. The cycles never disappear completely, but become the self loops
that mark the Ouroboros set. It follows then, that the Ouroboros contains at
least one vertex and one edge (the self loop) from each cycle in the original
definition graph and thus the embedding graph is free of (directed) cycles.

This algorithm can be tuned in several ways. The attentive reader might
have noticed that the order in which the words are evaluated in the first step
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Figure 1: The definition graph before (left) and after (right) the word dog is
replaced with its predecessors. Note that the sum of the in-weights for bark and
dogless remains constant.

strongly determines which end up as replaceable. Several strategies were con-
sidered, including alphabetical and random order, shortest / longest, or rare /
most common word (in definitions) first. Not surprisingly, rare words first per-
formed best: this agrees with the intuition that the “basis” for the embedding
should mostly contain basic words. Consequently, all numbers reported in this
paper were attained with the rare first strategy.

We also experimented with decreasing the size of the embedding graph
by deleting edges below a certain weight threshold; this is the equivalent of
magnitude-based pruning methods in neural networks (Hertz et al., 1991). How-
ever, the performance of the embeddings created from pruned and unweighted
graphs lagged behind those created from weighted ones. Hence, we used the
latter for all experiments.

Algorithm 1 The Ouroboros algorithm
1: function create_uroboros(dictionary)
2: DG← create_definition_graph(dictionary)
3: EG← Graph()
4: repeat
5: replaceable← collect_replaceable(DG)
6: if length(replaceable) > 0 then
7: do_replace(DG,EG, replaceable)
8: until length(replaceable) > 0
9: return DG, EG
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2.3 The Embedding
This section describes the algorithm that takes as its input the ouroboros and
embedding graphs and produces a word embedding. First, the basis of the
vector space is computed. Since our goal is to describe all words in terms of the
Ouroboros, the vector space will have as many dimensions (denoted with D) as
there are vertices in the Ouroboros graph. Each coordinate corresponds to a
word; the mapping is arbitrary, and we opted for alphabetic order. The word
vectors for the ouroboroi (the first D rows of the embedding) are chosen to be
the basis vectors of the vectors space.

The basis vector for an Ouroboros word w, however, can be calculated in
two ways:

1. Ouroboros-as-coordinates (OAC): as a sparse vector, where the only nonzero
coordinate is the one that corresponds to the word itself. The first D rows
of the embedding thus form the identity matrix.

2. Ouroboros-as-vectors (OAV): as a vector whose nonzero coordinates corre-
spond to the direct predecessors of w in the ouroboros graph. The values
of the coordinates are the weights of the edges between its predecessors
and w.

The two variants have opposing properties. OAV is much denser, which might
bring words much closer in the semantic space than they really are, introducing
“false semantic friends”. OAC, on the other hand, is so sparse that the similarity
of two Ouroboros words is always zero. This property might be useful if our
algorithm was guaranteed to find the most semantically distributed feedback
vertex set; however, no such guarantee exists. Since it is hard to choose between
the two based solely on theoretical grounds, both variants are evaluated in the
next chapter.

The vectors for the rest of the words are computed from the embedding
graph. The graph is sorted topologically, with the ouroboroi at the beginning.
The algorithm iterates through the words. The vector of a word w is set to
be the weighted sum of the vectors of its direct predecessors in the embedding
graph:

vw =
∑

w′:(w′,w)∈EG

vw′ · e(w′,w),

where e(i,j) is the weight of the edge between i and j. The topological sort
ensures that by the time we arrive to w, the vectors for all w′s have already
been calculated.

More by accident than design, we also created a third embedding beside
OAC and OAV. Here the basis is taken from OAV, but the rest of the vectors
are the same as for OAC; accordingly, we named it Chimera (CHI). While
the construction of this embedding is mathematically incorrect, it performed
unexpectedly well, so we included it in the evaluation alonside OAC and OAV.
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3 Evaluation
The algorithm presented in Section 2 creates word embeddings, i.e. mappings
from the vocabulary of a dictionary dataset to real-valued vectors of fixed dimen-
sion. This section will present two sets of experiments, both of which indicate
that the distance between pairs of word vectors is a meaningful measure of the
semantic similarity of words. In Section 3.1 we will use two semantic similarity
benchmarks for measuring semantic similarity of English word pairs to evaluate
and compare our word embeddings. Section 3.2 presents a qualitative, manual
analysis of each embedding that involves observing the set of words that are
mapped to vectors in the immediate vicinity of a particular word vector in the
embedding space.

3.1 Benchmark performance
The embeddings were evaluated on two benchmarks: SimLex-999 (Hill et al.,
2015) and WS-353 (Finkelstein et al., 2002).

SimLex is the new standard benchark for the task of measuring the semantic
similarity of English word pairs. It contains 999 word pairs, each annotated
with a gold standard similarity score, the average of scores given by human
annotators. Performance of systems is measured as the Spearman correlation
between a system’s scores and the gold standard scores. State of the art systems
achieving correlation scores in the 0.7-0.8 range (Mrkšić et al., 2016; Recski
et al., 2016) combine multiple word embeddings and lexical resources, other
competitive systems use word embeddings customized for the task of measuring
word similarity (Schwartz et al., 2015; Wieting et al., 2015). General-purpose
embeddings typically achieve a correlation in the 0.1-0.5 range; scores for some
commonly used models are shown in Table 2.

The WS-353 dataset contains 353 word pairs. It was originally devised to
quantify any kind of semantic association: both similarity and relatedness. Here
we use the subset that targets the former, selected by Agirre et al. (2009). Sim-
ilarly to Simlex, performance is measured by Spearman’s ρ. WS-353 has been
around longer than Simlex, and various corpus- (Gabrilovich and Markovitch,
2007; Halawi et al., 2012) and knowledge-based methods (Hassan and Mihal-
cea, 2011) have been evaluated against it; the current state-of-the-art, 0.828 was
achieved by a hybrid system that also makes use of word embeddings (Speer
et al., 2017).

We evaluate various versions of our ouroboros-embeddings on both datasets.
Results are presented in Table 3. Top scores on Simlex are just above 0.2, which
outperforms Huang, but falls short of GloVe and Word2Vec by a similar margin.
On the much easier WS-353 dataset, even our best result is below that of the

4http://www.socher.org
5http://ronan.collobert.com/senna/
6https://nlp.stanford.edu/projects/glove/
7https://code.google.com/archive/p/word2vec/
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System Simlex WS-353
Coverage ρ Coverage ρ

Huang et al. (2012)4 996 0.14 196 0.67
SENNA5 (Collobert and Weston, 2008) 998 0.27 196 0.60
GloVe.840B6 (Pennington et al., 2014) 999 0.40 203 0.80
Word2Vec7 (Mikolov et al., 2013) 999 0.44 203 0.77

Table 2: Coverage and performance of some word embeddings, measured by
Spearman’s ρ

competition. Nevertheless, these results confirm that our method yields vectors
that are at least comparable to other general-purpose embeddings.

An early observation is that embeddings created using the OAV condition
(see Section 2.3) perform considerably worse than those built with the OAC
condition. The most surprising part is the performance of the CHI embedding:
while it tails behind the other two methods on Simlex, it improves dramatically
when stopwords are filtered (the last two rows), to the extent that it becomes
the best method on both datasets.

Preprocessing Simlex WS-353
Cov. ρOAC ρCHI ρOAV Cov. ρOAC ρCHI ρOAV

none 943 0.18 0.04 0.11 193 0.19 0.18 0.10
lowercasing 961 0.21 0.03 0.08 191 0.17 0.23 0.11
lemmatization 956 0.17 0.02 0.08 197 0.23 0.25 0.17
no multiword 943 0.15 0.03 0.10 193 0.19 0.15 0.08
no proper nouns 943 0.14 0.04 0.08 186 0.21 0.20 0.15
no punctuation 943 0.15 0.03 0.09 193 0.21 0.17 0.10
no stopwords 938 0.17 0.22 0.15 192 0.27 0.46 0.19
all 956 0.21 0.20 0.16 188 0.30 0.46 0.25

Table 3: Coverage and correlation of Wiktionary embeddings on Simlex and
WS-353

In order to gain further insight into how the three embeddings behave dif-
ferently, we devised a further experiment based on the all embedding. The
word pairs in the evaluation datasets have been divided into three groups, de-
pending on how many of the two words are ouroboroi. Table 4 presents the
results. Unsurprisingly, the numbers for CHI equal to OAV when both words
are in the Ouroboros and to OAC when neither is. Perhaps predictably, our
concerns about both OAC and OAV have been confirmed by the results: the
orthogonal OAC basis breaks down when both words in a pair are in it, while
the over-dense OAV fails to quantify the similarity of out-of-basis pairs. CHI,
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on the other hand, manages to be the “best of both worlds”, at least as far
as the first and the last row is concerned. Its exceptional performance in the
middle row (in italics) is perplexing, because this is the point where OAV basis
vectors are measured against OAC vectors; where the snake meets the lion, so
to speak. Unfurling this mystery is left as future work.

Word in basis Simlex WS-353
Size ρOAC ρCHI ρOAV Size ρOAC ρCHI ρOAV

Both 313 0.00 0.13 0.13 46 0.00 0.27 0.27
One 468 0.27 0.20 0.21 85 0.34 0.53 0.36
Neither 175 0.30 0.30 0.12 57 0.50 0.50 0.23

Table 4: A more in-depth look into the performance of the all embedding

Both SimLex and WS-353 contain pairs of frequent words. Our hope is
that in the next section our method will show its strength on infrequent words
that cause trouble for distributional models that are limited by the amount of
training data available.

3.2 Nearest neighbors
As mentioned in Section 1, we expect our embeddings to yield meaningful rep-
resentations even for infrequent words that pose a problem for distributional
approaches. We have no knowledge of reliable datasets containing the semantic
similarity of infrequent words, a quantitative analysis is therefore not possible.
A more subjective method to evaluate whether the angle between word vectors
is proportional to semantic similarity is to observe vectors in the immediate
vicinity of a particular vector to see whether they are semantically related to
the word corresponding to that vector. Our experiment involves examining the
nearest neighbors of vectors corresponding to a small sample of infrequent words
in our least noisy ouroboros-embedding (using all filtering steps on the Wik-
tionary data) and a large, publicly available embedding trained using GloVe
on 840 billion words of raw English text and containing vectors for 2.2 million
words.

To create a sample of infrequent English words, we used a word frequency
list constructed from the UMBC Webbase Corpus (Han et al., 2013). To ex-
tract words that are in English, correctly spelled, and can be expected to appear
in a dictionary, we matched the list against the full vocabulary used in a late
draft version of (Kornai, in press), which we know to contain many infrequent
words. After manually excluding from the resulting list technical words related
to mathematics or linguistics, we kept the five least frequent ones for the pur-
poses of the current experiment. The five words, along with their definitions in
Wiktionary, are shown in Table 5. For both the uroboros and GloVe embed-
dings we extracted the nearest neighbors of each of the five words in our sample.
Tables 6 and 7 show for each word the top two neigbors in the uroboros and
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word Wiktionary definition
compter A counter (token used for keeping count)

A prison attached to a city court; a counter
entelechy The complete realisation and final form of some potential concept or function

A particular type of motivation, need for self-determination,
and inner strength directing life and growth to become all one is capable of being

hinny The hybrid offspring of a stallion (male horse) and a she-ass (female donkey).
perron A stone block used as the base of a monument, marker, etc.

A platform outside the raised entrance to a church or large building
quodlibet A form of music with melodies in counterpoint.

A form of trompe l’oeil which realistically renders domestic items

Table 5: Sample of five infrequent words used in (Kornai, in press)

word neighbor definition
compter jeton a counter or token

countify to use as a count noun
entelechy subtyping a form of type polymorphism (...)

convolve to compute the convolution function
hinny fummel a hinny

zebrinny the offspring of a male horse and a female zebra
perron stereobate the foundation, typically of a stone building

the steps of the platform beneath the stylobate
jamo any of the 24 building blocks of the Korean (hangeul) alphabet.

quodlibet planctus a lament or dirge, a popular literary form in the Middle Ages.
chorale a chorus or choir.

a form of Lutheran or Protestant hymn tune.

Table 6: Nearest neighbors of our sample words in the ouroboros embedding

GloVe embeddings, respectively. We also include Wiktionary definitions of these
neighbor words, where available.

Even such a small and non-representative sample of infrequent English words
is sufficient to exemplify some of the issues that arise when representing infre-
quent words with distributional models. Typos of more frequent words may
dominate the total number of occurrences in a corpora: compter and hinny are
clearly represented by the GloVe embedding as alternative forms of computer
and hiney, respectively. Neighbors of the other three sample words in the GloVe
embedding are seemingly random. Meanwhile, in 4 out of the 5 example cases,
uroboros maps rare words into the vicinity of highly related lexemes.
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word neighbor definition
compter compuer n/a

copouter n/a
entelechy aristotelianism the philosophical system of Aristotle and his followers

somethingness the quality of being something
hinny tuchus alternative form of toches → the buttocks, rear end, butt

hiney buttocks
perron chingon (as chingón:) (Mexico, slang) very smart, intelligent (...)

chido (Mexico, slang) cool, acceptable, easy
quodlibet sequitur A logical conclusion or consequence of facts.

peric n/a

Table 7: Nearest neighbors of our sample words in the GloVe embedding

4 Conclusion
In this work, we examined the possibility of creating word embeddings from a
dictionary. While the performance of our embedding in the word similarity task
lags behind those obtained by prediction-based methods, it is perhaps better
suited to find relevant neighbors of rare words.

In future work, we hope to iron out the sparsity/density problem that is,
in part, responsible for the lackluster similarity scores. Another avenue of re-
search we intend to pursue is to consolidate prediction- and dictionary-based
embeddings into a hybrid model that combines the advantages of both.
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