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Abstract

Machine scheduling with raw material constraints has a great practical poten-
tial, as it is solved by ad-hoc methods in practice in several manufacturing and
logistic environments. In this paper we propose an exact method for solving
this problem with the maximum lateness objective based on mathematical pro-
gramming, our main contribution being a set of new cutting planes that can be
used to accelerate a MIP solver. We report on computational results on a wide
set of instances.
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1. Introduction

Counting with raw materials (or non-renewable resources more generally) in
the course of planning and scheduling of manufacturing processes is inevitable
in order to obtain feasible production plans and schedules (see e.g., Stadtler &
Kilger (2008)). The following case occurs frequently in practice and constitutes
the main motivation of this paper. We have to schedule the production of some
parts on a production line over the next week, and we have an initial stock and
expect some additional shipments from the suppliers over the week. Our goal is
to minimize the maximum of the late deliveries, or in other words, the lateness.
Since the parts may require common raw materials for their production, it is
not obvious how to allocate the supplies to the parts to produce. The arising
optimization problem is precisely the topic of this paper.

More formally, we focus on scheduling a single machine subject to raw ma-
terial constraints. That is, in addition to the machine, there are some raw
materials with an initial stock and some additional replenishments over time
with a-priori known dates and quantities. Jobs may require various quantities
from these resources, and a job can be started only if the required amount is on
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Figure 1: Illustration of the problem. The height of a job indicates the amount of the required
raw material.

stock. Upon starting a job, the stock level of all the resources are decreased by
the quantities needed by the job. Each job has a due-date and the objective is to
minimize the maximum lateness. As an illustration, consider Figure 1 in which
a schedule of two jobs is shown on a single machine, and notice that job J2 must
wait until the replenishment of the raw-material, because the first scheduled job
decreases the stock level below its requirement.

The above model has been first studied by Carlier (1984), and by Slowinski
(1984). In particular, Carlier has shown that minimizing the maximum job
completion time (makespan) is NP-hard in the strong sense in general. This
implies that our problem is NP-hard in the strong sense as well. Over the
years, a number of papers appeared dealing with some variants and proposing
either complexity results (Toker et al. (1991), Xie (1997), Gafarov et al. (2011)),
or approximation algorithms (Grigoriev et al. (2005), Györgyi & Kis (2015a),
Györgyi & Kis (2015b), Györgyi & Kis (2017)). However, there are only sporadic
computational results on this problem. Grigoriev et al. (2005) have provided
some test results for one of their approximation algorithms. Belkaid et al. (2012)
propose lower bounds and heuristics for minimizing the makespan in a parallel
machine environment with non-renewable resource constraints.

To our best knowledge, no exact method has been described for our prob-
lem in the literature. However, for a related problem, where some of the jobs
produce, while other jobs consume some non-renewable resources (and there
are no replenishments from external sources) Briskorn et al. (2013) propose an
exact method for minimizing the total weighted completion time of the jobs. In
the more general project scheduling setting, Neumann & Schwindt (2003) study
the makespan minimization problem with inventory constraints, and describe a
branch-and-bound method for solving it.

Single machine scheduling with the maximum lateness objective is polynomi-
ally solvable by ordering the jobs in earliest due-date order, see Jackson (1955).
In spite of the existence of a polynomial time algorithm, we are not aware of
any linear programming based method of polynomial time complexity in which
the coefficients of the variables are determined by polynomial functions of the
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problem data. That is, we require that from any input with n jobs we should be
able to get the LP formulation by plugging the problem data into multivariate
polynomials that yield the coefficients of the decision variables. However, it is
not allowed to insert new constraints, or do some sorting and then fill in the co-
efficients of the variables and the right-hand-sides in the LP. In fact, Blazewicz
et al. (1991) propose a MIP formulation for 1||Lmax using positional variables.
Moreover, a number of alternative formulations are compared and evaluated
for single machine scheduling problems with various objective function by Keha
et al. (2009). Some of the models of Keha et al. find their roots in the MIP
model of Manne (1960) for the job-shop scheduling problem using completion
time variables and ordering variables for each pair of distinct jobs requiring
the same machine. In contrast, for single machine scheduling with the sum of
(weighted) job completion times objective, 1||

∑
wjCj , an LP formulation is

developed by Queyranne (1993) in which the coefficients of the constraints are
linear functions of the problem data, while the right-hand-sides are determined
by quadratic polynomials of the data. Although the number of inequalities is ex-
ponential in the number of jobs, but they can be separated efficiently, so the LP
can be solved in polynomial time. We will adapt the inequalities of Queyranne
in Section 3.2 to our MIP model.
Main results and structure of the paper. Firstly, we will elaborate upon the
modeling of the problem by a mixed-integer linear program (MIP). Since we
have to compute the maximum lateness objective, choosing the right MIP model
is a non-trivial issue (Section 2). Second, we will devise new inequalities valid
for the feasible solutions of the MIP formulation, and also two which may cut off
feasible solutions, but they keep at least one optimal solution (Section 3.2). The
new inequalities will be used in a branch-and-cut method to strengthen the LP-
relaxation of the MIP formulation (Section 3.1). We will also sketch a heuristic
method for getting an initial feasible solution as well as an upper bound on the
optimum value in Section 3.3. We emphasize that in most papers mentioned
above, mathematical programs are used only for modeling the problem, while
the methods devised are based on some other representations. In contrast,
our branch-and-cut method uses the MIP model as the representation of the
problem, and we do not use the solver as a black-box, instead, we generate
cutting planes in the course of the solution process in order to speed up the
optimization algorithm. Thirdly, we summarize our computational results on a
large set of benchmark instances. The goal of the experiments is to determine
the limitation of the method, and also to assess the benefit of using cutting
planes to strengthen the MIP formulation (Section 4). Finally, we conclude the
paper in Section 5.

2. Problem formulation

In this section first we define our problem more formally, then describe our
MIP formulation in several steps.

In our scheduling problem there is a single machine, a set of n jobs J , and
a set of ρ non-renewable resources R. Each job j has a processing time pj > 0,
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a due-date dj ≥ 0, and resource requirements aij ≥ 0 for i ∈ R. The non-
renewable resources are supplied at dates 0 = u1 < u2 < · · · < uq, and the

amount supplied from resource i ∈ R at date u` is b̃i,` ≥ 0. All problem data
are non-negative and integer.

A schedule specifies the starting time Sj of each job j ∈ J ; it is feasible
if (i) the jobs are not preempted, (ii) no two distinct jobs overlap in time, i.e.,
Sj1 +pj1 ≤ Sj2 or Sj2 +pj2 ≤ Sj1 for each pair of distinct jobs j1 and j2, and (iii)
for each resource i ∈ R, and for each time point t, the total supply until time t
is not less than the total consumption of those jobs starting not later than t, i.e.,
if u` ≤ t is the last supply date no later than t, then

∑
j∈J:Sj≤t aij ≤

∑`
k=1 b̃ik

for each resource i ∈ R. We aim at finding a feasible schedule S minimizing the
maximum lateness Lmax(S) := maxj∈J Cj(S) − dj , where Cj(S) = Sj + pj is
the completion time of job j in schedule S.

We may assume that for each i ∈ R, the total demand does not exceed the
total supply, i.e.,

∑
j∈J aij ≤

∑q
`=1 b̃i`, otherwise no feasible solution exists.

The cumulative supply of resource i up to supply date u` is bi` :=
∑`

k=1 b̃ik.
Keha et al. (2009) describe 4 distinct MIP formulations for single machine

scheduling with the maximum lateness objective (1||Lmax). None of these for-
mulations take non-renewable resources into account, but any of them could be
further developed to model our problem. We have ruled out the time-indexed
formulation, since in that model the number of variables linearly depends on the
magnitude of the job processing times, and should we extended that model by
non-renewable resource constraints, also on the magnitude of the supply dates.
After some preliminary tests (we extended each model of Keha et al. by mod-
eling the non-renewable resource constraints), we have chosen the model with
completion time variables, and we describe it in detail subsequently.

We use three main types of variables in our formulation. Variable Cj denotes
the completion time of job j ∈ J and for each ordered pair of jobs j1, j2 ∈ J
with j1 < j2, the binary variable ordj1,j2 has value 1 if and only if j1 precedes
j2 in the schedule. Finally, there are q · |J | binary decision variables zj`, j ∈
J , ` = 1, . . . , q, to assign jobs to supplies, i.e., zj` = 1 if and only if job j can be
started before u`+1 (uq+1 = ∞), i.e., the first ` supplies can cover its resource
requirements along with all other jobs j′ 6= j with zj′` = 1. Then zj` ≥ zj,`−1
must hold and if zj` − zj,`−1 = 1 then job j must not start before u`. The MIP

4



formulation is

minimize Lmax (1)

subject to

Cj ≥ pj , j ∈ J (2)

Cj1 + pj2 ≤ Cj2 +M · (1− ordj1,j2), j1, j2 ∈ J , j1 < j2 (3)

Cj2 + pj1 ≤ Cj1 +M · ordj1,j2 , j1, j2 ∈ J , j1 < j2 (4)

Lmax ≥ Cj − dj , j ∈ J (5)

Cj − pj ≥
q∑

`=2

u` · (zj,` − zj,`−1), j ∈ J (6)∑
j∈J

aijzj` ≤ bi`, ` = 1, . . . , q − 1, i ∈ R (7)

zj,`−1 ≤ zj,`, j ∈ J , ` = 2, . . . , q (8)

zj,q = 1, j ∈ J (9)

ordj1,j2 ∈ {0, 1}, j1, j2 ∈ J , j1 < j2 (10)

zj` ∈ {0, 1}, j ∈ J , ` = 1, . . . , q. (11)

The objective is to minimize Lmax. Constraints (2)-(4) ensure that the jobs do
not overlap in time. Inequalities (5) express that Lmax is at least maxj∈J Cj−dj .
By (6) for each job j, the starting time Cj − pj is at least the u` provided
that zj` − zj,`−1 = 1. The resource constraints are encoded by (7), since if
zj` = 1 then job j can be started before u`+1, hence, its resource consumption
must be satisfied from the cumulative supply bi`, for each i ∈ R. The rest of
the constraints order the zj`, set zjq = 1, since every job is processed before
uq+1 =∞, and ensure integrality of the variables.

3. Exact solution by branch-and-cut

In this section first we sketch how branch-and-cut, a general algorithmic
approach for integer programming, can be applied to our problem, and then we
describe a number of valid inequalities (cuts) that can be used to strengthen
the LP relaxation of our MIP formulation.

3.1. Overview

One of the most successful methods for solving integer programming prob-
lems is branch-and-cut, which is linear-programming based branch-and-bound
augmented with the generation of cutting planes in search-tree nodes, see e.g.,
Crowder et al. (1983); Balas et al. (1993). The main idea is as follows. Consider
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a mixed-integer linear program over n variables and with m linear constraints:

minimize

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj = bi, i = 1, . . . ,m

xj ∈ Z, j ∈ I
0 ≤ xj ≤ uj , j = 1, . . . , n,

where the cj , aij , bi and uj are rational numbers, and I ⊆ {1, . . . , n} is the
subset of integer variables, i.e., the constraints xj ∈ Z for j ∈ I prescribe
that these variables must take integral values in any feasible solution. Its LP
relaxation is obtained by dropping the integrality constraints. Let P denote the
set of feasible solutions of the LP relaxation, and PI the closed convex hull of
P ∩ {x ∈ R | xj ∈ Z, for j ∈ I}. It is known that both P and PI are convex
polyhedra, and PI ⊆ P (Schrijver, 1998). If PI 6= P , then the LP relaxation can
be strengthened by inequalities valid for PI , but cutting off some fragment of P .
That is, if x̄ is the current optimal solution of the LP relaxation, but x̄ 6∈ PI ,
then PI must have a facet separating x̄ from PI (Schrijver, 1998). In fact, if we
manage to generate an inequality αx ≥ β such that (i) it is valid for PI , i.e.,
αx′ ≥ β for all x′ ∈ PI , and (ii) it is violated by x̄, i.e., αx̄ < β, then we can
add this inequality to the LP relaxation to strengthen it. This idea can be used
in a linear-programming based branch-and-bound algorithm, both in the root
node, and in the search-tree nodes as well. Clearly, adding such an inequality
may speed up the search because it may help to increase the lower bound on
the optimum, and also to find integer feasible solutions. Further on, if αx ≥ β
is not valid for PI , but there is a nonempty subset V of optimal solutions which
satisfy this inequality, then we can still add αx ≥ β to the LP relaxation, as
long as we do it consistently, i.e., we never add an inequality cutting off some
solution in V . Then, we are guaranteed that the branch-and-cut procedure,
when it terminates, finds an optimal solution, provided the problem is feasible,
and the set V (defined above) exists. Our MIP formulation always admits a
feasible optimal solution, and we will be able to identify structural properties
such that at least one optimal solution satisfies all of them.

3.2. Cutting planes

Note the form of the resource constraints (7). These are knapsack con-
straints, there are (q − 1)|R| of them. MIP solvers can take advantage of such
constraints by generating cover cuts to strengthen the MIP formulation, see
Balas (1975).

Since the linear ordering variables express a total ordering of the jobs through
the constraints (3)-(4), in any feasible solution they satisfy the 3-dicycle inequal-
ities of Grötschel et al. (1985) (adapted to our convention that ordjk is defined
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only if j < k):

ordj1,j2 + ordj2,j3 − ordj1,j3 ≤ 1,
−ordj1,j2 − ordj2,j3 + ordj1,j3 ≤ 0

}
j1, j2, j3 ∈ J , j1 < j2 < j3 (C1)

Next we define four new classes of cuts to strengthen the LP relaxation.
First, we have adapted the cutting planes of Queyranne (1993) to our problem:

∑
j∈S

pj(dmax(S)+Lmax−Cj +pj) ≥
1

2

∑
j∈S

p2j +

∑
j∈S

pj

2
 , S ⊆ J , (C2)

where dmax(S) is the maximum dj among those jobs in S. To justify these
inequalities, first notice that Queyranne gave a complete linear description of
the polytope with vertex set consisting of all the possible completion times of
a set of jobs J scheduled consecutively without idle times. The description
consists of the inequalities

∑
j∈S

pjCj ≥
1

2

∑
j∈S

p2j +

∑
j∈S

pj

2
 , S ⊆ J . (Q)

Now, consider any subset S of the jobs and suppose that we reverse time, and
schedule them backward from dmax(S)+Lmax. Since dmax(S)+Lmax is an upper
bound on the completion time Cj of any job j ∈ S in any feasible solution of
the MIP formulation, the completion time of j in the backward schedule is
dmax(S) +Lmax− (Cj − pj), that is, dmax(S) +Lmax minus the starting time of
the job. Plugging this into (Q) yields (C2).

The second class consists of cuts derived using a pair of jobs and their impact
on Lmax:

Lmax ≥ Cj1−(pj2−dj2+dj1)·(1−ordj1,j2)+pj2−dj2 , j1, j2 ∈ J , j1 < j2. (C3)

To see validity, first suppose that ordj1,j2 = 0 in a feasible solution of MIP.
Then the right-hand-side of (C3) equals Cj1−dj1 , and by (5), Lmax ≥ Cj1−dj1 ,
so the MIP solution satisfies (C3). On the other hand, if ordj1,j2 = 1, then
the right-hand-side equals Cj1 + pj2 − dj2 . Since Cj1 + pj2 ≤ Cj2 by (3), and
Lmax ≥ Cj2 − dj2 by (5), any feasible solution of MIP with ordj1,j2 = 1 must
satisfy (C3).

The cuts in the third and fourth class may cut off feasible solutions, but they
leave at least one optimal solution. In particular, the cuts in the third class cut
off solutions in which two jobs both starting in some interval [u`, u`+1] are not
in earliest due-date (EDD) order:

ordj1,j2 ≥ zj1,` − zj1,`−1 + zj2,` − zj2,`−1 − 1,
j1, j2 ∈ J , dj1 < dj2 ,
` = 1, . . . , q,

(C4)

where we assume that dj1 < dj2 implies j1 < j2.
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Cuts in the fourth class cut off solutions in which the total processing time
of those jobs starting in some interval [u`, u`+1] is more than u`+1 − u` + pmax,
since there always exists an optimal solution respecting this bound:∑

j∈J
(zj,` − zj,`−1) · pj ≤ u`+1 − u` + pmax, ` = 1, . . . , q − 1. (C5)

Clearly, there always exists at least one optimal solution satisfying both (C4)
and (C5).

3.3. Initial upper bound

We use an EDD based algorithm to obtain an initial upper bound. In this
algorithm we consider the jobs one-by-one in EDD order and schedule the next
job j in the partial schedule S′ of the already scheduled jobs at the earliest
moment t when both of the following conditions hold: (i) the machine is idle
in [t, t + pj ] and (ii) the resulting partial schedule does not violate any of the
resource constraints, i.e., we have enough resource for all the scheduled jobs.
Notice that (ii) is satisfied if the level of any resource i ∈ R is at least aij in the
entire interval [t,+∞) in the partial schedule S′.

4. Computational results

4.1. Test instances

We have generated instances for the following (n, q) pairs (job numbers
and supply dates): (30, 3), (30, 10), (50, 5), (50, 10), (100, 10) and (100, 20). For
each case, we examined instances with 1, 3 and 10 resources. This gives a to-
tal of 18 classes of problem instances, and we generated 10 instances in each
class. In every instance the jobs have randomly generated processing times be-
tween 1 and 50, resource requirements between 0 and 50 and due-dates between
0 and

∑
j∈J pj − 1. Each quantity was generated independently to the oth-

ers. The upper bound on the due-dates implies that the maximum lateness is
positive for every feasible schedule, since there must be at least one job that
completes not earlier than

∑
j∈J pj . We have equidistant supply dates between

0 and
∑

j∈J pj and for each resource i we divide
∑

j∈J aij units from resource
i among the supply dates randomly.

4.2. Implementation

We have implemented our method in the Mosel language of FICO Xpress
(2016) (version 7.9) and we ran all experiments on workstation with Intel Xeon
X5650 @ 2.67GHz CPU, 4GB RAM, and Debian 6 Linux operating system.
All experiments used only a single cpu thread. We have run experiments with
and without our cutting planes, and also by enabling or disabling the built-in
cuts of the solver. However, we disabled presolve in order to have a more clear
evaluation of the cutting planes. Since it was clear after a few runs that an initial
upper bound can greatly improve the results, in all experiments (either using
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our cuts, or not) we bounded the objective function value by the upper bound
obtained by our heuristic method. More precisely, we have set the bound to that
computed by the heuristic minus 1, since the optimum value is always integral,
and in this way we ensure that during the search a better upper bound is sought,
and also, if the optimum value matches the initial upper bound, optimality can
be proved faster. For 30 and 50 job instances, the run time limit was set to 600
seconds, and for 100 job instances to 1200 seconds. In the next paragraphs we
sketch our algorithm, whose schematic view is depicted in Figure 2.

First, the algorithm determines an initial upper bound as it is described in
Section 3.3. Then it formulates a MIP (Section 2) augmented with an upper
bound on the objective function value using the output of the heuristic. In addi-
tion, all the inequalities (C5) are included into it, since preliminary experiments
showed that we get better results if they are added to the initial formulation.
Note that there are only q such inequalities, thus this modification increases
the size of the problem only marginally (the original MIP contains O(n2 + qρ)
inequalities). However, we cannot do the same with the other cutting planes,
since their number is considerably greater. After that, the algorithm proceeds
with the branch-and-cut procedure.

Branch-and-cut, as explained in Section 3.1, is a tree-search procedure aug-
mented with the separation of cutting planes in some search-tree nodes. In our
implementation, in the root and in every fourth node (of depth at most 100)
the algorithm tries to separate violated inequalities from some of the classes
proposed in Section 3.2. Note that separation means that in each class, cuts are
sought which are violated by the optimal solution of the LP in the search-tree
node. Violated cuts, if any, are added to the LP of the node, and non-tight
cuts inherited from ancestor search-tree nodes are deleted. Finally, reoptimiza-
tion takes place. The separation procedures are called from a so-called callback
function, which, as its name suggests, is called from whithin the MIP solver
after solving the LP in each search-tree node. The separation of our cutting
planes is quite easy, except the separation of (C2), where we have adapted the
method for (Q) as described in Queyranne (1993). Sometimes, the separation
of some classes of cutting planes is not beneficial, hence we have examined sev-
eral settings and we summarize our experience on different types of problem
instances.

Computational results are summarized in the following sections and the used
cutting plane classes will be mentioned there.

4.3. Results with 30 jobs

We have summarized the 30 job results in Table 1 (3 supply dates) and
in Table 2 (10 supply dates), where the rows depict the results in case of four
settings: without generating any cutting planes (’no cuts’), enabling the built-in
cuts, but not using our cuts (’Xpress’), disabling the built-in cuts, but using cuts
(C3) and (C4) (’our’), and using both the built-in and our cuts (’Xpress+our’).
These tables depict the number of the optimally solved instances (out of 10)
and the average computation time (in seconds) of the different methods on
those instances which were solved optimally by all the methods.
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Figure 2: Schematic description of our method

Table 1: Results with 30 jobs and 3 supply dates.

30 jobs 1 resource 3 resources 10 resources
3 supply dates # opt avg. time (s) # opt avg. time (s) # opt avg. time (s)

no cuts 8 1.90 9 2.11 7 4.54
Xpress 9 1.42 9 3.69 7 2.74

oura 10 1.64 10 0.63 10 1.18
oura + Xpress 10 1.64 10 1.20 10 1.18
a cuts (C3) + (C4)

The first rows in Table 1 and Table 2 show that most of the instances were
solved optimally within a few seconds even if we did not generate any cutting
planes. However, the cuts are useful even in this case. In case of 3 supply dates
we have solved each of the instances with our cutting planes and significantly
decreased the average running time. If there are 10 supply dates the results
depend on the number of the resources: in case of 1 resource generating our
cutting planes requires some time, but does not improve the results, in case of
3 resources generating the built-in cuts requires a lot of time, while our cutting
planes greatly decrease it and solve the instance that remained unsolved in the
previous settings. If there are 10 resources then we can observe only smaller
differences among the results of the different methods.

4.4. Results with 50 jobs

If we have 50 jobs instead of 30, the number of the instances that each setting
solves optimally significantly decreases, thus we characterize the results by the
average integrality gap instead of the average required time by the optimally
solved instances (over the 10 instances in each class). The integrality gap of
a method on a problem instance is defined as the ratio of the best upper and
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Table 2: Results with 30 jobs and 10 supply dates.

30 jobs 1 resource 3 resources 10 resources
10 supply dates # opt avg. time (s) # opt avg. time (s) # opt avg. time (s)

no cuts 9 5.25 9 12.25 9 2.06
Xpress 9 6.34 9 36.75 10 1.87

oura 9 13.07 10 6.06 10 1.78
oura + Xpress 9 13.28 10 5.06 10 2.09
a cuts (C3) + (C4)

Table 3: Results with 50 jobs and 5 supply dates.

50 jobs 1 resource 3 resources 10 resources
5 supply dates # opt avg. gap # opt avg. gap # opt avg. gap

no cuts 7 1.057 4 1.040 6 1.038
Xpress 7 1.073 5 1.035 9 1.026

oura 6 1.052 6 1.025 8 1.011
oura + Xpress 7 1.054 8 1.024 7 1.014
a cuts (C3) + (C4)

lower bounds, ub and lb, respectively, obtained, i.e.,

gap =
ub

lb
.

The results can be seen in Table 3 (in case of 5 supply dates) and in Table 4
(10 supply dates).

In case of 5 supply dates and 1 resource, the smallest integrality gap is
achieved by using only our cuts, which, never the less, is only a slight improve-
ment over pure branch-and-bound. In contrast, using Xpress cuts yields a larger
integrality gap on average. Regarding the number of instances solved optimally,
with our cuts the method could solve only 6 instances to optimality (out of
10), while all other methods solved 7 instances optimally. If we have 3 or 10
resources, then our cuts significantly decrease the gaps and increase the number
of the optimally solved instances (last four columns of Table 3). Enabling the
Xpress cuts yields a slighter improvement in the integrality gap. However, in
case of 10 resources the largest number of instances are solved to optimality (9
out of 10) if we use Xpress cuts only.

If the number of the supply dates is 10, then we can obtain somewhat dif-
ferent observations, see Table 4. Again, our cuts significantly decrease the inte-
grality gap in every case, however the Xpress cuts produce varied results: the
usage of these cuts worsens the integrality gap in case of 1 resource, provides
the best integrality gap in case of 3 resources and moderately improves it in
case of 10 resources. Concerning the number of instances solved to optimality,
using our cuts solely gives the weakest results in case of 1 resource, it is as good
as using Xpress cuts only in case of 3 resources, and gives the best results for
10 resources.

4.5. Results with 100 jobs

These instances are much harder, thus we have increased the time limit to
1200 seconds to manifest the differences among the various settings. Further-
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Table 4: Results with 50 jobs and 10 supply dates.

50 jobs 1 resource 3 resources 10 resources
10 supply dates # opt avg. gap # opt avg. gap # opt avg. gap

no cuts 6 1.43 8 1.035 5 1.049
Xpress 7 1.77 7 1.007 5 1.039

oura 5 1.20 7 1.021 7 1.029
oura + Xpress 7 1.22 6 1.028 7 1.018
a cuts (C2) + (C3) + (C4)

Table 5: Results with 100 jobs and 10 supply dates.

100 jobs 1 resource 3 resources 10 resources
10 supply dates # opt avg. gap # opt avg. gap # opt avg. gap

no cuts 2 1.242 3 1.088 2 1.091
Xpress 2 1.212 4 1.043 2 1.094

oura 2 1.188 2 1.058 2 1.091
ourb + Xpress 3 1.175 4 1.053 2 1.091
a cuts (C2) + (C3) + (C4)
b cuts (C4)

more, when generating our cutting planes in the search-tree nodes, we separated
cuts only in class (C4), since preliminary tests showed that other combinations
gave inferior results. If there are 10 supply dates and 1 or 3 resources then our
cutting planes clearly improve the results, while in case of 20 supply dates or
10 resources there are only minor differences among the settings, that is, the
cutting planes do not help too much. Note that the Xpress cuts are very useful
in case of 3 resources like in case of 50 jobs and 10 supply dates.

4.6. Further observations

We have examined several other settings and we have some further obser-
vations about our cutting planes. The set of cutting planes (C1) never helped,
while (C4) was almost always useful, see Figure 3. This figure depicts the av-
erage gaps on the 50 job instances with and without generating cutting planes
(C4). We can see that generating these cutting planes almost always greatly
decreases the gaps and increases it (slightly) only in case of 10 supply dates and
10 resources.

It is surprising that the instances with only 1 resource proved to be much
harder than the instances with more resources. Usually, the difference between
gaps reached in case of 3 and 10 resources is less than the difference between
that for 1 and 3 resources.

Table 6: Results with 100 jobs and 20 supply dates.

100 jobs 1 resource 3 resources 10 resources
20 supply dates # opt avg. gap # opt avg. gap # opt avg. gap

no cuts 2 1.72 1 1.26 1 1.12
Xpress 3 1.69 2 1.21 1 1.11

oura 2 1.70 2 1.22 1 1.11
oura + Xpress 2 1.80 2 1.24 1 1.12
a cuts (C4)
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Figure 3: Average gaps in case of 50 jobs. Each bar represents the average over 10 instances.

5. Conclusions

We have implemented a branch-and-cut algorithm for the single-machine
scheduling problem with resource consuming jobs and the maximum lateness
objective. The results show that the proposed cutting planes mainly decrease
the integrality gap, or in case of 30 job instances, decrease the computation time.
This statement remains valid even if we enable the built-in cuts of Xpress. Note
that in several cases, we have achieved the best results without the built-in cuts
of the solver.

As future work we will consider the problem with total weighted completion
time, which is apparently an even harder problem.
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