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Abstract: The aeroelastic flutter is an undamped oscillation that occurs on flexible structures
placed into an airflow. It is caused by the interaction of the structural dynamics and
the aerodynamics. Since it generally leads to structural failure, it has to be avoided. The
paper proposes a complete framework for handling the aeroservoelastic behavior of aerospace
applications, addressing the high dimensional problem in a tractable manner. The applicability
of the proposed methodology is demonstrated by designing a flutter suppression controller for
the BAH jet transport wing.
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1. INTRODUCTION

The aeroelastic flutter is an undamped oscillation of a
flexible structure placed into an airflow. With increasing
airflow speed, the structural damping becomes insufficient
to compensate the intensifying vibration caused by the
aerodynamic forces. The flutter generally leads to poor
handling quality and structural destruction, therefore has
to be avoided. Conventional aircraft are designed in a
way that flutter does not occur under normal operating
conditions. This is usually achieved through the use of
stiffening materials and thus at the expense of additional
structural mass. However, the future trends in aircraft
design are oriented to build more economical vehicles,
i.e. to increase fuel efficiency and decrease the operating
costs. To achieve these goals, increasing the aspect ratio,
decreasing the structural mass, and using more flexible
components are possible ways to go. On the other hand,
in more flexible aircraft the flutter effect can occur during
normal operation, hence an active flutter suppression
control has to be developed to enlarge the flutter-free
operating domain. To cope with this challenging task,
several research projects have been launched in the last
few years in both EU and US, e.g. (FLEXOP, 2015-2018)
and (PAAW, 2014-2019).

In this paper, a complete synthesis framework comprising
the control oriented modelling and the model based control
design is presented. The procedure is demonstrated by
designing a flutter suppression controller for the BAH jet
transport wing. This wing was first considered in (Bis-
plinghoff et al., 1955) and adapted as a flutter demonstra-
tion problem in (Rodden et al., 1979).

? The research leading to these results is part of the FLEXOP
project. This project has received funding from the Horizon 2020
research and innovation programme of the European Union under
grant agreement No 636307.

To design the flutter suppression controller, a suitable
dynamical model is needed that captures the flutter phe-
nomenon. One possible method for generating an aeroser-
voelastic model is based on separately developing a lin-
ear structural model and a parameter-varying aerody-
namic model and interconnecting them via the modal
coordinates and the aerodynamic forces. The structural
model can be generated by Finite Element (FE) approach,
while the aerodynamic model can be obtained by using
a suitable aerodynamic model, for example the Double
Lattice Method (DLM) (Albano and Rodden, 1969). This
modelling framework forms the base of the commercially
available Nastran Aeroleasticity software package (Rodden
and Johnson, 1994), where the BAH wing is available as
a benchmark example. From a control engineering view-
point, the resulting models can be generally recast in a
Linear Parameter Varying (LPV) form.

In order to capture the flutter effect, an accurate aerody-
namic model is needed, which uses a suitably dense struc-
tural grid and a large number of lag states. Consequently,
the resulting models are high-dimensional, preventing con-
trol synthesis due to numerical complexity. Therefore, a
model reduction step is needed to decrease the number of
states to a manageable size, without effecting the input-
output behavior of the system. In this paper, the model
reduction methodology presented in (Luspay et al., 2016)
is applied to reduce the large dimensional model of the
BAH wing. This algorithm has been developed recently
and is based on an approximate modal decomposition and
parameter-varying balanced truncation (Wood, 1995).

The reduced-order LPV model is used for designing con-
trollers. The controller has to enlarge the flutter-free op-
erating domain (which is considered to be outside of the
normal operation domain), while it must not influence the
other flight control components on the aircraft. To solve
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this multi objective synthesis problem, different control
design approaches have been investigated in the literature.
Early results follow the collocated feedback design method-
ology, i.e. the sensors and actuators are placed on the
same location in order to simplify the underlying control
problem. A very similar concept called identically located
force and acceleration was successfully applied to stabilize
the structural modes of the B-1 and B-52 aircraft (Wykes
et al., 1980). Despite its early success, several limitations
of the collocated control has been explored. First, it is very
sensitive to time delays, and second, it cannot be applied
if the aeroelastic modes are very close to the rigid-body
dynamics (Theis et al., 2016). Due to these limitations, the
collocated control has been proven inappropriate for Body
Freedom Flutter (BFF) aircraft such as Lockheed Martin’s
BFF (Holm-Hansen et al., 2010) or the mini MUTT of the
UoM (Theis et al., 2016). Therefore a blend of multivari-
able quadratic Gaussian (LQG) controllers are designed
for the BFF and linear time-invariant H∞ controller has
been proposed for the mini MUTT (Theis et al., 2016).
This paper follows the concept of (Theis et al., 2016), i.e.
the flutter suppression problem, which is a stabilization
task, is completed with suitable L2-norm performance
criteria and a parameter varying controller is designed by
using the LPVTools toolbox of MATLAB (Balas et al.,
2015).

The paper is organized as follows. After the introduction,
Section 2 outlines the aeroservoelastic modelling of the
BAH wing. For the reduction of the resulting high di-
mensional system, an LPV model reduction algorithm is
outlined in Section 3. Section 4 is devoted to the con-
trol synthesis and numeric simulation of the closed loop.
Finally, the main results are highlighted and the most
important conclusions are drawn.

2. AEROSERVOELASTIC MODELLING

The aim of the current section is to present the basic
concept and steps of aeroservoelastic modelling of the BAH
wing. The BAH wing is a half wing with b = 12.7 m half
wingspan, c̄ = 4.1275 m reference chord, and S = 52.42 m2

wing area per side. It is fixed at the root and placed
in an airflow of varying speed. The model is developed
to describe the dynamic behavior of the wing around
the flutter onset speed, which is Vf = 343.11 m/s. The
aeroservoelastic model is developed based on a subsystem
approach (Kier and Looye, 2009). The aerodynamics and
the structural dynamics are developed separately and
the interconnection forms the aeroservoelastic model as
illustrated in Fig. 1.

The structural model is obtained from a FE approach
(Rodden, 1967). A common component of such applica-
tions is the Euler-Bernoulli beam with added torsional
effects. The mass distribution of the wing is assumed to be
replaced by a concentrated mass system based on physical
considerations. The ten structural grid points are placed
forward and aft along the concentrated masses as seen
in Fig. 2 (Rodden and Johnson, 1994; Bisplinghoff et al.,
1955). The ten structural grid points have one degree of
freedom, heaving in the z direction. Grid point eleven
in Fig. 2 is fixed, while grid point twelve represents the
control surface deflection and can rotate along the y axis.
The structural model can be written as

structural
dynamics

aerody-
namics

Gact

Fmodal

[
η
η̇
η̈

]



δa
δ̇a
δ̈a




measured
outputs (y)

control
input (u)

Fig. 1. Aeroelastic model. The δa is the control surface
deflection, and η is the vector of modal deformations.
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Fig. 2. BAH wing planform and aerodynamic strip ideal-
ization.

Mη̈ + Cη̇ +Kη = Fextmodal
, (1)

where M , C, and K are the modal mass, damping, and
stiffness matrices respectively, η is the vector of modal
deformations, and Fextmodal

is the external excitation in
modal coordinates. For the BAH wing model Fextmodal

=
Fpanelmodal

+ Fcsmodal
, where Fpanelmodal

and Fcsmodal
are

the external forces in modal coordinates resulting form
the aerodynamic panel deformation and control surface
deflection respectively. The elastic deformation of the ith

structural grid point can be written in terms of the modal
coordinates and mode shapes Φ as δi =

∑n
j Φijηj . In the

present case, the mode shapes relate the modal coordinates
to the structural grid points’ heaving motion in z direction.
The mode shapes, mass, and stiffness matrices along with
the rest of the parameter values of the BAH wing can
be found in (Rodden and Johnson, 1994). Note that the
damping matrix of the BAH wing’s structural model is
zero.

The unsteady aerodynamics is modeled with the subsonic
DLM (Albano and Rodden, 1969). The model is divided
into aerodynamic panels as shown in Fig. 2.

A short summary of the generalized aerodynamic model
for the aerodynamic panels is given based on (Rodden and
Johnson, 1994; Kotikalpudi et al., 2015). The DLM results
in the AIC (Aerodynamic Influence Coefficient) matrices,
that relate the normalwash vector w̄ to the normalized
pressure difference vector p̄ about the panels as

p̄panel = [AICpanel(ω, V )] w̄, (2)

where ω is the oscillating frequency, and V is the air speed.
The ω and V are transformed into a single dimensionless
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parameter, the reduced frequency k = ωc̄
2V . In order

to relate the modal displacements to the normalwash
vector w̄, and to transform the aerodynamic force to
modal coordinates, the so called generalized aerodynamic
matrix (GAM) is introduced (see (Rodden and Johnson,
1994; Kotikalpudi et al., 2015) for more details). This
is Qpanel(k) = ΦTTT

asL [AICpanel(k)] (D1 + ikD2)TasΦ,
where D1 and D2 are the differentiation matrices, L is
the integration matrix, and Tas is the interpolation matrix
that projects the structural grid deformation on to the
aerodynamic panels in form of their pitch and heave
deformation (Kier and Looye, 2009). The GAM maps η to
the aerodynamic force distribution in modal coordinates
as Fpanelmodal

= q̄ [Qpanel(k)] η, where q̄ is the free stream
dynamic pressure. Since the GAM matrices are frequency
dependent, the resulting aerodynamic model is dynamic.
Note, that the GAM matrices are obtained only over a
discrete reduced frequency grid. However, time domain
aeroelastic simulations require a continuous model. There
are several methods to obtain such models (Roger, 1977).
Roger’s rational function approximation (RFA) method
(Roger, 1977) was applied for the BAH wing. The resulting
aerodynamic model is obtained in the form

Qpanel(k) =Qpanel0 +Qpanel1ik +Qpanel2(ik)2+
np∑

l=1

Qpanell+2

ik

ik + bl
,

(3)

where Qpanel0 , Qpanel1 , and Qpanel2 stand for the quasi-
steady velocity and acceleration terms of the aerodynamic
model. The Qpanell+2

terms take the lag behavior of the
aerodynamic model into account. The poles of the lag
states are given by bl. For each modal coordinate, the
number of poles np is selected a priori. This implies that
the resulting aerodynamic model in general is of much
higher dimension than the structural model. Note, that
RFA form of the GAM matrix given as (3) requires the
modal coordinates η, and their first and second derivatives
as input parameters. In addition, such form of the GAM
matrix results in a linear parameter-varying (LPV) aero-
dynamic model that is affine with respect to the dynamic
pressure (V 2).

In a similar fashion, the GAM matrices for the control
surface deflection δa is defined as

Fcsmodal
= q̄ [Qcs(k)] δa, (4)

where Qcs(k) is the control surface GAM matrix. The
actuator moving the aileron is modeled by a seventh order
linear system taken from (Brenner, 1996):

Gact(s) =
2 · 1016 (s+ 356)

(s2 + 2 · 0.62 · 69.1s+ 69.12) (s2 + 2 · 0.94 · 392s+ 3922)

·
1

(s2 + 2 · 0.82 · 746s+ 7462) (s+ 17326)
.

The RFA approximation of the control surface GAM ma-
trix Qcs(k) requires δa and its first and second derivatives.
These signals are pulled out from the actuator dynamics,
so the final model has only one input u, which is the input
of the actuator model, as depicted in Fig. 1.

Four signals are defined as the output of the BAH wing
model. Two accelerometers are placed on the forward
and aft structural grid points at the tip of the wing.
Two angular rate sensors are placed at the same cross-

section of the wing measuring the local pitch and roll rates

respectively. Therefore, y = [az,1 az,2 q p]
T

.

The structural dynamics of the BAH wing contain the first
ten structural modes and their time derivatives. This gives
a twenty-state model in the form of (1). The aerodynamic
model is constructed by selecting np = 8 poles for each
structural coordinate. Therefore, the aerodynamic model
consists of eighty lag states with an additional eight lag
states for the aileron input. The aeroelastic model of the
BAH wing including the actuator dynamics has therefore
115 states. The structural and actuator models are linear,
while the aerodynamic model varies with V 2. The resulting
model is thus linear parameter-varying:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t),
(5)

where x(t) ∈ R115. The scheduling parameter ρ (t) = V (t)
is defined in the interval [121.92, 640.08] m/s. The time
derivative of ρ(t) is assumed to take values from Ω =
[−5, 5] m/s2. The LPV model is given by a set of LTI
systems defined by evaluating (5) at 205 equidistant grid
points from the interval above. At Vf , the first bending
and first torsion modes become coupled.

3. MODEL REDUCTION

The control design for Linear Parameter Varying systems
are generally formulated as an optimization problem sub-
ject to Linear Matrix Inequality (LMI) constraints over the
scheduling parameter domain. It is well-known, that the
numerical complexity of these problems grows exponen-
tially with the dimension of the underlying system. There-
fore, reduced order models are necessary for the synthesis
of parameter-varying controllers. This section discusses the
recently developed model reduction methodology (Gőzse
et al., 2016; Luspay et al., 2016) from the viewpoint of
flutter control design.

First, the operation domain of the full-order system is
limited. Since our aim is to suppress the flutter, we limit
our focus to a tighter velocity domain Γ = [ρmin, ρmax] :=
[122, 445] m/s. Note, that the divergence occurs around
520 m/s.

The developed model reduction algorithm is based on a
modal-like description for LPV systems. The modal form
for LTI systems is characterized by the block-diagonal
structure of the A matrix, where each block corresponds
to an eigenvalue. In order to extend this idea for the
LPV system (5), a diagonalizable A(ρ) is necessary. Conse-
quently, the eigendecomposition of the matrix sequence is
computed, providing eigenvalues and eigenvectors at every
gridpoint. Although local modal forms can be constructed
this way, one has to assure the correct ordering of the
eigenvalues over the parameter domain. For this purpose,
a graph-theoretic solution is offered in (Gőzse et al., 2016;
Luspay et al., 2016). The problem is reformulated as a min-
imum cost perfect-matching problem over bipartite graphs
using a suitably chosen distance metric. Numerically ef-
fective solutions are known and can be implemented for
the underlying problem. Accordingly, consistent ordering
of the modal blocks is achieved.

The next step towards the LPV modal form is introduced
for ensuring smooth interpolation of the resulting system
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over the entire parameter domain. The modal transfor-
mation depends on the parameter-varying eigenspace of
A(ρ), which can contain arbitrary sign changes, hindering
the smooth interpolation. Consequently, it is necessary to
correct the eigenvector systems, which is translated into a
complex Procrustes-problem. An optimal transformation
is sought between neighboring eigenvectors, which ren-
ders them as close as possible, but preserves their eigen
property. Although, the obtained LPV modal form can be
smoothly interpolated between grid points, the parameter-
varying transformation introduces ρ̇ dependence in the
system. At the same time, numerical studies showed that
this term can be neglected for BAH wing model.

The obtained LPV modal form is very useful for the analy-
sis and reduction of the system. First of all, unstable parts
can be easily identified, separated, and preserved. In the
given problem, two state variables, regarding the flutter
mode are detached from the dynamics. The remaining 113
states are further reduced by investigating the frequency
content of the modes, where thirteen high frequency modes
above 80 rad/s are removed.

The remaining hundred states are then grouped into
smaller sets, by using hierarchical clustering. The main
idea is to brake the system down into smaller subsys-
tems by merging dynamically similar modes together. For
this purpose, a similarity measure is defined to compare
parameter-varying modes by using the pseudo-hyperbolic
metric (Gőzse et al., 2016). At each step of the clustering,
those two data objects are merged where the distance
metric is the smallest. This is repeated until all modes are
merged into a single cluster. For the BAH-wing model,
ten dynamical clusters have been created with dimen-
sions 2, 2, 2, 2, 2, 22, 11, 11, 22, and 22. Note that
five clusters have only two states, which are related to
the structural and actuator dynamics, while the higher
dimensional blocks embrace the unsteady aero dynamics.
The two-dimensional systems are preserved and only the
higher dimensional ones are reduced individually by us-
ing standard balancing techniques. For each subsystem,
a quadratic controllability, and observability Gramians
are computed as Xc(ρ) = Xc,0 + ρXc,1 + ρ2Xc,2, and
Xo(ρ) = Xo,0 + ρXo,1 + ρ2Xo,2 respectively. The corre-
sponding Lyapunov inequalities are constructed as finite
number of LMI constraints by gridding over the admissible
parameter domain. The proposed iterative optimization
in (Wood, 1995) is solved and the parameter-varying sin-
gular values, along with the balancing transformations,
were constructed. Consequently the 22, 11, 11, 22, and 22
dimensional subsystems are reduced to 3, 2, 2, 2, and 2,
respectively. The parameter-varying transformation intro-
duces an affine ρ̇ dependency in the reduced blocks. Unlike
in case of the modal transformation, this is not negligible.

Finally, the non-reducible clusters (ten states) and the
unstable part (two states) are merged together with the
obtained reduced-order (eleven states), stable model. Con-
sequently, a twenty-three-dimensional LPV model is ob-
tained for the approximation of the 115-dimensional BAH-
wing dynamics. This model is used as a basis of the flutter
control design.

LPV
controller

scaled
LPV plant

Wf

Wn

WdWu

zf

n

dzu

ū
+

+

x̄f

+

ȳ

+

Fig. 3. Generalised plant interconnection for the flutter
suppression control design.

4. CONTROL DESIGN

This section is dedicated to describe the LPV controller
design technique used to synthesise the flutter suppression
controller. The reduced order model can be given in state-
space form as

ẋr = A(ρ, ρ̇)xr +B(ρ, ρ̇)u

y = C(ρ, ρ̇)xr +D(ρ, ρ̇)u,
(6)

where xr(t) ∈ R23 is the reduced state vector. The control
input u and the measured output y are defined in Section 2.
The aim of the design is to expand the flight envelope
of the aircraft by stabilizing the full order plant (5) over
the entire velocity domain Γ. For this, the output vector
is completed with two further elements: the two state
variables, collected in xf , that correspond to the flutter
mode (i.e. the mode going unstable at Vf ) are also selected
as outputs. Of course, these two states are not available for
measurement, but can be used to formulate performance
specifications for the closed loop system.

Scaling. In order to improve the numerical conditioning
of the synthesis problem, the reduced order model is scaled
such that the inputs and outputs assume values of the
same order of magnitude. Expecting that the deflection of
the aileron remains between ±20◦, the input is scaled by
Si = π/9, i.e. u is replaced by ū = Siu. In order to scale
the outputs, the LPV model is evaluated at ρ = 340.36 m/s
(close to Vf but still in the stable domain) and the step
response of the LTI system obtained is analysed. The
diagonal scaling matrix So is chosen such that the scaled
outputs

[ ȳ
x̄f

]
= So [

y
xf ] are all less than 1 in magnitude.

Actually, So = 10−3 · diag (1.5, 1.3, 3, 2, 319.7, 263.6) is
used. After scaling, the elements of the B (ρ, ρ̇) matrix are
of the order of 103, while the elements of C (ρ, ρ̇) are of
the order of 10−1. Thus, a state transformation x̄ = 10−2x
is applied to balance the matrices. Finally, the scheduling
parameter is scaled: ρ is replaced by ρ̄ = ρ/ρmax, which
implies ˙̄ρ = ρ̇/ρmax.

Controller synthesis. Following the concept of (Theis
et al., 2016), the flutter suppression problem is formulated
as a robust control design task. For this, two performance
inputs are introduced: the input disturbance d and the
measurement noise n. The generalized plant interconnec-
tion can be seen in Fig. 3. The input of the generalised
plant is thus wT =

[
nT d

]
, while the output zT =

[
zTf zu

]
is composed of the flutter mode and the actuator effort.
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Fig. 4. Bode magnitude plot of the notch filter Wu (s).
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Fig. 5. Singular values of the controller from ȳ to ū at
ρ = 300 m/s, Vf , 400 m/s.

The weighting functions of Fig. 3 are Wn (s) = 0.001I,
Wd (s) = 1, and Wf (s) = 0.2I, where I is the identity ma-
trix of the appropriate size. The control effort is weighted

with the notch filter Wu (s) = 100s2+100s+36100
s2+760s+361 illustrated

in Fig. 4. The idea behind this is to limit actuation to the
±15% frequency interval of the flutter frequency, which is
established as 19 rad/s. This way, the use of high frequency
control inputs is avoided as well as the flutter suppression
controller is separated from the baseline flight control
components, which act on low frequency domain if the
wing is attached to an aircraft.

For the synthesis of the controller, the method proposed by
(Wu, 1995) in Theorem 4.3.2 is applied. This algorithm is
implemented in the LPVTools toolbox (Balas et al., 2015)
under the name lpvsyn. The objective of the design is
to minimize the induced L2-norm from w to z. We want
the Lyapunov function of the closed loop to be an affine
function of ρ. Therefore, we choose X (ρ) and Y (ρ) in
(4.3.5) of (Wu, 1995) to be affine with respect to ρ. This
means for example that X (ρ) = X0 +X1ρ, where X0 and
X1 are constant matrices.

The parameter grid over which the controller is de-
signed consists of eleven evenly placed points of Γ:
ρ1 = ρmin, . . . , ρ11 = ρmax and three points of Ω:
[−5, 0, 5] m/s2 with rate bound |ρ̈| ≤ 5 m/s3.

The controller obtained from this design has twenty-five
states. The singular value plot of the controller for three
parameter values close to Vf is shown in Fig. 5. We
observe, that the gain of the controller peaks around the
flutter frequency, as expected (cf. Fig 4). Thus, the flutter
suppression control and actuation of the aircraft’s overall
motion is separated in frequency.

In Fig. 6, the behavior of the full order system and the
full order closed loop is compared. In the singular value
plot of the full order system, a resonance peak appears
at the flutter frequency near Vf . In the closed loop, let

an additive disturbance on u = S−1
i ū be denoted by du.

10 100
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80

100

3.2 19
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si
n
gu

la
r
va
lu
es

[d
B
]

open loop
closed loop

Fig. 6. Singular values of the full order open loop from u
to y, and the full order closed loop from du to y at
ρ = 300 m/s, Vf , 400 m/s.
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Fig. 7. Value of the controller’s output after scaling (i.e.
the δe command) during the simulation.

Fig. 6 also illustrates the singular value plot of the closed
loop from du (in radians) to y. Notice, that the resonance
peak is suppressed in the closed loop.

Simulation results. A time domain simulation of the
closed loop is provided to demonstrate the stability and
performance. Due to the limit of space, we only present
the first ten seconds of the simulation (but the closed
loop remains stable over the entire Γ). During this time,
ρ (t) = 161.5 sin (0.031t+ 0.2635)+284.5 (in m/s) changes
between 325.56 m/s and 371.07 m/s and passes Vf at 3.7 s.
The closed loop is excited through du, which is 2◦ until the
fourth second and 0◦ afterwards. This means the aileron is
initially deflected to 2◦ and the disturbance vanishes right
after the flutter speed is reached.

The output of the controller after scaling (the actual δe
command) is depicted in Fig. 7. Evaluating the frequency
range of u, we establish, that its dominant frequency
component is approximately 19 rad/s, which is consistent
with the design specification expressed in Wu (s). Based
on Fig. 7, the flutter can be suppressed with small aileron
deflections. This is important when the wing is attached to
an aircraft, because small deflections induce small torques
and forces along the wing leaving sufficient room for
actuation to control the overall motion of the aircraft.

The output of the nonlinear BAH wing model is shown
in Fig. 8. The change of the disturbance value causes
oscillations in the accelerations and angular rates. How-
ever, the amplitude of the oscillations decreases, and the
controller manages to stabilize the closed loop even beyond
the flutter speed. Using this controller, the flight envelope
was expanded by 102 m/s.

For physical insight, we present the outputs of the BAH
wing in terms of displacements and angles as well. Let the
z coordinate of the ninth and tenth structural grid points
in Fig. 2 be z1 and z2 respectively. The local pitch and roll
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Fig. 8. Value of the BAH wing’s output during the simu-
lation.
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Fig. 9. Value of the displacements and angles related to
the BAH wing’s output during the simulation.

rates are denoted by θ and φ respectively. In other words
az,1 = z̈1, az,2 = z̈2, q = θ̇, and p = φ̇ assuming zero initial
values for all quantities. According to Fig. 9, the maximal
heaving of the wing tip is around 10 cm, which is less than
1% of b. The θ and φ are less than 1◦, which means small
deformations of the wing.

5. CONCLUSION

The problem of active flutter suppression is addressed in
the paper. A complete control synthesis procedure is pro-
posed: given the large-scale aeroelastic model in LPV form,
an efficient model reduction technique is presented, which
makes the model numerically tractable for the control
synthesis algorithms. The flutter suppression problem is
then formulated as a robust control design problem, where
the performance requirements are defined via induced
L2 norm conditions. The applicability of the method is
demonstrated by designing a flutter suppression controller
for the BAH jet transport wing. The methodology will be
applied to the full aircraft control problem of the FLEXOP
demonstrator and will be flight tested in 2018.
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