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Abstract

Pushed by the recent market trends, companies need to adapt to changeable demands, regarding both mix and volume, in order to keep their

competitiveness. Modular and reconfigurable assembly systems offer an efficient solution to these changes, providing economies of scale and

also economies of scope. In the previous works of the authors, novel methods were presented to solve strategic level system configuration, and

tactical mid-term production planning problems related to modular, reconfigurable assembly systems. The paper relies on these results, and aims

at extending the previously proposed planning hierarchy on the short-term, daily production scheduling. The objective is to minimize the total

operator headcount, considering the production lot sizes calculated on a higher, planning level on a working shift basis. The analyzed scheduling

problem requires novel models, as important constraints in the scheduling problem are the reconfigurations consuming time as well as resources.

In the paper, constraint programming and metaheuristics models are formulated and compared, resulting in production schedules that specify the

production sequences, and the operator allocations. Conclusively, the operator controls can be also obtained from the results, specifying a work

plan and tasks for a given operator within a working shift. The proposed methods are compared by using real industrial problem instances.
c© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of The 50th CIRP Conference on Manufacturing Systems.

Keywords: reconfiguration; scheduling; assembly

1. Introduction and motivation

The greatest recent challenge in production management is

to match production capacities with the market conditions, cha-

racterized by increasing complexity in product variety, as well

as diversity in volume. This leads to the fragmentation of or-

ders that are to be handled by careful production planning in

order to keep the internal efficiency of the company at a de-

sired level, and stay competitive in the market. Reconfigura-

ble production systems provide a cost-efficient option to match

production with fragmented order stream, by offering changea-

ble structure and scalable capacity. Although their efficiency

is proven for years now, their industrial application requires

special production planning and control approaches to utilize

their structural and technological advantages. These approa-

ches must consider the ever changing structure of the applied

reconfigurable system’s structure, in order to determine proper

production plans and assign orders to capacities while keeping

the target level of the production performance indicators. In the

paper, a two-level production planning and control methodo-

logy is proposed to calculate cost-optimal production plans and

the corresponding schedules for modular reconfigurable assem-

bly systems.

1.1. Modular reconfigurable assembly systems

In product variety management, changeability of the pro-

duction systems is a key concept towards efficient synchroniza-

tion of production processes and customer orders’ stream [1].

Changeability is an umbrella concept, encompassing key ena-

blers, among which modularity plays an important role both

on the logical and the physical system level. On the latter, the

concept stands for the application of so-called plug and pro-
duce production resources with standardized design and inter-

faces, as well as with the capability of autonomous operation

[2]. Focusing on the assembly processes, modular configura-

tion enables organizations to adjust the physical structure of the

system to the assembly processes with low effort considering

both time and resources [3–5]. Besides, in planning and cont-

rol of assembly systems, balancing the operators’ workload is

of crucial importance to keep the efficiency [6]. Though the li-

terature of reconfigurable production and assembly systems is

rather extended, there are a few papers only with the special fo-

cus on the production planning and scheduling of these systems

[7–9]. Among this limited set of papers, fast reconfigurable as-

sembly systems with modular resource constraints in planning

and scheduling are not considered, therefore, the paper and the

presented research is aimed at filling this gap by introducing a
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two level capacity management framework for these systems.

1.2. Operation of modular assembly systems

In the paper, a modular, reconfigurable assembly system is

under investigation, which consists of lightweight, plug and
produce assembly workstations (modules). Each module is de-

dicated to a single assembly process, and has standardized de-

sign including standard connectors and docking interfaces. The

modules have a mobile, lightweight frame design enabling fast,

short term reconfigurations. They are equipped with assembly

tools that can be adjusted to perform assembly processes with

different parameters (e.g. screwing torque, screw size etc.).

Each of the products assembled in the system is supposed to

have assembly tasks that can be performed by applying the stan-

dard modules. Therefore, the assembly process of a certain pro-

duct can be split up into a sequence of standardized assembly

tasks (e.g. screwing, pressing) that can be matched with the se-

quence of the corresponding standard assembly modules. The

lines are configured manually on the shop-floor by operators,

so as the mobile workstations are placed sequentially according

to the successive assembly operations. The configuration is al-

ways performed based on the product type to be assembled, and

the lines are reconfigured when the assembled product type is

changed. The simplified operation (reconfiguration cycle) of

the system is the following:

• Configuration: First, the assembly line is built-up by me-

ans of the standard modules (which are required by the

actual product), by moving them next to each other accor-

ding to the assembly process steps.

• Setup: The operator performs the necessary setup tasks,

e.g., plugs in the air connectors, and places the necessary

fixtures on the modules. The operator prepares the neces-

sary parts required by the given assembly processes.

• Assembly: The operator assembles the products in the re-

quired volume.

• Deconfiguration: After an assembly process is finished,

the operator dismantles the lines, by moving back the ex-

cess workstations to the resource pool.

The above described dynamically changing system structure

enables flexible production —especially regarding the mix of

products assembled—, however, it also requires flexibility in

the human workforce, to be capable of performing the reconfi-

gurations as well as the assembly processes. On the operational

level of the production planning hierarchy, flexibility in human

workforce means that the operators can be assigned to diffe-

rent tasks within their working time (production shift). Techni-

cally, this means that each operator is assigned to multiple tasks

to perform within the same production shift, and the operator

changes task once he/she performed the previous one. The ope-

rational level scheduling in this case stands for the operator-task

assignments including the starting times of the tasks. In the fol-

lowing sections, the formal definition of the problem in ques-

tion is provided, applying the notation summarized in Table 1.

The input data of the scheduling is provided by the solution of

the higher level production planning process, specifying the as-

Table 1. Notation applied in the paper

Sets
T set of production time periods

P set of products

H set of operator headcounts

N set of orders

J set of modules

L set of lines

Parameters
tw length of a planning period

ts
p setup time of product p

tp
p total manual processing time of product p

omax
p maximum operator headcount of product p

r jp required number of modules from type j by product p
tph cycle time of product p when assembled by h operators

cop cost of an operator per period

q j amount of modules from type j
ch inventory holding cost [cost/part/period]

cl late delivery cost [cost/part/period]

cnt deviation cost of order n if executed in period t
vn volume of order n [pcs.]

td
n due date of order n
pn product of order n
vmin

p minimal lot size of prodct p
Variables

xntlh assemble order n in period t and line l with h operators

r jlt number of modules from type j required at line l in period t
O total headcount of operators

tS T ART
n execution start time of task n

tEND
n execution end time of task n

sembly tasks to be performed within a given time period t ∈ T ,

therefore, the production planning model and its solution are

introduced first.

1.3. Production planning problem

In the production planing model, the objective is to deter-

mine the production lot sizes xntlh by matching the available

capacities (human and machine) with the customer demands.

The planning horizon T is divided into equal length time buc-

kets t ∈ T , and a given set of orders n ∈ N corresponding to

products p ∈ P need to be completed. The assembly processes

are performed by applying j ∈ J different module types, each

type is capable of performing a single process type. The amount

of modules from each type j is limited by the resource pool q j.

It is assumed, that the number of simultaneously operating re-

configurable lines is limited along the horizon by introducing

the set of lines l ∈ L. These lines are ”virtual”, as they have

no static parts but only composed of reconfigurable modules,

however, it is supposed that they are placed on a finite set of

segments on the shop floor, and each line occupies a single seg-

ment. This assumption is required to manage the machine re-

sources in the production planning model, as the module-line

assignment can be constrained in this way. Similarly to the

modules, the human resource requirements are also constrai-

ned in the production planning model by introducing a set of

headcounts h ∈ H that can be applied to assemble a given pro-

duct type. In the analyzed problem, skills are not considered,

thus an operator can perform any assembly task. Based on the

above assumptions, the production planning model is specified

as follows. The production lot executions are to be determined
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with the binary decision variables xntlh, specifying if order n is

executed in period t at line l by the headcount of operators h.

Each order n is associated with a product type p specified by

pn, the order volume vn and a due date td
n. The parameters ch

and cl respectively express that both early and late execution

of the orders are penalized with extra costs, with the following

formula:

cnt =

⎧⎪⎪⎨⎪⎪⎩
chvn(td

n − t) if t < td
n

clvn(t − td
n) otherwise

(1)

The products are characterized with their total manual proces-

sing time tp
p, setup time ts

p, minimal economical lot size vmin
p

(from reconfiguration perspective) and the number of modules

r jp required by type j. The objective of the planning is to mi-

nimize the cost that is the sum of operator costs cop per periods

and the deviation costs cnt.

1.4. Scheduling and operator control problem

As scheduling corresponds to a lower, execution level, its

time horizon is shorter than the one of planning. In this case, the

scheduling horizon is a single time bucket t ∈ T with the length

of tw, thus an individual scheduling problem instance can be

defined for each time period of production planning. The main

input parameters of scheduling are the lot sizes xntlh (decision

variables of the planning model), specifying the assembly tasks,

the corresponding operator headcount and assembly lines. The

objective of production scheduling task is to minimize the total

headcount of operators O working in period t, by calculating

the execution start time tS T ART
n , and end time tEND

n correspon-

ding to a task n assembled in t. A proper schedule means that

the task execution times are distributed over the period enabling

the operators to switch between the lines they are working at,

when the executed task is finished. The applied resolution of

the scheduling horizon is much higher (e.g. minutes) than that

of the planning, as the horizon length and problem size allow it.

One can distinguish human and machine resources in the sche-

duling problem, constraining the solution in a different way.

As for the machines, a single virtual line Ln and the assigned

assembly modules —determined by the planning model— are

capable of processing a single task n at any point of time (dis-

junctive resource constraint). Besides, as many operators On

need to be assigned to a task n, that is specified by the solution

of production planning with the parameter h.

2. Capacity management framework

Based on the above problem specifications, one can iden-

tify that a two-stage planning and scheduling problem is to be

solved, in which the solution of the higher level planning pro-

blem provides the input of the lower level scheduling. While

the production planning is responsible for matching the internal

capacities with the customer orders, the lower level production

schedule specifies the execution times and minimizes the head-

count of operators within a time period. In order to solve the

overall problem, a two-level capacity management framework

Order volumes Capacities

Production plan Capacity
requirements Operation costs

Production planning

Production scheduling

Production schedule Operator-task 
assignment

Fig. 1. Decision hierarchy of the applied capacity management framework

is proposed, consisting of production planning and scheduling

stages (Figure 1).

2.1. Production planning and scheduling models

The production planning model is formalized as an integer

programming model as it follows.

minimize
∑

l∈L

∑

t∈T

∑

h∈H

∑

n∈N
xntlh(coph + cnt) (2)

r jlt ≥ r jpn xntlh ∀l ∈ L, t ∈ T, j ∈ J, n ∈ N, h ∈ H (3)∑

l∈L
r jlt ≤ q j ∀t ∈ T, j ∈ J (4)

∑

n∈N
pn=p

∑

h∈H
xntlh(ts

p + tphvn) ≤ tw ∀l ∈ L, t ∈ T (5)

∑

n∈N
pn=p

∑

h∈H
xntlhvn ≥ vmin

p ∀l ∈ L, t ∈ T (6)

∑

h∈H
xntlh ≤ 1 ∀l ∈ L, t ∈ T, n ∈ N (7)

∑

t∈T

∑

l∈L

∑

h∈H
xntlh ≥ 1 ∀n ∈ N (8)

xntlh ∈ [0, 1] ∀n ∈ N, l ∈ L, t ∈ T, h ∈ H (9)

The objective function (2) minimizes the overall costs of pro-

duction. Constraint (3) defines the minimal amount of assembly

modules to be assigned to line l within a period t, while the to-

tal number of modules cannot be exceeded (4). Constraint (5)

states that the total amount of processing and setup times of the

tasks must be less than the length of the time period tw, for each

line l. Reconfigurations are economical only if applied lot si-

zes are greater than the minimal quantity as constrained by (6).

The last constraints state that only a single operator headcount

h can be applied for the execution of each task (7), and each

order need to be fulfilled (8), while (9) express that the decision

variables xntlh are boolean type.

The production planning model introduced above is the mo-

dified version of the model, presented by the authors in a prece-

ding publication [10]. In the previous version, the headcount of

operators was determined on the production planning level, the-
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refore, its solution cannot be applied as the input of the schedu-

ling model to minimize the total headcount with the scheduling

of the tasks. Therefore, the decision variable of the planning

model was modified to determine the headcount on a task ba-

sis, instead of a period basis. This modification requires some

pre-calculations, to define the applicable headcount scenarios

h ∈ H for the different tasks, and related headcount-dependent

processing times tph.

The applicable operator headcount of the products’ assembly

processes is bounded by both the required number of modules

r jp and the processing times of the different elementary assem-

bly operations. The resultant maximal operator headcount is the

minimum of these two values (10). On the one hand, the ope-

rator headcount cannot exceed the number of modules when

assembling a product. On the other hand, the operator head-

count is also limited by the assembly operations’ processing

times: if more operators are assembling a given product type

p, the resultant cycle time is the linear function of the operator

headcount. In the simplest case, one can expect half cycle time

for a product when it is assembled by two operators instead of

one. This linear correlation is valid until a certain operator he-

adcount is reached, as the resultant cycle time cannot be higher

than the longest elementary operation time top

pk, where k is an

assembly operation of product p that has k ∈ K operations in

total. The maximum operator headcount in this case is the nea-

rest lower integer of the fraction of total processing time tph and

the longest operation time maxk∈Ktpk.

omax
p = min

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j∈J

r jp;

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tp
p

maxk∈Ktop

pk

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ∀p ∈ P (10)

As stated above, the assembly cycle times are inversely propor-

tional with the operator headcount. If one would represent the

human capacity constraints in a mathematical model, the follo-

wing equation would needed.

∑

n∈N
pn=p

xntl

⎛⎜⎜⎜⎜⎝
tp
pvn

hn

⎞⎟⎟⎟⎟⎠ ≤ tw ∀l ∈ L, t ∈ T (11)

where hn is a decision variable, expressing the headcount of

operators completing the assembly tasks of order n, and xntl

binary variable determines if order n is processed on line l in

period t. As it is seen, the fraction term with the decision varia-

ble in the denominator would lead to a non-linear model, which

is avoidable in this case. Therefore, in order to keep the line-

arity of the planning model, a new decision variable xntlh with

and additional dimension h is proposed in the planning model

instead of xntl. The above relations are valid only in case of

approximated line balances, when the structure of the line as

well as the operator task assignments are unknown. Otherwise,

if line balances of different operators headcount scenarios are

known a-priori, the headcount-dependent processing times tph

can be replaced by the values given by the different line ba-

lances. Therefore, the above pre-calculations are needed to be

performed for each product type p ∈ P and possible opera-

tor headcount h ∈ H to calculate the values of tph. Using the

formula (10), one can calculate the set of possible operator he-

adcounts: H = {1 . . . hmax} | hmax = maxp∈P omax
p .

Performing the above modifications on the model and cal-

culating the operator-dependent task times and possible head-

counts, the mathematical programming model of the considered

scheduling problem can be formulated as it follows:

minimize O (12)

tS T ART
n , tEND

n ∈
{
ts
p . . . t

w
}
| pn = p ∀n ∈ N (13)

(
tEND
m ≤ tS T ART

n

)
∨
(
tEND
n ≤ tS T ART

m

)
∨ (Ln <> Lm)

∀n � m
(14)

∑

n:(tS T ART
n ≤t)∧(tEND

n >t)

On ≤ O (15)

The objective function (12) states that the total headcount of

operators working in the period is to be minimized. The first

constraint (13) defines that the execution start tS T ART
n and tEND

n
times of task n (also considering the setup time of the assem-

bled product) are bounded by the duration of a working shift.

The second constraint (14) states that only a single product type

can be assembled on any given virtual line l ∈ L at any point

of time. The last constraint (15) specifies that the total operator

headcount must be greater or equal to the sum of operator he-

adcounts assigned to the executed tasks at any point of time. In

(15), the headcount On of operators assigned to task n is defi-

ned as On =
∑

h∈H
∑

l∈L xntlh, if t ∈ T is the time period of the

scheduling problem to be solved.

2.2. Solution with constraint programming

Production scheduling problems —similar to the presented

one in Section 2.1— are often solved by constraint program-

ming (CP) techniques, enabling to find feasible schedules in a

reasonable time. The strength of constraint programming relies

in the high level, descriptive modeling approach, and the effi-

cient handling of various constraints even in large scale problem

instances. Constraint programming has two core elements: a

set of predefined constraint types (constraint store) and a built-

around programming language to instantiate and combine the

constraints [11]. In practice, CP solvers combine constraint

reasoning and non-deterministic search approaches to find the

solution for a specific problem [12]. Constraint reasoning in-

volves various filtering steps for domain reduction, in order

to consider and satisfy multiple constraints that share common

variables, this procedure is called constraint propagation [13].

For scheduling problems, constraint programming solvers offer

various domain-specific filtering algorithms, called constraint

propagators.

The scheduling problem —introduced in the previous

section— can be solved by using the cumulative and disjunctive

resource propagators. Cumulative resources are represented by

their capacity, and the tasks need to be scheduled so as their

consumption of the cumulative resources cannot exceed their

capacity C at any point of time. Therefore, the operators (15)

in the formulated CP model are represented as cumulative re-

sources of a single type, and their capacity is exactly the ob-

jective function O of the model. The second, called disjunctive
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resource propagator is a special cumulative resource, whose ca-

pacity is C = 1. In the considered scheduling problem this

means that any two tasks assigned to the same line l ∈ L cannot

be scheduled so as their executions overlap in time (14), there-

fore, lines are disjunctive resources. Concluding the above, one

can infer that the formulation of the problem with CP techni-

ques applying cumulative and disjunctive resource propagators

is straightforward, however, neither possible stochastic nature

of the manual processing times, nor the random events can be

handled with this modelling technique.

2.3. Genetic algorithm based solution

For the above reasons, the problem is also solved by genetic

algorithm (GA), which is one of the most fundamental appro-

aches to solve stochastic optimization problems. Genetic algo-

rithms are classified as search metaheuristics, belonging to the

class of evolutionary algorithms. Applying bio-inspired gene-

tic operators on a set (population) of candidate solutions (in-

dividuals), GAs try to improve the solutions and move toward

the global optima. As in general GAs cannot be applied for con-

strained optimization problems, hurt of the constraints in the so-

lutions are mostly penalized in the objective (fitness) function.

Generally, genetic algorithms are capable of handling stochastic

parameters if one can evaluate a solution considering them, the-

refore, they can be applied to solve the considered scheduling

problem where stochasticity characterize the parameters due to

the manual processing times with certain deviations, and other

possible random events like scrap products entailing rework. In

the paper, we propose a simulation-based method for solution

evaluation: the fitness function of a given schedule is deter-

mined by executing a discrete-event simulation analysis. This

approach allows for the detailed analysis of stochastic parame-

ters, that often characterize manual assembly processes. The

greatest benefit of using a simulation model relies in the oppor-

tunity of representing the stochasticity of parameters in detail.

In each iteration of the GA, simulation experiments are execu-

ted to evaluate the fitness of the individuals, therefore, the time

consumption of a single experiment is of crucial importance to

keep the overall running time of the algorithm on a reasonable

level. The simulation applies an automated model building pro-

cess, enabling the dynamic model creation and realistic hand-

ling of resource constraints. [14].

3. Numerical results

In order to evaluate and compare the efficiency of the app-

lied solution methods (CP and GA), a real case study from the

automotive industry was selected.

3.1. Description of the production environment

The company under study is a Tier-1 supplier, producing me-

chatronics components to several OEMs. The product portfolio

is rather diverse, however, the whole set of assembly processes

can be clustered in eight main process types, therefore, the pro-

cesses can be covered by a module set of |J| = 8. In the assem-

bly segment, |P| = 67 main product types are assembled, and

the total yearly volumes of products are diverse. As for the pro-

duction planning problem, the objective is to calculate the pro-

duction lot sizes based on the customer order stream and avai-

lable capacities. The length of the planning horizon is |T | = 10

working shifts, and the length of a shift is tw = 480 minutes.

The total number of orders to be considered in the analyzed pro-

blem instances varies in a range |N | ∈ [120, 150] for the whole

planning horizon T . The available shop-floor space in the as-

sembly segment enables to operate |L| = 8 modular assembly li-

nes simultaneously. Calculating the headcount-dependent pro-

cessing times for each product type p, the maximal headcount

of operators and thus the size of their set is |H| = 10. As for the

scheduling problem, the task is to determine the task execution

and end times within the production shifts, considering that the

setup times of the products are ts
p ∈ [15, 30]. Resulting from

the production planning level, the average size of a scheduling

problem instance is |N | ∈ [15, 20] within a given time period

t. In order to prove the validity of the proposed mathematical

models and compare the solutions provided by the two solution

methods, eight different test problem instances were solved by

both methods. First, the production planning problem is solved,

afterwards eight different production periods from the results

were selected to solve the production scheduling problem.

3.2. Results with constraint programming

The CP production scheduling model —specified in Section

2.1— was implemented in FICO Xpress applying its Kalis con-

straint programming library with a scheduling toolbox. In order

to handle the resource constraints properly, the assembly lines

l ∈ L were set as disjunctive, while the operators are cumulative

resources with the capacity of O. By default, the constraint sol-

ver cannot be set to optimize the production schedule respecting

the capacity of resources as an objective function. Therefore,

the optimization procedure was solved by an iterative appro-

ach with interval halving, where the value of O was adjusted

in each iterations. Starting with and arbitrarily large value, the

problem was solved in each iteration, and the value of O was

halved a solution was found. Otherwise, the headcount was set

to the median of the current value and the previous one. In

this way, the objective function value converged to the solution,

while feasible schedules were calculated for each values. In or-

der to boost the computations, the CP solver ran until a feasible

schedule was found. In this way, all problem instances could

be solved by CP, calculating the minimal required operator he-

adcount and the corresponding feasible schedule, however, all

the parameters in the problem were deterministic as CP solver

could not tackle their possible stochasticity.

3.3. Results with genetic algorithm

For this reason, the scheduling problem was also solved by

GA, to consider the possible variability of the manual proces-

sing times, resulted by the human factor. Therefore, the focus

was on this effect by setting 10% deviation for the manual pro-

cessing times with a normal distribution. This could be done

in the simulation model of the assembly system, that was also

responsible for the evaluation of the solution in each iteration

of the GA. In order to get a more realistic solution, each indi-

vidual (schedule) in the population was evaluated by running

the simulation multiple times, simulating different processing

times generated with a normal distribution function with 10%

deviation by the simulation model.
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The schedules were created by the algorithm applying gene-

tic operators. In the GA, the main settings were the probability

of crossover and inversion steps, set to 0.8 and 0.2, respectively.

The number of iterations was set to 20, and the population si-

zes were 15. The simulation model of the assembly system was

implemented in Siemens Tecnomatix Plant Simulation. The re-

sources were represented by objects in the model, each having

disjunctive feature enabling to tackle the capacity constraints in

the GA-solution.

3.4. Evaluation of the results

In order to evaluate the quality of the solutions and the fea-

sibility of the schedules, the results provided by both methods

were executed with the simulation model of the system, repre-

senting the 10% deviation of the processing times. In order

to represent this stochasticity in the CP scheduling model, and

try to calculate feasible schedules with it, the processing times

were increased by 10% in the CP, while in the GA, all the eva-

luations are performed by the simulation model applying the

same deviation. The results provided by both methods for the 8

problem instances are included in Table 2. As the results show,

the running time of the GA is significantly higher than that of

the CP, however, it results in the same objective function values

except in SC#1. The GA based solution provides schedules that

are feasible in most of the cases, even in case of stochastic pro-

cessing times, whereas CP fails to provide executable schedules

in more cases if parameters are stochastic, although the schedu-

les were calculated with extra capacities. In each cases, the

CP could provide a schedule that would be feasible with deter-

ministic parameters, however, lateness occur in the simulation,

representing realistic production environment.

Table 2. Scheduling results provided by the CP and GA methods. The first

column (SC) indicates the scenario number, |N| is the number of orders to be

scheduled. The columns O (superscripted with the method) give the resulted

headcount, t and t is the running time in seconds. The last columns tm are the

makespan values (minutes) of the methods, and tCP
m is the calculated whereas

tCP
mr is the simulated makespan of CP

SC # |N| OCP OGA tCP tGA tCP
m tCP

mr tGA
m

1 15 11 12 3 172 471 488 427

2 14 8 8 2 567 469 502 433

3 11 7 7 601 328 476 476 448

4 16 7 7 5 175 475 477 471

5 15 7 7 4 558 480 470 469

6 14 8 8 3 158 477 506 508

7 11 6 6 2 247 470 466 433

8 11 7 7 603 457 457 493 497

4. Conclusion and outlook

In this paper, a novel, two-stage framework was introduced

for the capacity management of modular, manually operated as-

sembly systems. On the higher level, the production planning

problem was solved in order to determine the production lot si-

zes and the corresponding operator headcount. On the lower

level, the detailed production schedule was determined, speci-

fying the operator-task assignments, as well as the execution

start times of the production lots. The formulated scheduling

model was solved by constraint programming and genetic al-

gorithm (combined with simulation), and the resulted schedu-

les were executed by a simulation model. Although CP-based

schedules satisfy the constraints considering deterministic va-

lues, they tend to be infeasible in a realistic environment if pro-

cessing times are non-deterministic. In contrast, simulation ba-

sed GA scheduling provides robust schedules against the devia-

tion of the processing times, thus the schedules remain feasible,

even though the processing times are stochastic. As for the fu-

ture work, the authors’ plan is the further detailed analysis of

simulation and GA based schedules, to determine the robust-

ness of the plans.
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demand and system structure in reconfigurable assembly systems. Procedia

CIRP 2012;3:579–584.


