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a b s t r a c t

Deformable active contour (snake) models are efficient tools for object boundary detection. Existing alter-
ations of the traditional gradient vector flow (GVF) model have reduced sensitivity to noise, parameters
and initial location, but high curvatures and noisy, weakly contrasted boundaries cause difficulties for
them.

This paper introduces two Harris based parametric snake models, Harris based gradient vector flow
(HGVF) and Harris based vector field convolution (HVFC), which use the curvature-sensitive Harris matrix
to achieve a balanced, twin-functionality (corner and edge) feature map. To avoid initial location sensi-
tivity, starting contour is defined as the convex hull of the most attractive points of the map. In the exper-
imental part we compared our methods to the traditional external energy-inspired state-of-the-art GVF
and VFC; the recently published parametric decoupled active contour (DAC) and the non-parametric
Chan–Vese (ACWE) techniques. Results show that our methods outperform the classical approaches,
when tested on images with high curvature, noisy boundaries.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Object boundary detection is an important field of vision re-
search. The active contour (AC) method (or also called as snake)
was introduced in (Kass et al., 1988), since then deformable models
proved to be efficient tools for robust identification of object con-
tours (Xu and Prince, 1997; Caselles et al., 1997; Brigger et al.,
1997; Chan and Vese, 2001; Vasilevskiy and Siddiqi, 2002; Kimmel
and Bruckstein, 2003; Bresson et al., 2007; Li and Acton, 2007;
Mishra et al., 2011). Snake evolution is controlled by an energy
minimizing method based on different energies. Internal energy
is responsible for obtaining elastic and rigid curves, while external
energy represents the constraints of the image itself and is usually
calculated as a function of gradient information over the intensity
distribution. This force pushes the snake toward an optimum in the
feature space. The traditional snake model has limited utility as the
initialization should be close to the real contour of the object. Prob-
lems also occur when detecting concave boundaries. To compen-
sate these drawbacks, Gradient vector flow (GVF) snake was
introduced in (Xu and Prince, 1997), which defined a new external
force as a diffusion of the gradient vectors of a gray-level or binary
edge map derived from the image. Although precision improved,
GVF snake was still noise, parameter and initialization sensitive.

Since the publication of the original method (Kass et al., 1988),
several modification have been developed to compensate the
drawbacks of the original algorithm, including parametric (Xu
and Prince, 1997; Brigger et al., 1997; Li and Acton, 2007; Mishra
et al., 2011) and non-parametric (Caselles et al., 1997; Chan and
Vese, 2001; Vasilevskiy and Siddiqi, 2002; Kimmel and Bruckstein,
2003; Bresson et al., 2007) approaches.

Parametric active contours suffer from weaknesses associated
with noise, parameter and initialization sensitivity, topology
changes and have difficulties when detecting high curvature
boundaries. While non-parametric methods do not depend on ini-
tialization and detect complex boundaries with sharp corners and
topological variations, they fail when detecting objects with bro-
ken edges. Additionally their convergence rate is slower and they
are more sensitive to noise than the parametric approaches. Appli-
cation of non-parametric techniques to images of narrow elon-
gated structures, where intensity contrast may be low and
reliable region statistics cannot be computed was independently
improved by Vasilevskiy and Siddiqi (2002) and Kimmel and
Bruckstein (2003); additionally when using shape priors as (Uzun-
bas et al., 2010), non-parametric methods can also cope with bro-
ken edges.

One class of the parametric methods tried to redefine the
expression of external energy to improve the accuracy of GVF
snake (Chuang and Lie, 2004; Cheng and Foo, 2006; Li and Acton,
2007; Jifeng et al., 2007; Wang et al., 2010; Zhu et al., 2010). While
these approaches reduced the sensitivity in some aspects, they still
had difficulties when featuring very sharp and noisy corners. These
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high curvature, noisy boundary points along with noisy edges are
still among the major challenges that existing methods are not able
to handle appropriately.

Snake initialization is a challenging task, some representations
take shape information into account (Sundaramoorthi and Yezzi,
2007) or extract the focus area to define the region of interest (Kov-
acs and Sziranyi, 2007), but in case of the detection of randomly
shaped objects, the initial outline is usually defined with human
interaction. Recently published quasi-automatic method, (Tauber
et al., 2010) requires the selection of an arbitrary point in the target
region to initialize the curve, but it is not able to segment regions
that feature topological changes.

To address the limitation of initialization and curvature sensi-
tivity, this paper proposes two parametric active contour ap-
proaches, introduced as the Harris based GVF (HGVF) snake
(Kovacs and Sziranyi, 2010) and the Harris based vector field con-
volution (HVFC) (Kovacs and Sziranyi, 2011), both use a modified
function of Harris corner detector (Harris and Stephens, 1988) that
benefits from the cornerness feature, therefore, it is suitable for
emphasizing both corner points and edges, and attains a balanced
feature map. The most attractive points of the map are used to ini-
tialize a starting curve around the object, while the modified map
is applied to determine a new feature map for the external energy
expression.

In the experimental part, we have evaluated the performance of
our methods on the Weizmann segmentation database (Alpert
et al., 2007) and compared the results to published techniques,
including two external energy-inspired parametric algorithms
(Xu and Prince, 1997; Li and Acton, 2007); a novel parametric
method (Mishra et al., 2011) and a non-parametric, region based
(Chan and Vese, 2001) application. According to the evaluation re-
sults, our algorithms perform better in detecting high curvature,
noisy object boundaries.

2. Active contour model

2.1. Traditional approach

Introduced in (Kass et al., 1988), the goal of active contour or
snake (denoted by x(s) = [x(s),y(s)],s 2 [0,1]) is to minimize the fol-
lowing energy:

E ¼
Z 1

0

1
2
ðajx0ðsÞj2 þ bjx00ðsÞj2Þ þ EextðxðsÞÞds; ð1Þ

where a and b are weighting parameters for the elasticity and rigid-
ity components of the internal energy; x0(s) and x00(s) are the first
and second order derivatives with respect to s. The rigidity compo-
nent is responsible for detecting curvature, setting b = 0 allows the
snake to develop a corner. Eext is the external energy derived from
the image, representing the image constraints and giving smaller
values at features of interest (like edges and ridges), than at homo-
geneous regions.

2.2. Gradient vector flow

Xu and Prince (1997) defined gradient vector flow (GVF) as
external force for active contour methods. Besides the internal
forces, the rigidity and elasticity components, the external force
is computed as a diffusion of the gradient vectors of the gray level
or binary edge map derived from the image. The increased capture
range of the external force field guides the contour toward the
boundary, even into concave regions. The novel Eext energy is as
follows:

Eext ¼
ZZ

l u2
x þ u2

y þ v2
x þ v2

y

� �
þ jrf j2jv �rf j2dxdy; ð2Þ

where the v(x,y) = (u(x,y),v(x,y)) is the GVF field that minimizes
Eext, l is a regularization parameter. The f edge map is derived from
the image I(x,y). One of the generally used forms is:

f ðx; yÞ ¼ jrðGrðx; yÞ � Iðx; yÞÞj; ð3Þ

where Gr is the Gaussian function with r standard deviation and r
is the gradient operator (Xu and Prince, 1997).

The original f edge map has difficulties when detecting sharp or
noisy corners and low contrast boundaries. When heading towards
a sharp corner point in the image, the intensity changes largely
from only a few directions. This results that these pixels behave
similarly like low contrast boundary points: they both have de-
creased f(x,y) values compared to sharp edges. This effect is shown
in Fig. 1, where decreased f values can be seen around the peak of
the leaf inside the white rectangle in Fig. 1b. The result of this ef-
fect is that the iterative AC method does not detect the peaks accu-
rately (see the third image in the first row of Fig. 4).

2.3. Vector field convolution

Vector field convolution (VFC) was introduced in (Li and Acton,
2007) as external force, addressing the disadvantages of GVF, such
as high computational cost, noise sensitivity, parameter sensitivity,
and the ambiguous relationship between the capture range and
parameters. The VFC field is calculated by convolving a vector field
kernel with the edge map generated from the image:

f VFCðx; yÞ ¼ f ðx; yÞ � kðx; yÞ; ð4Þ

where f(x,y) is the original, image based edge map (Eq. (3)) and
k(x,y) is the vector field kernel, which is defined as:

kðx; yÞ ¼ mðx; yÞnðx; yÞ; ð5Þ

where m(x,y) is the magnitude at (x,y) and n(x,y) is the unit vector
pointing to the kernel origin: nðx; yÞ ¼ � x

r ;�
y
r

� �
; r denotes the dis-

tance from the origin.
The advantage of VFC representation is that a free particle (i.e. a

single contour point) placed in the field is able to move to the fea-
ture of interest. The m(x,y) magnitude should be chosen as a
decreasing positive function of the distance from the origin, such
as:

mðx; yÞ ¼ ðr þ �Þ�c
; ð6Þ

with c controlling the decrease and � preventing division by zero. As
the feature map of VFC (Eq. (4)) is also based on the f(x,y) original
edge map, problems of detecting high curvature and noisy, weakly
contrasted boundaries still exist (see Fig. 1c and the fifth image in
the first row of Fig. 4).

High curvature corners can be found by corner detectors after
generating a characteristic function which emphasizes possible
corners in the image. Our idea was to apply Harris corner detector
as it is reliable and invariant to rotation (Schmid et al., 2000). The
original Harris characteristic function is modified to be able to
emphasize the high curvature corners and low contrast edges as
well by exploiting the curvature information along the boundary
and resulting in a balanced feature map.

3. Harris based gradient vector flow (HGVF) and Harris based
vector field convolution (HVFC)

Our process first generates the main feature points based on the
Harris corner detector, then these points are enveloped to get the
initialization of the contour. As a novelty, modification of Harris
cornerness function is used instead of edge functions as feature
map for generating GVF and VFC snake.

A. Kovacs, T. Sziranyi / Pattern Recognition Letters 33 (2012) 1180–1187 1181
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3.1. Original Harris detector

The Harris detector was introduced in (Harris and Stephens,
1988). The algorithm is based on the principle that at corner points
intensity values change largely in multiple directions. According to
(Harris and Stephens, 1988), change D for a small shift (x,y) is given
by the following Taylor expansion:

Dðx; yÞ ¼ Ax2 þ 2Cxyþ By2; ð7Þ

which can be rewritten as

Dðx; yÞ ¼ ðx; yÞMðx; yÞT : ð8Þ

The method uses the Harris matrix (M):

M ¼
A C

C B

� �
; ð9Þ

where A ¼ _x2 �w;B ¼ _y2 �w;C ¼ _x _y�w. _x ¼ @I
@x and _y ¼ @I

@y denote
the approximation of the first order derivatives of the I image, �
is a convolution operator and w is a Gaussian window.

The curvature behavior around an image point can be well de-
scribed by the Taylor expansion (Eq. (7)). When D is reformulated
by a structure tensor (Eq. (8)) and becomes closely related to the
local autocorrelation function, M describes the shape at the image
point. The eigenvalues of M will be proportional to the principal
curvatures of the local autocorrelation function and form a rota-
tionally invariant description of M (Harris and Stephens, 1988).
This feature is beneficial when external forces are calculated to
measure salient points of any boundaries, as the principal curva-
tures describe well the fine details of shapes.

The original Harris corner detector defines the following corner
response to select isolated corner pixels:

R ¼ DetðMÞ � k � Tr2ðMÞ; ð10Þ

where Det and Tr denote the determinant and trace and k is a coef-
ficient, usually around 0.04 (Harris and Stephens, 1988). R is large
and positive in corner regions, negative in edge regions and small
in the flat regions, therefore, it is inappropriate to emphasize cor-
ners and edges equally.

3.2. Harris based feature map

When defining a new feature map for GVF snake, the curvature
behavior should be analyzed. Therefore, eigenvalues of M are ap-
plied to create a novel characteristic function, emphasizing the
curvature around image pixels.

Let k1 and k2 denote the eigenvalues of M (Eq. (9)). They define
separate cases: both of them are large in corner regions, only one of

them is large in edge regions and both of them are small in flat re-
gions (Harris and Stephens, 1988). When emphasizing corners and
edges, they both have one large component, thus, max(k1,k2) func-
tion separates the flat and non-flat regions accurately. To produce a
steady feature map, the dynamics of the characteristic function
should be compressed into a balanced distribution by keeping
the necessary strength of the main attractors. The natural logarith-
mic (log) function satisfies this condition: it has a balanced output
for both corner and edge saliency. Consequently, the following Rlog-

max saliency function is proposed in (Kovacs and Sziranyi, 2010) for
describing shapes with equally emphasized edge and corner
regions:

Rlogmax ¼ maxð0; log½maxðk1; k2Þ�Þ: ð11Þ

For both edge and corner points max (k1,k2)� 1. The target set of
the Rlogmax is the positive domain (when it is used as a feature
map), thus, the outer max function is responsible for replacing neg-
ative values of small k (points in flat regions) with zeros. Example of
the proposed Rlogmax function can be seen in Fig. 2c.

Now, with a balanced output for both corners and edges, Rlogmax

can be applied efficiently in the feature map:

fHGVFðx; yÞ ¼ jrðGrðx; yÞ � Rlogmaxðx; yÞÞj: ð12Þ

This function will be applied in the Harris based gradient vector
flow (HGVF) algorithm. Based on fHGVF the new feature map for Har-
ris based vector field convolution (HVFC) method is as follows:

f HVFC ¼ fHGVFðx; yÞ � kðx; yÞ: ð13Þ

The comparison of the original and the proposed feature map
can be seen in Fig. 2. While the original, intensity based f edge
map (Xu and Prince, 1997) losses some low contrast edges on
the boundary and fails to emphasize the sharp corners (see
Fig. 2b), our proposed fHGVF map (Fig. 2d) is able to feature the real
contour more accurately.

3.3. Initial contour

Feature (or saliency) points are chosen as the local maxima of
Rlogmax (Eq. (11)), see Fig. 2e. Since feature points are located on
the edges and corners of the object, they can be used to define
an initial contour. To avoid the poor definition of smooth transition
or multi-directional saddle effects of edges around corners, the sur-
roundings of the saliency points should be taken into account.
Therefore, a local area with a 3 pixel radius around the point
should be considered as part of the region of interest (ROI), where
relevant local structures can be detected. Points representing the
outline of the supported area should be added to the Harris feature
point set. After this, the initial contour is defined as the convex hull

Fig. 1. The original f edge map for high curvature boundary: (a) shows the original image, region of interest is in gray; (b) is the f edge map of the marked area. The white
rectangle indicates the decreased f values of the high curvature boundary; (c) is the fVFC map of the marked area. The white rectangle indicates the decreased fVFC values of the
high curvature boundary.
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of the extended set of points denoted by P (see Fig. 2(f)). Convex
hull has already been used for initializing active contour (Sirakov,
2006; Zamani and Safabakhsh, 2006), our innovation resides in
the extended Harris based contour point set for localizing the
object.

The convex hull of P set of points is the smallest convex set that
contains the points. It can be characterized as the set of all of the
convex combinations of finite subsets of points from P and looks
as follows:

HconvexðPÞ ¼
Pk
i¼1

aipi : pi 2 P; ai 2 N; ai P 0;
�

Pk
i¼1

ai ¼ 1; k ¼ 1;2; . . .

	
: ð14Þ

A wide range of algorithms is known for constructing the convex
hull for a finite point set with various computational complexities.
In our implementation we applied the built-in function of MATLAB,
which uses the ‘Qhull’ algorithm (Barber et al., 1996). Let n denote
the number of points in P and h the number of points in the hull,
then the computational complexity of the calculation of the hull
is O(n log h).

Our algorithms follow the operation of traditional GVF and VFC
methods, but proceed from the convex hull of the feature points
(Hconvex(P)) and utilize the new fHGVF and fHVFC maps instead of sim-
ple f in the external force component. (See Eq. (2).) Therefore, the
behavior of the proposed algorithms is similar to the traditional
approaches, including parameter settings. When constructing the
novel feature maps, the Gaussian window (see Section 2.2) have
to be chosen, determining the smoothness of the map. In our
experiments, we used the w Gaussian window, with r = 0.2 for

images without noise and r = 1.5 for all the noisy images. Apart
from this parameter, the proposed algorithms uses the parameters
of the traditional active contour approaches, thus, the sensitivity to
parameter tuning is analyzed in (Xu and Prince, 1997 and Li and
Acton, 2007).

4. Experimental results and discussions

In this experimental part we evaluated our proposed methods
quantitatively using the Weizmann segmentation evaluation data-
base (Alpert et al., 2007) and qualitatively on specific images, rep-
resenting various characteristics: objects with weak edges or high
curvature boundary parts and noisy images (Fig. 4). The perfor-
mance of the proposed methods was compared to traditional para-
metric and non-parametric active contour algorithms. Gradient
vector flow (GVF) (Xu and Prince, 1997) and vector field convolu-
tion (VFC) (Li and Acton, 2007) were selected to show the improve-
ment of effectiveness due to the introduced feature map. Region
based methods can detect high curvature boundaries accurately,
therefore, the non-parametric active contour without edges
(ACWE) (Chan and Vese, 2001), based on the Chan–Vese model
have also been evaluated. Decoupled active contour (DAC) (Mishra
et al., 2011) method has recently been introduced and was found
to be able to detect regions of high curvatures and converging rap-
idly, thus, an image from the referenced paper was used for com-
paring our method to DAC.

For evaluation, we used the published MATLAB source code of
the compared algorithms without optimization. Parameter settings
for the compared methods were chosen according to the men-
tioned references.

Fig. 2. Effect of Rlogmax characteristic function: (a) is the original image; (b) is the original, f intensity based map of GVF; (c) is the generated and inverted Rlogmax characteristic
function; (d) is the proposed fHGVF Harris based map for GVF (Eq. (12)); (e) shows the generated salient points as the local maxima of the Rlogmax function (Fig. 2(c)); (f) is the
initial contour based on the convex hull of the corner points.

A. Kovacs, T. Sziranyi / Pattern Recognition Letters 33 (2012) 1180–1187 1183
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4.1. Quantitative evaluation using the Weizmann database (Alpert
et al., 2007)

In the quantitative part of the evaluation 23 test images (with
ground truth data), having sharp edges with high curvature or
weak contrast with unsettled edge-transition, have been chosen
for a numerical evaluation process from the Weizmann dataset (Al-
pert et al., 2007) (see Fig. 3). For each algorithm, regions of interest
are marked as an ellipse and initial contours are calculated as de-
scribed in Section 3.3. We applied parameter settings for the com-
pared methods according to the mentioned references to achieve
the best performance. Like it was also mentioned in (Mishra
et al., 2011), due to the intensity variation inside the object, this
database is not suitable for ACWE method. Therefore, results were
evaluated only for GVF, HGVF, VFC and HVFC algorithms.

For quantitative results we used the traditional F-measure
score, which is the weighted, harmonic mean of precision and re-
call values:

F ¼ 2 � precision � recall
precisionþ recall

: ð15Þ

According to the summarized results of 23 images, the average F-
measure score (mean ± standard deviation) for each algorithm is
the following:

GVF: 0.79 ± 0.09; HGVF: 0.87 ± 0.08; VFC: 0.86 ± 0.07 and HVFC:
0.91 ± 0.06. HGVF and HVFC provide higher F-measure score rela-
tive to the classical approaches.

Fig. 3 shows the detailed evaluation results for the 23 images
separately. It is important to note that Harris based methods
(HGVF and HVFC) outperform their traditional corresponding in
nearly all of the cases.

4.2. Qualitative results for boundary accuracy

In the next part of the experiments, specific images were se-
lected to show qualitative results (Figs. 4–6). The execution time
of different methods for images A–D (with sizes 200 � 216,
300 � 200, 335 � 364 and 300 � 170) in Fig. 4 can be seen in Ta-
ble 1. These experimental results were based on an Intel (R) Core
(TM) i7 CPU with 4 GB RAM and MATLAB R2010b.

ACWE (Chan and Vese, 2001) method follows a level-set repre-
sentation; therefore, it uses intensity homogeneity constraints in-
stead of gradient based edge map. ACWE can successfully
identify object boundaries even with high curvature parts, if inten-

sity is homogeneous inside the object and the contour is closed
properly (see image A, first row of Fig. 4). Else, ACWE converges
to object parts representing homogeneous regions which differ lar-
gely from the estimated background (B–D images in Fig. 4).

Beside suffering from high curvature and low contrasted
boundaries, as the detailed explanation showed in Section 2.2,
GVF (Xu and Prince, 1997) also fails when the initial contour is fur-
ther from the real boundary. In case of larger concavities of the ob-
ject boundaries the convexity feature of the contour initialization
step results in a distant initial contour, therefore, the method is
trapped in local minima. The proposed HGVF improves the perfor-
mance of the original method, by emphasizing low contrasted and
high curvatures parts, therefore, it detects the peaks and the stem
accurately in image A, and converges to the desired outline in im-
age D. By enlarging a small part of image D having high curvature
corners with weak edges, first and second row of Fig. 5 show the
detailed detection result and the corresponding magnified force
field of GVF and HGVF methods. Unlike the edge map of GVF, the
proposed feature map of HGVF is able to lead the contour to the
real boundary. However, when the concavity is larger (like in
images B and C), HGVF still fails.

VFC (Li and Acton, 2007) has the advantage to be less sensitive
to initialization than GVF, due to the calculated vector field kernel.
Therefore, large concave outlines do not cause challenge (like im-
age B), but the method fails to detect high curvature and low con-
trasted boundary parts due to the existing problems of the feature
map (see Section 2.3 for further details).

The proposed HVFC method benefits from the advantages of
traditional VFC algorithm and the introduced feature map of mod-
ified Harris function and detects the aforementioned complex
boundaries accurately (see last column of Figs. 4 and 5).

Images E, F and G (with sizes 300 � 170, 300 � 170 and
282 � 191) in Fig. 4 show images containing Gaussian noise with
different signal-to-noise ratio (SNR) and an originally blurred im-
age to evaluate the robustness of the different methods against
noise and blur.

For quantitative evaluation, D, E and F images were compared.
The same parameter setting was applied in every case; therefore,
we could test the robustness to noise. Image D was the original im-
age without any additive noise, Image E with 5 dB SNR, Image F
with 0.5 dB SNR. In Fig. 4, the results show that the proposed ap-
proaches are able to keep the main characteristics of the object
outline, in Table 1(b) the corresponding quantitative F-measure
scores can be seen.

Fig. 3. Detailed evaluation results. Vertical axis shows the achieved average F-measure score for each test image separately. Horizontal axis shows the numbered images from
the Weizmann database (Alpert et al., 2007) used for the evaluation set. Separate bars indicate the results of different methods: light gray is GVF (Xu and Prince, 1997), white
is VFC (Li and Acton, 2007), dark gray is HGVF (proposed) and black is HVFC (proposed).
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In case of the blurred image G, HGVF and HVFC are able to con-
verge to the real boundary more accurately than the compared GVF

and VFC methods without skipping any object part with differing
intensity as ACWE.

Fig. 4. Examples of contour detection: The first column shows the calculated initial contour (see Section 3.3). Second, third, fourth, fifth and sixth columns present the results
for ACWE (Chan and Vese, 2001), GVF (Xu and Prince, 1997), HGVF (proposed), VFC (Li and Acton, 2007) and HVFC (proposed) methods.

Fig. 5. Improvement of the different feature maps in image D achieved by modified Harris based characteristic function: the first row shows the image part with the detected
outline, the second row is the corresponding force field and the contour. Columns show the results for GVF (Xu and Prince, 1997); HGVF (proposed); VFC (Li and Acton, 2007)
and HVFC (proposed) methods.

A. Kovacs, T. Sziranyi / Pattern Recognition Letters 33 (2012) 1180–1187 1185
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Fig. 6 shows a comparison with the novel decoupled active con-
tour method (Mishra et al., 2011) for an image with high curvature
boundary parts. DAC addresses the limitations of traditional active
contours (slow convergence rate and misconverging in the pres-
ence of noise or complex contours) by applying internal and exter-
nal image forces independently. It consists of a measurement
update step, employing a Hidden Markov model (HMM) and Viter-
bi search, and then a separate prior step, which modifies the up-
dated curve based on the relative strengths of the measurement
uncertainty and the non-stationary prior. We compared DAC with
our proposed Harris based methods for image in Fig. 6, which was
also used in (Mishra et al., 2011). Result of the comparison showed
that DAC misses the stem and some peaks of the leaf. Although our
proposed HGVF algorithm is not able to converge into large con-
cavities (due to the aforementioned drawbacks), our HVFC ap-
proach detects the contour accurately. By considering the
execution time of the different algorithms, HVFC is able to con-
verge as fast as DAC.

5. Conclusion and future work

In this paper a novel feature map for GVF and VFC was intro-
duced. This feature map is based on a modified Harris characteris-

tic function, describes better the principal curvatures and
emphasizes both corners and edges equally. Therefore, it can be
used more efficiently for defining a new external force when
detecting complex boundaries with weak contrast and high curva-
tures. An accurate initial contour is determined as the convex hull
of the salient points of the feature map. Future work involves scale-
space optimization (Lindeberg, 1996) of the smoothing scale and
saliency radius around keypoints. Initial 3-D tests showed
improvement in performance when extending the method to 3-
D, compared with the traditional method. However, the three
dimensional representation of Harris corner detector is quite novel
(Glomb, 2009 and Sipiran and Bustos, 2011) and needs more exten-
sive research and evaluation, which will be also included in the fu-
ture work.
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Table 1
Performance of different active contour algorithms, including execution time for images without noise (a) and robustness to increasing Gaussian noise (b) for ACWE (Chan and
Vese, 2001), GVF (Xu and Prince, 1997), HGVF (proposed), VFC (Li and Acton, 2007) and HVFC (proposed) methods.

(a) Execution times for images A–D in Fig. 4, IC indicates the initial contour

Execution time [seconds]

Images IC ACWE GVF HGVF VFC HVFC

A 0.36 13 5.8 5.6 3.7 4.8
B 0.44 66 6.2 6.7 4.2 5.1
C 0.85 68 9.4 11 6.3 6.9
D 0.38 12 3.9 4.3 3.2 3.7

(b) Robustness to noise for images D, E and F with increasing Gaussian noise, SNR indicates the signal-to-noise ratio, F-measure is given in Eq. (15)

F-measure

SNR ACWE GVF HGVF VFC HVFC

1 (image D) 0.66 0.64 0.89 0.79 0.93
5 dB (image E) 0.58 0.53 0.88 0.78 0.87
0.5 dB (image F) 0.60 0.52 0.86 0.74 0.87
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