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An Embedded Marked Point Process Framework fc
Three-Level Object Population Analysis
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Abstract—In this paper we introduce a probabilistic approach the early eighties, since they are able to simultaneously
for extracting complex hierarchical object structures from dig- embed a data model, reflecting the knowledge on the image,
ital images used by various vision applications. The proposed 5nq prior constraints, such as the spatial smoothness of the

framework extends conventional Marked Point Process (MPP) lution th h h based i tati Lat
models by (i) admitting object-subobject ensembles in parent- solution through a graph based Image representation. Later

child relationships and (i) allowing corresponding objects to approaches overcome some limitations of MRFs, by allowing
form coherent object groups, by a Bayesian segmentation of non-Markovian prior fields [5], or directly modeling the dat
the population. Different from earlier, highly domain specific driven posterior distributions of the semantic classeshasvn
attempts on MPP generalization, the proposed model is defined j, congitional Random Fields (CRF) [6]. Recent solutions
at an abstract level, providing clear interfaces for applications loit d | tworks [3] f ised fi

in various domains. We also introduce a global optimization explol eep neura n.e qu s [3] for SUPerV'Se sgman Ic
process for the multi-layer framework for finding optimal entity ~ S€gmentation. As detailed in [7], these various modelszeal
configurations, considering the observed data, prior knowledge, a global scene representation based on local specifications
and interactions between the neighboring and the hierarchically and interactions. Although they can incorporate contextua
related objects. The proposed method is demonstrated in three 5 5herties in a flexible way, they prove much more limited
different application areas: built in area analysis in remotely deli tric inf fi = le thev d t
sensed images, traffic monitoring on airborne and mobile laser In moade ln'g geome ”? Information. =or exampie, they do np
scanning (Lidar) data and optical circuit inspection. A new allow setting constrains on the shape of the segmentation

benchmark database is published for the three test cases, andregions without leading to prohibitive complexity, and aie

the model's performance is quantitatively evaluated. well suited for the representation of macro-textures.
Index Terms—Marked point process, object population analy- ~ Marked Point Processes (MPP) [7], [8], [9] offer an efficient
sis, scene parsing extension of MRFs, as they work with objects as variables

instead of pixels, considering that the number of variables
(i.e. objects) is also unknown. MPPs embed prior conssaint
and data models within the same density, therefore similarl

Object based interpretation of digital images is a crud@ps 1o MRFs, algorithms for model optimization [10], [11], [12]
in several vision applications, among others in remotehsed [13] and parameter estimation [14], [15], [16] are avaiabl
data analysis, optical inspection systems, or video slamee. Nevertheless, many available solutions are limited to ifipec
Since imaging equipments are quickly improving regardinghergy functions [11], [12], [13] or use restrictive sttitial
both macro and micro scale data achiSition teChnOlOgieS, %Sumptions such as requiring the features to be indepEnden
can witness a significant improvement of the available imag,gving Gaussian distribution [16]. Recent MPP application
resolution in many fields. Nowadays we can perceive multipfgnge from 2D [17] and 3D object extraction [18] in various
effects on different scales of a single image, thus there isefvironments, to 1D signal modeling [19] or target tracking
need for recognition algorithms that can perform hierax@hi [20], [21]. In particular, MPPs have previously been used fo
interpretation of the image contents [1], [2]. various population counting problems, dealing with a large

A widely adopted initial step towards understanding afumber of objects which have low variation in shape, such
image is to perform full-scene labeling also known as scegg buildings [22], [23], trees [24], [25], birds [10], or hea
parsing, where we label every pixel in the image with th@4] from remotely sensed data; road manhole and sewer
category of the object it belongs to [3]. Markov Randonyel| covers from Mobile Laser Scanning (MLS) measurements
Fields (MRFs) [4] are frequently used for such tasks singge]; facial wrinkles from medical [27] and cell nuclei from

, _ _ biological images [28], or people in video surveillance-sce
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ysis models [10], [13] focus purely on the object level of thateractions, we propose a multilevel MPP model, which
scene, and they are not well suited for hierarchical pattepartitions the complete (parent) entity population intgeab
recognition problems in a straightforward way. Simple priogroups, called configuration segments, and extracts trextsbj
interaction constraints such as non-overlapping or paraland the optimal segments simultaneously by a joint energy
alignment are often utilized to refine the accuracy of thminimization process. Object interactions are diffenerté-
detection, but they only allow for a very limited exploitati fined within the same segment and between two different
of high level structural information from the global scene. segments, implementing adaptive object neighborhoods.

The Multi-MPP framework proposed by [32] offers ex- A preliminary stage of the proposed method has been
tensions of MPP models in two sensé&#st, to simultane- introduced in [37], [38]. This paper presents a more elaiedra
ously detect entities with varying shapes, it jointly saespl model with various new feature based and prior energy terms
different types of geometric objectSecond local texture and application scenarios. We also publish a novel public
representations of different image regions are obtained bgnchmark for quantitative evaluation of our framework.
a statistical type and alignment analysis of nearby estitie
Although this approach fits well with bottom-up exploration I
tasks of unknown image content, it is not straightforward
how to efficiently segment the object population in such a Similarly to Markov Random Fields (MRF) or Conditional
framework, based on domain-specific top-down knowledg@andom Fields (CRF), Marked Point Process (MPP) methods
On the other hand, several hierarchical phenomena canU§€ @ graph-based representation for semantic content mod-
better described by object-subobject ensembles in pateiat- €ling. However, unlike in MRFs or CRFs, the graph nodes
re|ati0nships rather than by Object grouping constraifss. in MPPs are associated with geometric ObjeCtS instead of
examples, we can mention here Circuit Elements (CE) W level pixels or 3D point cloud elements. This way an
Printed Circuit Boards (PCB) and artifacts included wittie MPP model enables the characterization of whole populstion
CEs [33], [34] in Automatic Opt|ca| |nspection (AO|) imagesinstead of individual ObjeCtS, by eprOiting informatioroin
building roofs and chimneys in aerial or satellite photdsps €ntity interactions. Following the classical Markovian-ap
and containers in radar images [35], etc. proach, each object may only affectitsighborsdirectly. This

Up to now, only highly task specific attempts have beg?foperty limits the number of interactions in the populatio
conducted to model the object encapsulation [33], [35] @nd results in a compact description of the global scenegtwhi
the Bayesian object group management [36] issues witiign be analyzed efficiently.
the MPP framework. Although these studies gave exampledn statistics, a random process is callecbaint process
for how classical MPP schemes can be extended to solfdt can generate set of isolated points either in space or
definite issues of concrete applications, the proposed Imodéme. In this paper we use a discré® point processwhose
have been investigated and evaluated purely in their aigifealization is a set of an arbitrary number of points over a
fields of application, only providing a few notes about pblesi Pixel lattice S:
generalization for different domains. Practical expesen _ _ o
show however, that for such complex, application dependent {o1,02,...,0n}, n€{0,1,2,...}, Vi: 0, € 5. (1)
models, the adaptation for another application domainredya However, it is often not enough to model our objects as
straightforward, and usually a significant amount of maugli point-wise entities. For example, in high resolution deria
work and code (re-)implementation is needed to transform photos, building shapes can often be efficiently appro>échat
modify the framework for a different field. For this reasonby rectangles. To include object geometry in the model, we
this paper follows a reverse path by collecting similar saslcan assign markers to the points, for example a rectamgle
appearing in different application areas, and addressiaqit can be defined by its center poimt S, its orientationd and
by a joint methodological approach. We provide therefoitbe lengths of its perpendicular sideg ande;. In this case
a formal problem statement and introduce a novel thredie marker is a 3D parameter vect®, e, ¢;). By denoting
level MPP framework which allows us to handle a widdy P the domain of the markers, ttf# parameter space of
family of applications. The structural elements and thegne the individual objects (i.eu € H) is obtained ag{ = S x P.
optimization algorithm of the complex model are defined and A configuration of an MPP model, denoted bye (2, is a
implemented at an abstract level, while we keep focus @opulation of an unknown number of marked objects, where
establishing very simple interfaces for different appimas, (2 is the population space. We also define-aneighborhood
providing efficient options for domain adaption for end+sse relation between the objects of a giverconfiguration: objects
The proposed methodology has two key properties: u,v € w are in a neighborhood relatian~ v iff the distance

1) We describe the hierarchy between objects and objésttween the object centers is lower than a predefined tHoesho
parts as a parent-child relationship embedded into the MFielding the set ofV, (w) proximity neighborhoodi w.
framework. The appearance of a child object is affecteddy it Object populations in MPP models are evaluated by simulta-
parent entity, considering geometrical and spectral caimss, neously considering the input measurements (e.g. imaged),
such as the geometric figure of a parent object encapsulgteésr application specific constraints about object geoynet
the child objects, or the color/texture of the parent objeay and interactions. Let us denote By the union of all image
influence the appearance characteristics of the childyentit features derived from the input data. For characteriziniyeng

2) To avoid the limitations of using only pairwise objectv configuration based o#, we introduce a non-homogenous

. INTRODUCTION TOMARKED POINT PROCESSES
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As a next step we formulate the superobject—subobject

Population relation. Each parent objeat may contain a set of child
objectsQ., = {q’...¢™")} wherem(u) < mmax, and each
0..* child is a sample from the previously defined geometric figure

‘ Object group V; library ¢!, € Hip(gi) Qu = () means that, has no child. Let

us denote byH the children vector's parameter space.

L.* For the second level of the proposed object hierarchy, we
‘ Parent object u’," introduce the object grouping process. According to ouliezar
] definition, a given population, denoted hy, is a set ofk
0__*? object groupor (also referred later aonfiguration segments

‘ Child object qk ‘ w = {tn,..., ¥}, where each groug; (: = 1...k) is a
= configuration ofn; objects:

Yy = {uy, . uy b € (H x He)™. ?3)
Fig. 1. Structure elements of the EMPP model. Left: a samplelptipo with . . . .
three object groups, and various object shapes both attpamerchild layers. Here we prescribe that; Nv; = ( for i # j, while thek set
Right: The multi layer structure of the model featuring the asulation number anchq, ..., n, set cardinality values may be arbitrary

relation. (and initially unknown) integers. We denote with< w in the
case wheru belongs to anyy in w, i.e. 3; € w: u € Y.
data-dependent Gibbs distribution over the populatiorespa Let us denote by, (w) the proximity based neighborhood of
1 u < w, which is independent of the group levelf,(w) =
Pr(w) = P(w|F) = 7 eXP (—@(w)) 2 {v<w:u~wv}.
Finally, we denote by) the space of all the possible global

with a Z normalizing constantZ = . g exp(—®(w)). configurations, constructed as:
Here ®(w) is called the configuration energy. Following an

energy decomposition approach - also used by MRFs - we =Up2, {{wu e} € [U;’Ozlll’n]k} (4)
obtain ®(w) as the sum of simple components, which can _ n

be calcul(at)ed by considering small subconfigurations cfdy. where W, = {{ur,. un} € (H xHa)"}
obtain the optimal configuration one should minimizé&v), This way, we consider that each populatior 2 may include
which can be performed with various iterative algorithmany number of groups composed of any number of objects and
perturbating the population with preliminary defined késnechild objects.

following different sampling processes [10], [16].

IV. EMPPENERGY MODEL

I1l. PROPOSED THREELEVEL EMPPFRAMEWORK ) .
. . The EMPP framework follows an inverse modeling ap-
To model the hlerarchlcal scene content, the proposEpoach, so that an energy functiah(w) is defined, which
Embedded Marked Point Process (EMPP) framework hascéih evaluate each € Q2 configuration based on the observed

multilayer structure, as show_n in Fig. 1. At_the tqp, We_have(fata and prior knowledge. Therefore, the energy can be
super node, called thgopulationor the configuration which decomposed into a unary tern) and an interaction term
is a high-level model of the imaged scene. The populaticzc?.

con5|st_s of an arbltrgry number of object groups, where ea B(w) = By (w) + Pr(w), )
group is a composition of one or many super (or parent)
objects. Finally, the super objects may encapsulate anypaumand the optimaks configuration is obtained by minimizing
of subobjects (or child objects). D(w):

The input of the EMPP method is an image over a pixel W = argmin ®(w). (6)
lattice S, ands € S denotes a single pixel. We start with the wen
(super) object layer, which plays a central role in the model )
Let u be an object candidate of in scene, whose imaged shdpeUnary object appearance terms
is represented by a planar figure from a previously fixed shapeEach object: is associated with anaryenergy termpy (u),
library. In this paper ellipses®), rectanglesl{l) and isosceles which characterizes: depending on the local image data,
triangles (\) are used. The shape ofis indicated by ashape independent of other objects of the population. The unamng te
typeattributetp(u) € {O, 0, A}. For each object, we define py (u) is decomposed into a parent tergi (u) and for each
the coordinates of a reference pomt= [o,, 0,], the global child objectg, a child terme$ (u,q,). As indicated by the
orientationd € [—90°, +90°], and the geometry is describedhotation, the child term may depend on both the local image
by a Ky, shape dependent parameter set, which contaidata and the geometry of the parent object (e.g. an intensity
the major and minor axes for ellipses, the perpendicula sitlistogram within the parent region).
lengths for rectangles, and a side-height pair for triamdlet At the parent level we first define differenff;(u) : H — R
us denote by, = Sx[—90°, +90°] x K.,y the complete features i ... fx, Vi fi(u) € [0,1]) which evaluate an object
parameter space of anobject with typetp(u). The unified hypothesis foru in the image, so that ‘high’f(u) values
object space can be obtained#s= U, Hrp. correspond to effective object candidates. In sleeond step
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we construct¢s(u) data drivenenergy subterms for eachis the sum of the parent level terms and the child level terms:
feature f, by attempting to satisfy;(u) < 0 for real objects

and ¢;(u) > 0 for false candidates. For this purpose, we py (u) = oy (u) + Z 5 (U, qu)- (®)
project the feature domain tp-1,1] with a monotonously 9u€Qu
decreasing nonlinealM( f, d-(’;) function [22], whose zero The data term of the whole configuration is obtained as the
value is equal to parametdg: sum of the individual object energies:
¢r(u) =M(f(u), df) = U] By (W) =) oy (u). ©
u . u<w
B (1 - %J;)) , if f(u) <d)
- f
exp (7 f(q‘g);do) -1, if f(u)> dg.

;o , B. Interaction terms
In other words,d;, is the object acceptance threshold for

featuref. The interaction terms implement geometric or feature based

. . . . interaction constraints between different objects, chlijects
Usually a single image feature cannot reliably validate a .
d object groups ab.

hypothesis of presence or absence of a given object. e
therefore established a general feature integrationeglyat ¢, (w) = ZI(“’“) + Zj(u,Qu) + ZA(u,w)
where we can combine various descriptors on a case-by- u~v u=<w w,

case basis with regard each application. The feature &mlect
integration process is based on the investigation of the ob-

served feature histograms calculated for manually anedtafirst, the /(u, v) terms provide classical pairwise interaction

true training objects. For features which are characterfet  ¢gnstraints, e.g. they can penalize overlapping objectisinvi
the whole population (e.g. a single peak or plateau exists e «, configuration:

the histogram), thelg threshold is selected as the minimal
feature value observed among the training samples (using a I(u,v) = M,
tolerance factor for considering outliers). While this gy Area{R, U R, }
ensures that almost all real objects that are consistehtth#t where R, c S denotes the pixels covered by the geometric
training set are marked adtractive by the ¢ ;(u) subterm, it figure of w.

may also cause a high false positive detection rate. The fals Secongd the J(u,Q.) terms model interactions between
hits are eliminated by simultaneously considering mutipkhe corresponding parent and child objects, and intenastio
feature constraints for acceptable objects, and by joitiieg petween different child objects corresponding to the same
corresponding feature energy subterms by ithex operator, parent. For example, we can prescribe that the children of a
which is equivalent to the logical AND operation in thegiven parent (i.esiblingg should not overlap with each other,
negative log-likehood domain (real objects should beetitra  and not overhang the parent, or the siblings should have the
according to all prescribed feature constraints). same shape type, similar color, size, orientation etc.

On the other hand, some useful features may only be charThird, with the A(u,) energies, one can define various
acteristic for a segment of the population. For exampleagert constraints between the object group level and the (parent)
buildings with red roofs, or yellow cabs in the traffic flow carPbject level of the scene. To measure if an objeappropri-
be easily recognized through color filtering in an illuminar@tely matches to a population segmentve define a distance
invariant color representation (such as in the HSV or Clgeasuredy(u) € [0, 1], whered,(u) = 0 corresponds to a
L*u*v* color spaces), but this filter will eliminate all nored high quality match. In general, we prescribe that the seggnen
roofs, or non-yellow cars. In this case, the feature histogr are spatially connected, therefore, we use a constant high
derived from all training objects has multiple modes, whedfference factor, ifu has no neighbor within) w.r.t. relation
the first mode strongly overlaps with the background domain. Thus we derive a modified distance:

(e.g. gray cars cannot be distinguished from the road based A 1 if v e \{u}:u~v

on color). Therefore, we choose here a subsequent mode’s () = { (3)
lower boundary as the acceptance threshold of the selecte

f feature, megnwhile we coFr)lsider that an objpaitotype W'%h the defin_ition OfA(."’w)’ we sl_ightly pe_nal.ize population
energy function containing the; subterm will label only a segments which contain anly a single object.

part of the possible objects aftractive Nevertheless, several Au,¥) = ¢ iff ¢ = {u}, (14)
different object prototypes can be detected simultangansi .

given image, if the prototype-energies are joined withitie ~ With @ small0 < ¢ constant (used = 0.05). )
(logical OR) operator. Concrete examples for the data termFor segments with multiple objects, we penalize latgéu)
construction process are provided in Sec. VI. distances within a group, and also small(v) distances ifu
is not a member of):

parent-parent interaction parent-child interaction parent-group interaction

(12)

dy(u) otherwise

The construction of thechild’s unary term$, (u, q,) is .
based on similar principles: it is obtained using different Alu, ) = dw(u) ifuey (15)
features mapped by tha4 function. The unary term of. ’ 1—dyp(u) if u ¢ .
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Algorithm 1: Optimization of the configuration
Steps of the algorithm

1) Initialization: start with an empty populatian = (), setbo birth rate andB(.) birth maps of the Bottom-Up Stochastic Entity
Proposal (BUSEP) process, initialize the inverse temperature parafheted, and the discretization step= do.
2) Main program: alternate the following three steps:
« Birth step Visit all pixels on the image lattic& sequentially. At each pixed, with probability 6bo - B(s), generate a new
objectu with centers and random geometric parameters according to the BUSEP. For eaabbiertu, with a probability

0 . 7
=1y ¢+ losp- dy. (u),
Pu =0 + Lz - min v, (1)

generate a new empty segment (i.e. object group), addo ¢ and« to w. Otherwise, add: to an existing segment; € w

with a probability A A A
pu= (1= dy,(w)/ Y (1= dy,(w))

P Ew

» Death stepConsider the actual configuration of all objects withirand sort it by decreasing values dependingzen(u) +
A(u, z/;)|u6w. For each object: taken in this order, computA®,, (u) = ®p(w/{u}) — ®p(w), derive thedeath ratep? (u)
as

d dexp(—f - Ady(u))
=T(AdD, = , 10
ph(u) = T(ARu (W) = 5 o (10)
and delete object. with probabilityp‘j(u). Remove empty population segments framif they appear.

« Group re-arrangementConsider the objects of the curreatpopulation, sequentially. For each objectof segmenty) we
propose an alternative object, so that the shape type af, tp(u'), may be different fromp(u), and the geometric parameters
of «/ are derived from the parameterswhy adding zero mean Gaussian random values. The next step is sekecfingp
candidate foru’. For this reason, we randomly choose abject from the proximity neighborhood af (v € A, (w)), and
assignu’ to the group ofv, denoted byy’. Then, we estimate the energy cost of exchanging to v’ € ¥':

Ap(w,u,u’) = oy (u) =y (@) + > [T v) = I(u,v)] + A/, ¢') — A(u, 1))
v=<w\{u}

The object exchange ratis calculated using th&(.) function defined by (10):
o (u,u') = F(Aap(w,u, u/))

Finally with a probabilitypg, (u, u’), we replaceu with «’.
« Child Maintenance~or eachu < w object:

— add new child objects t@),, randomly.

— sort@. by decreasing values depending on @#fgu, ¢..) values.
for each child object,, € Q. taken in this order, compute the child removal rdféq, ) similarly to the parent level, but
considering only the child level unary and interaction terms.
removeg, from @, with a probabilityd, (q. ).

3) Convergence test: if the process has not converged yet, ingfeaiseé decreasé with a geometric scheme, and go back to the
birth step.

Fig. 2. Pseudo code of Multilevel Multiple Birth and Deatly@aiithm

V. OPTIMIZATION or dilation. Experiments show that the rejection rate, ey
for the birth step, may induce a heavy computation time.

MPP energy functions are optimized in the literature eithgfesides, one should decrease the temperature slowly, $®cau
with stochastic iterative algorithms such as the ReV&ISit&t low temperatures, it is difficult to add objects to the popu
Jump Markov Chain Monte Carlo (RIMCMC) sampler [16jation. On the other hand, MBD [10] evolves the population
and the Multiple Birth and Death Dynamic technique (MBDpf objects by alternating purely stochastic object gefemat
[10], or with deterministic methods inClUding the MU|t|p|6(b|rth) and removal (ﬂeaﬂ’) Stepsy in a Simulated Annea"ng
Birth and Cut algorithm (MBC) [11] and the very recen{sSa) framework. Each birth step of MBD consists of adding
Local Submodular Approximation (LSA) [13]. The mentionedeveral random objects to the current configuration, andthe
deterministic methods can provide a high quality solutiathw js no rejection during the birth step, therefore high energy
very efficient computational costs, however they are m@stli opjects can still be added independently of the temperature
to specific energy functions (singleton and doubleton termggrameter. Due to these properties, in several tasks aleotab
only), and they cannot be adopted to the proposed complgxin has been reported in optimization speed versus RIMCMC
three-level EMPP model in a straightforward way. [10]. Note that the speed of RIMCMC can be increased with

In most RIMCMC based solutions, each iteration of thearallel implementation on GPU [12], but this solution need
relaxation consists in perturbing one or a couple of objegtartitioning the nodes into independent groups, which is no
with various kernels such as birth, death, translatiorgtian
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(¢) Shadow feature (sh)

{d) Color feature (co) (f) Edge feature (eg)

Fig. 3. Building analysis - data term features based on [22gfficient edge
and shadow maps, weak color informatien.detection via color map

possible for EMPP due to thd(u,) object—group energy
component.

For optimizing the energy function of Eq. (5), we have
chosen the extension of the Multiple Birth and Death (MBD)
[10] algorithm, as an efficient trade-off between perforoean
and processing speed. Since the iterative MBD [10] dea
with single layer MPP models, the main task here is tc
include the group assignment, object re-grouping, anddchil
maintenance issues within the original MBD framework. Or
one hand, after eachirth step, the generated object should
be assigned to a new, or an existing group. Then, followin
the death procedure, we execute a new step, cal@wup
re-arrangementwhich may redirect some objects to neigh-

dgo: color feature’s acceptance threshold for red roofs

Tgeo " Color feature histograrh
0 of true building objects

| I e 1 1 'Y .
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T T T
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10 of random (false) rectangles
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. . .
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(a) Color feature statistics

dzhi shadow feature’s acceptance threshold for non-red roofs

o= ‘ ‘ g Shadow feature histogram
0 of true building objects |

|

0.1 0.2 0.3 aa 0.5 0.6 0.7 0.8 0.9 1

Shadow feature histogram
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(b) Shadow feature statistics

dgr: gradient feature’s acceptance threshold for non-red roofs

Gradient feature histogram
of true building objects |

. . . . .
05 0.6 0.7 0.8 0.9 1

Gradient feature histogran
of random (false) rectangle

ON DO ® ON DO ©
T T
(7]

. . . . . . .
0.3 0.4 05 0.6 0.7 0.8 0.9 1

(c) Edge feature statistics

boring ijeCt groups based on (_jata dependent and prior ?’Qfé? 4. Histograms of color, shadow and edge features for anc false
constraints. On the other hand, in the last step of an itrati training objects in the built-in area analysis task

called Child Maintenance we may add, remove or replace

child objects for each parent. The speed of the algorithm was

significantly increased by the Bottom-Up Stochastic Entity

Proposal (BUSEP) process [33], which assigns to the differe 1) Model elements:semantic definition of parent/child

image pixels (1) pseudo probability values of a pixel being
an object reference point (e.g. center of an ellipse) (2)omar
distributions for object parameters expected in the givrelg.
This way the entity proposal maintains the reversibility of
the iterative evolution process of the object populatiof],[3
instead of implementing a greedy algorithm. On the other
hand, this bottom-up process can efficiently guide the abjec

exploration step towards efficient candidates. Using BUSEP3)

we obtained the final result for each application within 30

seconds in average as detailed in Sec. VIII-C. The pseudo

code of the new Multilevel Multiple Birth-Death-Maintenam
(MMBDM) algorithm is shown in Fig. 2. We set threlaxation
parameters based on [10] and usgd= 10000, By = 20 and
geometric cooling factor$/0.96.

VI. APPLICATIONS
In this section, we introduce three different applications

objects and object groups. Fixing the shape libraries
for parent/child objects, and additional domain specific
constraints such as the maximum numbesibfings of

the same parent.

) Unary terms:defining the domain specifit features and

feature integration rules to obtain tharent levels?. (u)
andchild level ¢§ (u, ¢,) unary terms (Sec. IV-A).
Parent-parent interactionsdefining thel(u, v) interac-
tion terms between (spatially) neighboring parent objects
(Sec. IV-B).

Parent-child interactions:defining the J(u, @,) inter-
action constraints between the corresponding parent and
children objects (Sec. IV-B).

Parent-group interactionsdefining the grouping con-
straints through the definition of thd, (u) object-
segment distance (Sec. I1V-B).

of the proposed EMPP model. Implementing the interfac¥ge would like to emphasize here that all further model
of the EMPP framework consists of specifying the followinglements and algorithmic steps introduced in Section¥ IlI-
elements for each application: are independent of any specific application.
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10r (a) Tnput image part

Fig. 5. Histogram of the constructed unary energy terms fog &ind false
training objects in the built-in area analysis task

A. Built-in area analysis in aerial and satellite images (b Roof {parent) candidate (d) Segmented roof (f) Detected chimneys

Analyzing built-in areas in aerial and satellite images i|§|g. 6.
a key issue in several remote sensing applications, e.g. In
cartography, GIS data management and updating, or disaster
management. Most existing techniques focus on the extracti
of individual buildings or building segments from the image

Building analysis - Features for chimney extraction
u v
[22], however, as pointed out in [40] finding groups of B/D I:I |:|
corresponding buildings (e.g. a residential housing idi3thas

Y
2V
also a great interest in urban environment planning, asasgell u %
detecting illegally built objects which do not fit the reguén- u Y ]
vironment. On the other hand authorities or telecommuitinat %D I:I I:I " ‘

companies may also need to monitor specific objects on the
roofs such as chimneys or parabolic antenna dishes forreithe  (a) Alignment based group (b) Color based group
statistical purposes (market research), or for the estmaif
air pollution. Detecting illegal or irregular chimneys calso I]/D D x
be a relevant task for city monitoring. D D DD
For demonstrating the adaptation of the EMPP model for
the topic of urban area analysis, we have chosen very high (¢) Roof size based group
resplutlon aerial images (arounq 12cm/pixel) .Captured.nfroFig. 7. Prior energies for building grouping (a)-(c) Fawb(¢/) and penalized
regions of Budapest, Hungary, with a sample displayed in Figy sup-configurations within a building group
9. The task specific issues are detailed in the following:
1) Model elementsParent objects are rectangular segments
of the building footprints, assuming that each building tan
approximated from the top-view either by a rectangle or bytit the upper region (red roofs) can be well separated from
couple of slightly overlapping rectangles. Child objeatsll the background using an appropriately chosen acceptance
structure elements on the roofs, such as chimneys or sateli;’ threshold value (we set this threshold with the aim of
dishes, also modeled by rectangles. For easier discussemn,Minimizing the false positives).
refer to all child objects simply ashimneysn the following. ~ For non-red roofs we can rely on the shadow and gradient
Configuration segments are groups of corresponding bgidinmaps [22]. As demonstrated in Fig. 3(e) tileadownessea-
like members of a residential housing district in Fig. 9(a). ture is based on a preliminary cast shadow mask, by expjoitin
2) Parent unary terms:the ¢} (u) energy function inte- that cast shadows are located next to fheobject rectangles,
grates feature information about roof color, roof edge arfyy checking for the presence of shadows in a parallelogram
shadow [22], as demonstrated in Fig. 3. Following the unaf;" defined by R, and the estimated Sun direction vector.
term construction strategy introduced in Sec. IV-A, we Bive The shadownes$eature is calculated as the minimum of the
tigated the individual feature histograms collected framet filling ratio of the shadowed pixels ifs", and the filling
and false training objects for feature selection and parameratio of the non-shadowed pixels i, . Fig. 4(b) displays the
estimation (see Fig. 4).Redroofs can be detected in colorshadowneshistograms of true and false object candidates: the
images using the hue components of the corresponding pigbiects’ domain can be well described by a lower threshold
values (Fig. 3(d)). The color term favors objects which eamt d", expecting some outlier buildings, where the shadow mask
a majority of roof colored pixels inside the rectangle wof could not be obtained due to background texture (such as
and background pixels around the features are the ratios ofof Fig. 3(g)).
the areas of roof-classified pixels in the internal and eeler The edgedescriptor exploits the information that below the
boundary regions of the candidate rectangle, respectifealy edges of a relevant rectangle candiddig)( we expect pixels
shown in Fig. 4(a), the color feature histogram is multimipda(s) with large intensity gradient vector¥/g,) directed towards
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Fig. 8. Building analysis - sample results for chimney detectiTrue hits are marked by yellow circles, a false negatieigslighted in the fourth image
of the upper row by a yellow rectangle. In the corners of themas, the raw images of the chimney regions are displayedatepafor visual verification

Fig. 9. Results of built-in area analysis, displayed atetd#ferent scales. Building groups are distinguished wlifferent colors (purplered roofs’ district
others: orientation based groups); red markers denote tieetdd chimneys

to the local normal vectond,) of the rectangle. Therefore theto localizing buildings using the shadows on the parentaibje
gradient descriptor is obtained @S, 5, Vgs- ns , Where*”  level. However, for non-flat roofs (such as gable or mansard
denotes the scalar product aAd&,, is the dilated edge maskroofs [41]) we must separately handle the cases of illuremhat
of rectangleR,, (see Fig. 3(c)(f)). Edge feature histograms ca@nd self-shadowed roof segments. Taking a photometric ap-
be examined in Fig. 4(c). proach [42], for a given surface point the ratio of the obedrv
We have empirically observed that the above three descriptensities (luminance or gray level) in shadow and under
tors are efficient complementary features in many sceneks, dfmination may be efficiently modeled by a Gaussian dgnsit
we use two prototypes in the model: the first one uses the edg@ction in outdoor scenes. However, the mean value of the
(eg) and shadowsf) constraints in parallel, while the second>aussian varies according to external illumination [423, i
one considers the roof color onlyd). By using thegeg, den it needs different settings for the illuminated and shadbwe
and ¢., primitive terms defined by Eq. (7), the joint parentoof parts. Thus, we first segment the parent object region

level energy value is calculated as: using a floodfill-based classification step (Fig. 6(b)(dhgrt
a local color model is adopted in each segment, derived from

¢y (u) = min { max {deg (u), Psn(u)}, ¢co(u)}.  (16) the regions’ histograms. The estimated chimney object and

Fig. 5 provides an initial validation of the above choiceSh@dow regions are shown in Fig. 6(e) with blue and red

histograms of they?. (u) values over true and false objectoVeriays, respectively. Finally the child object's datante
indicate that an efficient separation is ensured by the eata t Préscribeschimney candidatepixels within the object mask
in the joint feature space. and shadowedareas in the neighboring roof regions w.r.t.

3) Child unary termsiS,): the feature extraction workflow the global shadow direction. Examples for extracted chimne

for indicating chimneys (or further tall structure elensgnmn objects are shown in Fig. 6 and Fig. 8.

the roofs is demonstrated in Fig. 6. We used two observations4) Parent-child terms/(u,Q,): Non-overlapping siblings
First, chimney pixel colors have usually lower saturatioAf® expected to have similar orientation. Children figures
components compared to the surrounding roof parts, which cgould be encapsulated by the parent rectangles (Fig. 9c).

be filtered in the HSV color space considering Haduration 5) Object-segment distanoép(u): In our test areas, we
channel (Fig. 6(c)). Second, chimneys cast shadows on tlave observed various different grouping constraints,clvhi
roofs, an issue which can be approached in a manner simgaould be considered on a case-by-case basis. First, in many
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Fig. 12.  Traffic monitoring application, calculation of theigy grouping
features a)-b) Favored,() and penalized X) sub-configurations within a
traffic segment

. . . ) ) ) d"® vehicle evidence feature’s acceptance threshold
Fig. 10. \Vehicles appearances in raw triangulated Lidaa @atensity based 40— ‘ : : : ‘ ‘ : :
coloring was used) Vehicle evidence feature

2 histogram of true objects
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Fig. 11. Traffic monitoring application, calculation of thatd model features
based on [36]

. . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

regions, we can find several distinct building groups whigh a (b) External background feature statistics

formed by regularly aligned, parallel buildings. Secon® Wkig. 13. Histograms ofiehicle evidencand external backgroundeatures

can also see large building groups (e.g. purple group in tietrue and false training objects in the traffic monitoriragk

center of Fig. 9(a)), where the orientations of the houses ar

irregular, but the roof colors are uniform. Third, familydses

and condominiums can be mixed in the same area, which can. e - "

. : P Vehicle queue waiting in front of a traffic light. In addition

also be a basis for grouping. Thus, we distinguished thigesty . o . .
L T ;  extracting characteristic parts of the vehicles may previd

of building groups: ify is an alignment based group (Fig.

. . . useful information for classification or behavior analydis
7(b)), dy(u) is proportional to the angle difference betweer)”. . .
- . P is section, we rely on the measurements of an airborne
u and the mean angle withigp. Otherwise, ify is a color

group (Fig. 7(c))d, (u) measures how the color histogram 0tidar laser scanner and a car-mounted mobile mapping system

g DT . (MLS), providing 3D point clouds completed with inten-
u matches the) group’s expected color distribution, which ISsity/RGB color values. From the aerial data, due to the low

set by traiping samples dur?ng '.[he' system configuration. (Flr%solution of the considered point cloud measurements .(max
9(2),(b). Finally, for separating individual houses froangler points/n?), only coarse vehicle shapes can be extracted.

condominiums, the roof size and the side length ratios ae - . .
RSN owever, as shown in Fig. 10, the windshields are obseryable
discriminative features. . . .
so they could be separated based on a joint consideration of
] o ) the vehicle geometry and the observed intensity map. From a
B. Traffic monitoring based on Lidar data practical point of view, extracted windshields can be used f
In city surveillance applications, automatic traffic monielassifying vehicle types, estimating vehicle directido. és
toring and analysis needs a hierarchical modeling approaébr the MLS data (Fig. 18), the point cloud has a very high
first individual vehiclesshould be detected, then we needesolution, preserving several details, but significaatlenges
to extractcoherent traffic segmentby identifying groups of are caused by ghost objects, occlusion and invisible object
corresponding vehicles, such as cars in a parking lot, orparts, which are the consequences of the street level sganni
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Fig. 14. Sample results on traffic analysis. Super rectange® the detected vehicles, different colors correspontiedifferent groups. In the background,
gray levels refer to the input label map: white - vehicle cdatés, light gray - road, dark gray - roof. a) cars and tra#gnsents b) selected region with the
detected windshields c) intensity map of a selected car, @cten result for c).

process. 5) Object-segment distanek, (u): we expect that the ve-
In [36] a two-step method was introduced for Lidar basehicles of the same segment have similar orientations, agd th

vehicle detection, which we adapt and extend here for therm regular rows. Thel,(u) distance is the average of two

EMPP framework. Firstly, each point of the 3D point set iterms: thefirst term is the normalized angle difference between

classified into vehicle or background clusters, howeveg th: and the mean angle withigr (see Fig. 12(a)). Regarding

classification can only be considered as a coarse input ¢or the secondterm, we fit one or a couple of parallel lines to

object detector. Then the points with the correspondingsclahe object centers withigp using RANSAC, and calculate the

labels and intensity values are projected to the groundeplanormalized distance of the center offrom the closest line

where the optimal vehicle and traffic segment population {(§ig. 12(b)). A generalization of this feature for curvedhdo

modeled by a rectangle configuration in the projected 28egments can be found in [36].

image. A sample class label map extracted from aerial data

is demonstrated in Fig. 14(a), while the projected intgnsit

map of an MLS data segment is shown in Fig. 18(c). C. Automatic optical inspection of printed circuit boards

1) Model elementsparent objects are vehicles, child ob- aytomatic optical inspection (AOI) is a widely used ap-
jects are windshields (both are rectangles). Configuratiggoach for quality assessment of Printed Circuit Boards
segments are formed by corresponding vehicles accordingfBs). Automated layout-template-free approaches are es
various traffic situations (Fig. 14(a)). pecially useful for verifying uniquely designed circuits

2) Parent unary termsyy.): similarly to [36], three differ- the PCBs usually connected groups of similarly shaped and
ent features are exploited for vehicle extraction (see Flg. oriented Circuit Elements (CEs) implement a given fungtion
The vehicle evidencéf..) respectivelyintensity(fi;) features therefore the interpretation of the board content needs to
are calculated as the covering ratios of vehicle classifieelp segment the CE population. Another critical issue is fitigri
in the label and intensity maps within the proposed rectnghe flawed PCBs by AOI. Nowadays the most widespread as-
of u. The external backgroundf.,) feature is the rate of sembling technology of electronic circuit modules usesvef]
background classified pixels in neighboring regions arour@|dering [43]. Here a common problem, calmbopingmay
the proposed: object. Thedy., ¢i; and ¢ep, primitive terms occur during manufacturing, which influences the strendth o
are derived according to Eq. (7), similarly to the built-it@ solder joints in stencil prints [33]: a board should be withen
analysis application (Sec. VI-A2). Finally the joint dateeegy if the number the summed volume of such artifacts surpass a
of objectu is calculated as: given threshold. A scoop can be visually observed in an AOI

» _ . image as a bright patch surrounded by a darker ring within the
iy () = max(min(@i (v), dve (w)), Gen(w), - (17) solder paste, as shown in Fig. 16(a). Automatic detection is
where we admit that not necessarily all vehicles appear @sallenging due to the locally varying contrast of AOI image
bright blobs in the intensity map. For demonstrating thi@3].
parameter choice, feature histograms of the vehicle eeglen 1) Model elements:parent objects are CEs of various
and external background descriptors are shown in Fig. 13.shapes, child objects are scoops, modeled by pairs of con-

3) Child unary terms 5.): due to their glassy material, centric ellipses. Groups are formed by CEs which likely have
the windshield rectangles cover regions without pointowr1  similar functionalities.
intensity areas in the projected point cloud maps (Fig. D an 2) Parent unary terms,): In the considered PCB image
14(c)), features which are characterized by coverage sratigata set [34] the CEs can be modeled as briglatangles
similarly to the parent level descriptors. ellipses or triangles surrounded by darker background. To

4) Parent-child termsJ(u, @,,): the windshield is encap- evaluate the contrast between the CEs and the board, we
sulated by the car’s figure, and the orientation is perpealic calculate the Bhattacharya [10] distanég(u) between the
to the car's main axis (Fig. 14(c)). pixel intensity distributions of the internal CE regionsdan
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Fig. 15. Results of PCB analysis. CEs are grouped by shap@rentation, scoops are extracted within the CEs
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their boundaries (see Fig. 16(a)). Then thg(u) unary term
is derived by M mapping ofdg(u) (Sec. IV-A).

3) Child unary terms«s): Following the approach of [33]
we distinguish three regions of each scoop: the centrahbrig
ellipse, the darker median ring and the bright external,rin
as shown in Fig. 16(b). Experimental evidences prove (F
16(c)), that for a real scoop the gray level histogram of the Solier pase iernal icgion vy _
central region )\ (z) follows a skewed distribution, while the () (b K (©
medium and external region histogramg®(x) resp.\;(x))
can be approximated by Gaussian densities. Let us denoteFlgy16. Circuit inspection, calculation of the data modeltéees based on
pS, p resp. g the peak locations of the smoothed(z), (3]
Ay () resp.Ag(z) functions. We prescribe three constraints
for an efficient scoop candidate: (i) it exhibits highj value;

while intensity ratios (i) ug /py resp. (i) pg /g pass u H UM

Median ring

given contrast threshold&™ andd®™. To enforce the simul-
taneous fulfillment of the (i)-(iii) properties, the chitddtata- v u
energy value is calculated applying the maximum operator — — — .4
(logical AND) from the subterms of the three constraints. We U

use here again tha1 function, defined by Eg. (7):

5 (1 0u) = max (M, d°),
Mgl 2 0™,
M(“Z /,U/an 7dem)> (18) Fig. 17.  Circuit inspection application, calculation ofetprior grouping
“ “ features (a)-(b) avored/) and penalizedX) sub-configurations within a CE

4) Parent-child terms](u, Qu): due to the manufacturing group, w.r.t. theshape type matchndalignment matctconstraints
technology at most one scoop may appear in a solder paste,

therefore each parent CE may have a maximum of one Chlgjésed on the Ground Truth (GT) data of the new benchmark,

whose figure cannot overhang its parent. . o .
g grisp we elaborated an automatic validation methodology, which

5) Object-segment distancé, (u): within a CE group, | ) . on b 97 N
we prescribe that the elements must have similar shape Y@ U2at€s a given output configuration by comparing it to the
GT, and calculates matching scores at various levels.

must follow a strongly regular alignment (Fig. 17). Therefo
dy(u) = 1 if the type ofu, tp(u) is not equal to the type of
the ¢ group, otherwisel, (u) is the maximum of the angle A. EMPP Benchmark database
difference and symmetry distance terms defined in Sec. VI-BThe proposed EMPP Benchméris based on various (in
by the traffic monitoring application. the most part unpublished) data collections. For each sicena
new Ground Truth (GT) data has been generated to enable the
o o o validation of the proposed three-layer embedded model. The
Utilizing relevant test data and efficient quantitativele®a gqrialized GT annotations encode the dependencies oftepjec
ti(_)n metrics are key points in experimental method valatati object groups and child objects within a population, using
Since to our best knowledge no usable dataset has D@gl same data structure and syntax for each applicatior (Th
published yet enabling the three-level analysis of theutised gemantic interpretation of the model elements is obviously
complex scenarios, we have created the EMPP Benchmgfarent for each field, as introduced one-by-one in Sec.
database, which is designed for the evaluation of multilelse
ject population analysis techniques on high resolutiorgi@sa  Website:ht t p: / / npl ab. szt aki . hu/ EMPPBenchmar k

(a) Shape type match (b) Alignment match

VII. QUANTITATIVE EVALUATION FRAMEWORK
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TABLE |
DATASET PARAMETERS
. . Images/| Covered | Parent Child Child/ Group
Applicat. Input Resolution ) . .
scenes area objects objects parent num/image
Building analy-| Rem.sens. | 0.12-0.8m 4 1.0kn? 442 79" {0,1,2,... 5-16
sis RGB image | /pixel buildings | chimneys
Traffic analysis Ae_nal Lidar | 8pts/nt 6 0.3kn? 817 817 1 7-9
: pointcloud vehicles | windshields
(aerial/ground . .
based) Mobile laser| up to 7000 2 5700nt | 42 42 1 3-5
scan. data | pts/n? vehicles | windshields
PCB inspection| Grayscale 6 pm/pix 44 1232mnt | 4439 664 {0,1} 3-7
AOI image circ.elem. | scoops

*chimneys can only be reliably analyzed in the 12cm resolution sample.

VI.) For GT annotation we have developed a program wifi8], [45]. A detected object is labeled as True Positive)(TP
graphical user interface, which enables us to manuallytere# the HA matches it to a GT object with an overlapping rate of
and edit a GT configuration of various geometric objectmore thanr, (usedr;, = 10%). Unpaired detection samples
composed of both parent and child elements. We can alm@® marked as False Positive (FP), unpaired GT objects as
create new object groups, and assign each parent object td-alse Negative (FN) hits. At the pixel level, we compare the

existing group. object silhouette masks to the GT masks, and calculate the
The EMPP Benchmark database includes the followirRarent Pixel level F-rate (PPF) of the match as the harmonic
input images with annotation (see also Table I): mean of Pixel level Precision (PPr) and Recall (PRc) [22].

1) Building detection:Budapest aerial image with 12cm The evaluation step regarding the thogild layer uses
resolution (69 buildings, 79 chimneys), Manchestéibject level metrics similar to the parent layer. However,
satellite image (50cm res., 155 buildings) from th@Y calculating the Child Object level Precision (CPr), Reca
SZTAKI-INRIA Benchmark [22], and two Quickbird (CRc) and F-rate (COF), we only accept matches between
images (#2 and #11, 60cm-80cm res., 218 bu“dinggje detected and GT child objects, if their parents are also
from the dataset by A.O. Ok [44]. correctly matched at the upper layer. Finally, we also measu

2) Traffic analysis:the dataset contains aerial Lidar pointh€ correct Group Classification Rate (GR, %) among the
clouds, and from a smaller region mobile laser scannifig/€ Positive samples, considering the GT group classiicat
(MLS) data samples (for proof-of-concept e\,am‘tion)|m‘ormat|on. The GR value is determined by counting the

« Aerial data:6 point cloud segments from Budapestnumber correctly grouped objects (TG)’ the number of fyisel
Hungary, dense urban regions, 792 vehicles (sca#ouPed objects (FG), and calculating GR=TG/(TG+FG).

ner. Optec ALTM Gemini 167, point denisty: 8
pts/m2) [36]. VIIl. EXPERIMENTS

« MLS data:2 point cloud segments from Budapest, We evaluated our method on the new EMPP Benchmark
Hungary, dense urban regions' 42 vehicles (scanngﬁtabase. Qualitative sample results of the three levelipop
Riegl VMX-450 mobile mapping system). lation detection are shown in Fig. 9, 14, 15 and 18. During
3) Optical circuit board analysis44 printed circuit board (e guantitative analysis, the results were compared t&the

images of Gm resolution, containing 4439 CEs and 66£onfiguration of the benchmark, and the above performance
scooping errors [33]. ' rates were calculated in each case, as shown in Table II.

A. Performance comparison against baselines

During the comparative tests, we focused on the evaluation
The quantitative evaluation of an EMPP based scene anafl-the newly introduced EMPP framework versus earlier
ysis algorithm should be accomplished at multiple levets. Fstraightforward MPP solutions. As a baseline for compariso
the different layers of the model, different quality mea&sur we implemented a sequential technique, which extracts first
are defined, which can be derived fully automatically frorthe object population by aingle layer MPP modelsMPP),
the EMPP detection results and the GT. using exactly the same unary terms and child detection psoce
In the parent objectlayer, we define both object baseds the proposed EMPP approach, but dhgw) prior term
and pixel based accuracy rates. At the object level, we fiistonly composed of thd(u,v) intersection component and
need to establish a non-ambiguous assignment between ttiee/ (u, Q,,) parent-child interaction feature, while the parent-
detected objects and the GT object samples. As a similargyoup term is considered to be zetd({:, 1)) = 0). Thereafter,
feature, we use the normalized intersection area between tie parent object grouping step is performed in post pratgss
object figures, and we find the optimal match between tiy a recursive floodfill-like segmentation of the population
configuration elements with the Hungarian Algorithm (HABtarting from a randomly chosen object, we assign all its

B. Quantitative evaluation methodology
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(a) Input urban MLS point cloud (b) Segmentation result {vehicle candidate points displayed)

13

{¢) EMPP detection result for the scene

Fig. 18. Processing workflow for Mobile Laser Scanning d&.Input scene (b) estimated vehicle regions by point cldadsification - two selected
segments are highlighted from different viewpoints (c) EMIRection results
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spatial neighbors to the same cluster iff the differencevben

the orientations is lower than a threshold and recursively
repeat the process until all objects receive a group label.
As observed during the following qualitative and quanitrat
tests, the bottleneck is the usage of this singléhreshold,
which cannot be set uniformly for a complete population in
case of noisy initial object estimations.

In Table Il we can observe that the introduced EMPP model
can surpassMPP in two major quality factors. First, EMMP
results in a notable gain in the pixel based error rates (PRc,
PPr and PPF), which means that the extracted object shapes
become more accurate. Second, the EMPP model significantly
decreases the number of objects with False Groups (FG,GR).
Using the single layer model the main source of errors is that
in many cases the object orientations cannot be accurately
estimated based on the input feature maps only: in the baildi
analysis task the edge map is often weak and noisy, in
aerial vehicle detection the projected point cloud has a low
resolution, and in PCB analysis the irregular deformations
of the rectangular solder pastes may make the estimation
inaccurate. On the other hand, in our EMPP model, the object
orientations are efficiently adjusted by considering trghbr
(group) level alignment constraints. As shown in Tablehg t
differences between theMPP and EMPP performance are
less significant regarding the Mobile Laser Scanning (MLS)
data, which has a high resolution and accuracy, enabling mor
reliable feature extraction from the input measurements. W
note that in particular cases, tsBPP output could also be
enhanced by using pairwise orientation smoothing termp [32
However, the proposed EMPP model offers a higher degree
of freedom for simultaneously considering various growgle
features and exploiting interaction between correspandint
not necessarily closely located objects. In our case, wg onl
prescribe regular alignment within the estimated objectigs,
locally outlying labels can indicate unusual object bebavi

While the justification of using an MPP approach versus
various alternative techniques for the selected apptinati
domains has already been addressed by field specific studies
[22], [33], [36], we provide in Table IV a short comparison
of the parent-object leveberformance of the EMPP model
against various non-MPP based state of the art solutions. As
references, in the building detection detection tasks we ha

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript, published in IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017

IEEE TRANS. IMAGE PROCESSING 14

chosen the following three techniques: Gabor Filter baséshtures [22], [33], [36]. This way, the algorithm convedge
approach of [46], the Segment-Merge (SM) technique of [4&uickly to a sub-optimal solution, which proved to be effitie
and the Orientation Selective Building Detection (OS) rodth in all application domains, as demonstrated in Sec. VIII-A.
proposed by [48]. For aerial vehicle detection, we compar&r quantitative analysis of the processing speed, we ran ou
our solution to the digital elevation map based PCA [49%lgorithms on a standard desktop computer, and for each
h-maxima suppression (h-max) [50] and Floodfill (FF) [36]application we calculated the average computational time o
As Table IV confirms our approach surpasses the baselime® test image, both for the EMPP asdPP models. Results
for vehicle detection task with a notable margin, while it iisted in Table. Il confirm that the EMPP’s average running
also competitive versus the reference techniques on hgilditime varies between 11 and 22 seconds, which means a 20-
detection, overtaken only by the very recent OS with 1%. 30% computational overload verssidPP for the built-in area
The gain obtained by thstochastic parent-child relation- analysis and aerial traffic surveillance tasks, while theimg
shipmodel of the EMPP is demonstrated in the PCB inspectidtime of the two methods have been nearly identical for PCB
application. As a baseline technique for scooping detecticanalysis. The experiments also showed that the compughtion
we have implemented a morphology-based solution calléthe is nearly independent of the number of objects, but it is
Morph (introduced in [34]), which applies two thresholdingelated to the pixel based area of the parent objects, which w
operations on the input image: The first one uses a lowlarger for the building detection and PCB inspection tasks.
threshold value yielding a binary solder paste candidatgkma
Using the second threshold we extract the brightest image p&- Experiment repeatability
which are supposed to contain the scoop center areas.yrinallThe iterative Multilevel Multiple Birth and Death optimiza
a verification process removes the false scoop candidat@sn algorithm detailed in Fig. 2 contains a number of stecha
Table V shows the scooping detection performance of thie operations: in each main step random moves mutate the
deterministicMorph and the stochastic EMPP approach: 20%opulation, such as probabilistic birth, death, parametange

gain can be reported for EMPP at the child level. or movement between groups etc. Although our experiments
supported that the outputs of the proposed framework are
B. Effects on data term parameter settings stable — i.e., the output configurations are largely sinfiber

As discussed in Sec. IV and VI the most importan‘?aCh run —, we have also performed a detailed analysis on the

application dependent parameter, which significantly cafe repea_tqbility of the'algorithm .gsing an aeria! Lidar segmen
the performance of the method, is tﬁé object acceptance containing 169 vehicles classified into 10 object group$) 20

threshold value associated with the different featureshi gindependent experiments have been preformed on the same
oy (u) unary term (and similar thresholds of the child-dat

gata and with the same parameter settings, and the output
terms). Fig. 4 and 13 already demonstrated the importancec8f]ﬁgurations_ of the stochastic method have been_ cqmpared t
appropriated{; selection in discriminating real objects fromthe GT egch time. Mean valrl]Jes apd_?t%?da\tlrld S\(lawatlonsbof the
false object candidates. Note that the interaction té(m v) measured error rates are s own In lable V1. V/e can observe
of Eq. (11) has a non-maxima suppression effect by removi t at the level of parent object recognition the deviation
/FEN/FP are less than 1 object, while regarding the pixel-

bject didat t | I i ith object i
object candidates strongly overlapping with objects hgvi éFsed rates it is less than 0.01 over the 200 test runs. As for

lower ¢y (u) unary energies, therefore several suboptimdl’; . hi ; fh hal .
attractive objects will not appear as false detections. Fpiect grouplng,t IS Scenario was one o the mo_stc .amﬁg'
all, since due to the low resolution of the aerial Lidae th

investigating the performance dependence of the complete

method on the data term threshold parameter, we plot in Fig'e object dimensions an_d orientations were often_ diffitul
tract from the local point cloud data, thus the introduced

19 and 20 the measuraibject levelprecision, recall and F- biect level g feat " N effected the out
rate values as a function of tldé parameters corresponding toPPJECt 1evel grouping teatures strongly etecte € pu

four selected feature regarding the built-in analysis aaffi¢ ][elsullt. Table Vd“ d;.SplaySthe Sist_ributir? n 20(;0t he. rllu.mbe_lfs IO
monitoring tasks, respectively. We can observe that inaes alsely grouped objects (FG) during the trials: typica

the precision and recall curves show a nearly monotonoli errors were measured among the .169 objects, and we
increasing and decreasing characteristics, respectis@ige experienced an FG larger than 6 only in three cases, while
we are dealing with fitness-lik¢(u) features, where ‘highf the error factor was never larger than 20.

values indicate efficient object candidates. On the othedha IX. CONCLUSION

the F-rate plots are gentle curves over with a single global
maximum, ensuring graceful degradation in case of mingrr
inaccuracies of the, parameter’s optimization.

This paper proposed a novel Embedded Marked Point
ocess (EMPP) model for joint extraction of objects, objec
groups, and specific object parts from high resolution digit
) ) images. The efficiency of the approach has been tested in
C. Computational time three different application domains, and Ground Truth data
For keeping the computational time of the iterativlas been prepared and published to enable quantitative-eval
MMBDM optimization algorithm low, we applied an expo-ation. Based on the obtained results, we can confirm that the
nential temperature cooling strategy, and took the adgentgproposed EMPP model is able to handle real world tasks from
of the Bottom-Up Stochastic Entity Proposal (BUSEP) precesignificantly different application areas, providing a Baian
(from Sec. V), by using various application-dependent ienagramework for multi-level image content interpretation.
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TABLE Il
OBJECT, GROUP AND CHILD LEVEL EVALUATION OF THE THE PROPOSEEMPPMODEL, AND COMPARISON TO A CONVENTIONALSMPP APPROACH

15

Parent level analysis Group level study Child level study
Application Method | Number of objects Pixel level % Obj mis-grouping Detection rates %
TP | FP| FN | PRc| PPr| PPF | FG# GR% CRc| CPr| COF
Building SMPP | 406 | 24 | 36 80 75 78 58 14 80 7 75
analysis EMPP | 417 | 14 | 25 84 88 86 28 7
Aerial traffic sMPP | 792 | 30 | 25 79 77 78 202 25 92 92 92
monitoring EMPP | 793 | 30 | 24 82 85 83 43 5
Ground-based|| sMPP 42 0 0 92 86 89 2 5 93 93 93
traffic analysis|| EMPP 42 0 0 96 89 92 0 0
PCB sMPP | 4408 | 39 | 31 87 86 87 448 10 91 95 93
inspection EMPP | 4415| 9 24 92 97 94 137 3
TABLE Il TABLE VI

AVERAGE COMPUTATIONAL TIME AND PARENT OBJECT NUMBER FOR
SAMPLE IMAGES OF THE DIFFERENT APPLICATION FIELDS

Built-in | Aerial Traffic | PCB insp.
Avg. EMPP time| 17.8 sec| 11.1 sec 21.7 sec
Avg. sSMPP time | 13.9 sec| 9.1 sec 20.1 sec
Avg. obj.num. 110 136 100
TABLE IV

COMPARISON OF PARENT OBJEGLEVEL F-RATES BETWEEN VARIOUS
BUILDING AND VEHICLE DETECTION TECHNIQUES

EXPERIMENT REPEATABILITY FOR THE VEHICLE DETECTION TASK MEAN
VALUES AND STANDARD DEVIATIONS OF THE MEASURED ERROR RATES
FOR200INDEPENDENT RUN IN THE SAME AERIALLIDAR SEGMENT

TP | FP | FN | PFR | TG | FG

Mean | 161.4 | 427 | 756 | 0.78 | 1585 2.89

Dev | 0.81 | 0.45| 0.81 | 0.0077| 2.37 | 2.24
TABLE VII

DISTRIBUTION OF THE NUMBER OF FALSELY GROUPED OBJECTEOUT OF
169VEHICLES) IN THE 200-RUN EXPERIMENT OFTABLE VI

Building® Gabor [46] | SM [47] OS [48] | EMPP
83% 92% 97% | 96 % FGval.| O [ 1|2 [ 3] 4]5][6]7-20]21+
Vehicle® PCA [49] | h-max [50] | FF [36] | EMPP Freq. 26| 36|20|41|41|25|8 3 0
80% 83% 86% 96 %
*on the Budapest imagé;complete aerial Lidar dataset
[2] J.Porway, Q. Wang, and S. C. Zhu, “A hierarchical and ertual model
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