A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs

Bonnet, Édouard and Escoffier, B and Paschos, V T and Stamoulis, G (2016) A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs. LECTURE NOTES IN COMPUTER SCIENCE, 9644. pp. 235-248. ISSN 0302-9743 10.1007/978-3-662-49529-2_18

[img]
Preview
Text
Bonnet_235_3173339_ny.pdf

Download (499kB) | Preview

Abstract

We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821. © Springer-Verlag Berlin Heidelberg 2016.

Item Type: Article
Uncontrolled Keywords: Graph theory; Vertex Cover problems; Vertex cover; Polynomial time approximation; Greedy approaches; Computer-assisted analysis; Combinatorial algorithm; Bipartite graphs; Polynomial approximation; information science; Computer Aided Analysis; Combinatorial mathematics; Approximation algorithms; Algorithms
Subjects: Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Divisions: Informatics Laboratory
SWORD Depositor: MTMT Injector
Depositing User: MTMT Injector
Date Deposited: 08 Feb 2017 13:55
Last Modified: 21 Jul 2019 14:01
URI: https://eprints.sztaki.hu/id/eprint/9072

Update Item Update Item