A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs
Bonnet, Édouard and Escoffier, B and Paschos, V T and Stamoulis, G (2016) A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs. LECTURE NOTES IN COMPUTER SCIENCE, 9644. pp. 235-248. ISSN 0302-9743 10.1007/978-3-662-49529-2_18
|
Text
Bonnet_235_3173339_ny.pdf Download (499kB) | Preview |
Abstract
We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821. © Springer-Verlag Berlin Heidelberg 2016.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Graph theory; Vertex Cover problems; Vertex cover; Polynomial time approximation; Greedy approaches; Computer-assisted analysis; Combinatorial algorithm; Bipartite graphs; Polynomial approximation; information science; Computer Aided Analysis; Combinatorial mathematics; Approximation algorithms; Algorithms |
Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |
Divisions: | Informatics Laboratory |
SWORD Depositor: | MTMT Injector |
Depositing User: | MTMT Injector |
Date Deposited: | 08 Feb 2017 13:55 |
Last Modified: | 21 Jul 2019 14:01 |
URI: | https://eprints.sztaki.hu/id/eprint/9072 |
Update Item |