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Abstract
Detecting different categories of objects in an image and video content is one of the fundamental tasks in com-
puter vision research. Pedestrian detection is a hot research topic, with several applications including robotics,
surveillance, and automotive safety. It is a challenging problem due to the variance of illumination, color, scale,
pose, and so forth. Increasing interest in robust pedestrian detection algorithms is also coming from the visual
surveillance community. The goal of this paper is to present our novel pedestrian detector in surveillance videos.
A robust, novel feature extraction method is defined based on Local Binary Patterns and gradients. Occlusion
handling is one of the most important problem in pedestrian detection. We propose an effective occlusion handling
process, which consists of extensive part detectors. Our experiments also demonstrate that the pedestrian detector
can provide robust input for a video surveillance system and it is able to work on different modalities.

1. Introduction

Pedestrian detection has been one of the most extensively
studied problems in computer vision. One reason is that
pedestrian detection is the first step for a number of ap-
plications such as smart video surveillance, people-finding
for military applications, human-robot interaction, intelli-
gent digital management, and driving assistance system.
Pedestrian detection is a rapidly evolving area, as it provides
the fundamental information for semantic understanding of
the video footages. Because of the various style of clothing
in appearance, different possible body articulations, differ-
ent illumination conditions, the presence of occluding ac-
cessories, frequent occlusion between pedestrians, etc., the
pedestrian detection is still a challenging problem in com-
puter vision.

The aim of this paper is to present our novel pedestrian de-
tector in surveillance videos. In video surveillance, the cam-
eras are static and usually look down to the ground.

The rest of this paper is organized as follows. In Section 2,
the related and previous works are reviewed. We describe the
proposed pedestrian detector in Section 3. Section 4 shows
experimental results and analysis. We draw the conclusions
in Section 5.

2. Related Work

There is extensive literature on pedestrian detection algo-
rithms. An extensive review on these algorithms is beyond
the scope of this paper. We refer readers to comprehensive
surveys1,2 for more details about existing detectors. In this
section, we review only the works related to our method.

Broadly speaking there are three major types of ap-
proaches for visual pedestrian detection: model-based, part-
based, and feature-classifier-based.

In model-based pedestrian detection, an exact pedestrian
model is defined. Then we search the image for matched
positions with the pre-defined model to detect pedestrians.
Model-based pedestrian detection corresponds to the gener-
ative models in pattern recognition. Most of the matching
process is under the framework of the Bayesian theory to es-
timate the maximum posterior probability of the object class.

In consideration of the distinct pedestrian contours, the
shape models are the most commonly used in pedestrian
detection. The shape models can be discrete or continu-
ous. Discrete shape models mean a set of contour examplars
which are usually used for edge image matching. Gavrila3

presented a probabilistic approach to hierarchical, exemplar-
based shape matching. A template tree was constructed in
order to represent and match the variety of shape exemplars.
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This tree was generated offline by a bottom-up clustering
approach using stochastic optimization. Applying coarse-to-
fine probabilistic matching strategy, Chamfer distance was
used as the similarity measurement between two contours.

In feature-classifier-based pedestrian detection the detec-
tion windows are extracted (usually sliding-windows search)
from video frames first. Next features are extracted from the
detection window. A classifier is trained based on a large
number of training samples. The classifier classifies the fea-
ture vectors as pedestrian class or non-pedestrian class. The
feature-classifier-based algorithms differ from each other in
two ways. They use different features or different classifica-
tion algorithms.

Papageorgiou and Poggio4 introduced a dense overcom-
plete representation using Haar wavelets. The images were
mapped from the space of pixels to an overcomplete dic-
tionary of Haar wavelet features. They used three differ-
ent types of 2-dimensional non-standard Haar wavelets with
an overlap of 75%: vertical, horizontal, and diagonal. His-
tograms of oriented gradients (HOG) have been proposed
by Dalal and Triggs5. First, each detection window is de-
composed into cells of size 8× 8 pixels and each group of
2× 2 cells are integrated into a block with an overlap of
50%. A 9-bin histogram of oriented gradients is computed
for each cell. Each block is represented by the concatenated
histograms of all its cells. This concatenated histogram is
normalized to an L2 unit length. Each 128× 64 detection
window is represented by 15× 7 blocks, giving a 3780 di-
mensional feature vector per detection window. These fea-
ture vectors are then used to train a linear SVM classifier. Lo-
cal Binary Pattern (LBP) is a simple, but very efficient tex-
ture operator which labels the pixels of an image by thresh-
olding the neighborhood of each pixel and considers the re-
sult as a binary number6. Later extensions of LBP operator
use neighborhoods of different sizes. The notation (P,R) is
used for the neighborhood description, where P is the num-
ber of sampling points on a circle of radius R. Formally, we
can write:

LBPP,R(x,y) =
P−1

∑
i=0

s(ui−uc) ·2i,s(x) =

{
1 x≥ 0
0 otherwise,

(1)
where uc corresponds to the graylevel of the center pixel and
ui to the graylevels of P equally spaced pixels on a circle of
radius R. A histogram of the labelled image fl(x,y) can be
computed and it can serve as an input for different machine
learning algorithms7.

Fusion of features can improve the detection performance,
but it is not wise to combine every feature blindly. The most
popular approach for improving detection quality is to com-
bine the features computed over the input image. Wang et al.
combined HOG and LBP8. They used two kinds of detec-
tors, i.e., global detector for whole scanning windows and
part detectors for local regions, are learned from training
data using linear SVM. For each ambiguous scanning win-

dow, an occlusion likelihood map was constructed by using
the response of each block of the HOG feature to the global
detector. The occlusion likelihood map is then segmented by
Meanshift. The segmented portion of the window with a ma-
jority of negative response is inferred as an occlusion region.
Dollár et al. presented Integral Channel Features (ICF) for
pedestrian detection task9. The general idea behind ICF is
that multiple registered image channels are computed using
linear and non-linear transformations of the input image, and
then features such as local sums, histograms, and Haar fea-
tures and their various generalizations are efficiently com-
puted using integral images.

3. Our system architecture

Figure 1 presents our system overview, the input video
frames are segmented in order to determine the foreground.
Using the result of the foreground segmentation, we rapidly
filter out negative regions, while keeping the positive re-
gions. The detection system scans the image all relevant po-
sitions and scales to detect a pedestrian. The so-called fea-
ture pyramid is derived from the standard image pyramid in
order to accelerate the feature extraction. The detection win-
dow scans the feature pyramid and extracts the feature vector
with the help of it. The feature component encodes the visual
appearance of the pedestrian, while the classifier component
determines for each sliding-window independently whether
it contains a pedestrian or not.

Figure 1: Architecture of our pedestrian detection system.

To train our system, we gathered a set of 13,500 grey-
scale sample images of pedestrians as positive training ex-
amples, together with their left-right reflections. The posi-
tive examples have been aligned and scaled to the dimen-
sions 128× 64. The images of the pedestrians were taken
from public pedestrian datasets10 and from our surveillance
and traffic videos. We made a database of negative samples
too, which consists of 16,000 non-pedestrian images. In or-
der to improve the performance we put 7,000 vertical struc-
tures like poles, trees or street signs to the negative samples.
The vertical structures are common false positive detections
in pedestrian detection.
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3.1. Foreground segmentation

In order to reduce detection time and eliminate false detec-
tions from background, multi-scale wavelet transformation
(WT) using frame difference was applied to segment fore-
ground. A signal is broken into similar (low-pass) and dis-
continuous (high-pass) subsignals by the low-pass and high-
pass filters of WT11.

The HSV color space is related to human color perception
and it separates chromaticity and luminosity. That is why it
is selected to be used here. We define a foreground mask in
the following way12:

Pf =

{
1, E∆V ≥ T∆V ∧E∆S ≥ T∆S

0, otherwise
(2)

where ∆V and ∆S are the difference between the two suc-
cessive frames of the value and the saturation component,
respectively; E∆V , E∆S stand for multi-scale WT across ∆V ,
and ∆S, respectively; T∆V , T∆S represent a threshold value of
∆V , and ∆S, respectively.

In order to remove ghost effects the WT-based edge de-
tection is used to extract edges of current frame,

Pe =

{
1 EV ≥ TV

0 otherwise,
(3)

where V is the value component of current frame, TV stands
for a threshold value for EV .

A bitwise AND operation is applied on Pf and Pe to ex-
tract the whole foreground region mask:

P = Pf •Pe. (4)

3.2. Multi-scale Center-symmetric Local Binary
Pattern Operator

The original LBP operator labels the pixel of an image by
thresholding the 3-by-3 neighborhood of each pixel with
central pixel value and the result is taken as a binary number.
Later extensions of the LBP operator use neighborhoods of
different sizes. The notation (P,R) is used for the neighbor-
hood description, where P is the number of sampling points
on a circle of radius R.

The Center-symmetric Local Binary Pattern (CS-LBP)
was introduced by Heikkilä et al13. In CS-LBP, pixel val-
ues are not compared to the center pixel but to the opposing
pixel symmetrically with respect to the center pixel. We can
see that for 8 neighbors, original LBP produces 28 = 256
different binary patterns, whereas for CS-LBP this number
is only 24 = 16. The idea of Multi-scale Center-symmetric
Local Binary Pattern is based on the simple principle of
varying the radius R of the CS-LBP operator and combining
the resulting histograms14. The neighborhood is described
with two parameters P,R = {R1,R2, ...,RnR}, where nR is
the number of radii utilized in the process of computation.

Each pixel in Multi-scale CS-LBP image is described with
nR values. The Multi-scale CS-LBP histogram for different
values of R = {R1,R2, ...,RnR} can be determined by sum-
ming h(1),h(2), ...,h(nR) vectors:

h =
nR

∑
i=1

h(i). (5)

In our experiments, we used the following parameters: P =
8, R1 = 1, R2 = 2, R3 = 3, and nR = 3.

3.3. Feature extraction

In this subsection, we introduce the implementation details
of our feature extraction method. The key steps are as fol-
lows.

1. We normalize the gray-level of the input image to reduce
the illumination variance in different images. After the
gray-level normalization, all input images have gray-level
ranging from 0 to 1.

2. We obtain 11 layers of the input image in the following
way: first, we compute the gradient magnitude of each
pixel of the input gray-scale image (detection window),
then we repeat this computation ten times on the previous
derivative image. Considering the speed of the computa-
tion, we compute an approximation of the gradient using
Sobel operator.

3. The detection window and each of the 11 layers of the
detection window are split into equally sized overlapping
blocks. The rate of overlapping is 50%. In our case, the
size of the detection window is 128× 64 and the size of
the blocks is 16×16.

4. We take the detection window and the multi-scale CS-
LBP histograms (P = 8, R1 = 1, R2 = 2, R3 = 3, nR =
3) are extracted from each block independently. Let vi
be the unnormalized descriptor of the ith block, f be the
descriptor of the detection window. We obtain f in the
following way:

• f = [v1,v2, ...,vN ];
• f← f/

√
|| f ||1 +ε.

5. We take each layers one after the other and the multi-
scale CS-LBP histograms are extracted from each block
independently. Let vi, j be the unnormalized descriptor of
the ith block in the jth layer, g j be the descriptor of the
jth layer. We obtain g j in the following way:

• g j = [v1, j,v2, j, ...,vN, j];

• g j← g j/
√
|| g j ||1 +ε.

6. We obtain the feature vector of the detection window in
the following way:

F = f+
11

∑
j=1

1
j+1

g j. (6)
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The overall length of the feature vector for a 128× 64 de-
tection window is 15×7×16 = 1680 because each window
is represented by 15× 7 blocks. Experiments on different
pedestrian datasets show that the proposed feature with lin-
ear Support Vector Machine (SVM) performs well. It can be
seen that f mainly captures the contours with some scale in-
formation, while g11 captures the detailed texture, the rest gi-
s capture special edges or textures. That is why the weights
of the layers in Eq. 6 have descending coefficients. We will
report about the effect of the number of the layers in Section
4.

3.4. Feature representation

In many applications such as video surveillance, detection
speed is as important as accuracy. A standard pipeline for
performing multi-scale detection is to create a densely sam-
pled image pyramid then the detection system scans all im-
ages of the pyramid to detect a pedestrian. In order to accel-
erate the scanning and feature extraction process, we define
a feature pyramid using a standard image pyramid.

We obtain the eleven layers of an image of the standard
pyramid as described in the previous subsection. The multi-
scale CS-LBP operator (P = 8, R1 = 1, R2 = 2, R3 = 3,
nR = 3) is applied to the image and its eleven layers. In this
way, we correspond 12 values to each pixel of the image.
An image of the standard pyramid can be substituted by an
(W −2 ·R3)× (H−2 ·R3)×5 array where W stands for the
width of the image and H is the height of the image. Using
the feature pyramid derived from a standard image pyramid,
the time of the feature extraction and thereby the scanning
process can be reduced.

3.5. Occlusion handling

The linear SVM finds the optimal hyperplane that divides the
space between positive and negative samples. Let be x ∈ Rn

a new input then the decision function of the holistic classi-
fier can be defined as:

H(x) = β+wT x, (7)

where w stands for the weighting vector, and β represents
the constant bias of the learned hyperplane.

In our occlusion handling method, we determine first
whether the score of the holistic classifier is ambiguous. The
response of a linear SVM classifier is ambiguous if it is close
to 0. When the output is ambiguous, an occlusion inference
process is applied (Fig. 2).

We consider pedestrian as a rigid object and define a hu-
man body grid of 2m×m, where 2m and m indicate the num-
bers of cells in horizontal and vertical direction, respectively.
Each cell is a square and has equal size. We ensure each part
to be a rectangle. The possible sizes of the parts can be de-

Figure 2: Occlusion handling scheme.

fined as

S = {(w,h) |Wmin ≤ w≤ m,Hmin ≤ h≤ 2m,w,h ∈ N+},
(8)

where w and h stand for the width and height of a part in
terms of the number of cells they contain. Wmin and Hmin are
used to avoid subtle parts. Then, for each (w,h)∈ S, we slide
a h×w window over the human body grid to generate parts
at different positions. The entire part pool can be defined as
follows

P = {(x,y,w,h, i) | x,y ∈ N+,(w,h) ∈ S, i ∈ I}, (9)

where x and y stand for the coordinates of the top-left cell in
the part and i is a unique id. For instance, the part represent-
ing the full body is defined as (1,1,m,2m, I1).

Figure 3: Part prototype example, (x,y,w,h, i) is defined in
Eq. 9. The head-shoulder part with 2 grids in height and 4
grids in width.

In our implementation, we have used the following pa-
rameters m = 4, Wmin = 2, Hmin = 2, and the step size is one.
For each part, a linear SVM was trained. If the output of the
holistic detector is ambiguous, we run the part detectors. We
take only into account the results of the part detectors with
the five highest scores.
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4. Experimental results

We perform the experiments on CAVIAR sequences, which
is captured in a corridor with resolution 384×288 pixels. In
this paper, we use per-image performance, plotting detection
rate versus false positives per-image (FPPI). Figure 4 shows
some sample detections on the CAVIAR sequences. Figure
5 shows the detection rate versus false positive per-image
(FPPI) for the presented detector and six other systems.
The six other systems we compare include Dalal and Triggs
HOG+SVM system5, Lie et al. HOG+AdaBoost system15,
Papageorgiou et al. Haar+SVM system4, Monteiro et al.
Haar+AdaBoost system16, a PHOG+HIKSVM system17,
and a system based on Aggregated Channel Features18. Ta-
ble 1 summarizes the speed comparison.

Figure 4: Some detections on CAVIAR sequences.

Figure 5: Detection rate versus false positive per-image
(FPPI) curves for pedestrian detectors. 2×2 is the step size
and 1.09 is the scale factor of the sliding-window detection.

Figure 6 demonstrates the effect of the number of layers.
Over 11 layers we experience no significant performance im-
provement.

In order to prove the discriminative power of our fea-
ture, we applied our algorithm to the video frames of an
infrared surveillance camera. The presented feature extrac-
tion method captures mainly gradient information and some

Table 1: Speed comparison.

Method Speed

Haar+AdaBoost16 15.63 fps
Haar+SVM4 13.56 fps
HOG+AdaBoost15 9.48 fps
HOG+SVM5 4.27 fps
PHOG+HIKSVM17 6.19 fps
ACF18 14.03 fps

Ours 9.68 fps

Figure 6: Detection rate versus false positive per-image
(FPPI) curves with respect to the number of the layers in
the proposed detector. 2× 2 is the step size and 1.09 is the
scale factor of the sliding-window detection.

texture and scale information. That is why we could build
a detector that shows high invariance to illumination and
clothing, and performs well in infrared images too. Figure
7 shows some sample detections in infrared images.

Figure 7: Some detections on infrared images.
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5. Conclusions

In this paper, we proposed a novel pedestrian detection sys-
tem and reported on experimental results. We have presented
our novel feature extraction method based on multi-scale
CS-LBP operator and gradients. We combined the pedes-
trian detection with foreground segmentation in order to fil-
ter out effectively the false detections. The performance of
pedestrian detection was also improved by handling occlu-
sion with an extensive part pool. Finally, the FPPI curves and
sample detections was presented on CAVIAR sequences and
on infrared images.
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