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Abstract—Cloud computing has enabled elastic and on-demand
service provisioning to achieve more efficient resource utilisation
and quicker responses to varying application loads. Virtual
machines, the building blocks of clouds, can be created using
provider specific templates stored in proprietary repositories,
which may lead to provider lock-in and decreased portability.
Despite these enabling technologies, large scale service oriented
applications are still mostly inelastic. Such applications often use
monolithic services that limit the elasticity (e.g., by obstructing
the replicability of parts of a monolithic service). Decomposing
these services (leading to smaller, more targeted and more
modular services) would open towards elasticity, but the de-
composition process is mostly manual. This paper introduces a
methodology for decomposing monolithic services to several so
called microservices. The proposed methodology applies several
outcomes of the ENTICE project (namely its image synthesis and
optimisation tools). Finally, the paper provides insights on how
these outcomes help revitalise past monolithic services, and what
techniques are applied to aid future microservice developers.

Index Terms—cloud computing; microservices; service ori-
ented architectures; virtual machine images

I. INTRODUCTION

Cloud computing builds on the advances of virtualisation
technologies to enable elastic and on-demand service provi-
sioning. Virtual machines (software constructs that mimic real
life hardware with the help of virtual machine monitors), or
in short VMs, open up possibilities that for example improve
resource utilisation (e.g, by server consolidation) or adapt
applications (by scaling them up/down) to varying application
loads. VMs can be created using provider specific templates
(so called virtual machine images) stored in proprietary repos-
itories. The creation process of these VMs depends on the
applied cloud and virtualisation technique, as well as on the
application to be hosted in the virtual machine.

Services are widely hosted in these virtualised environ-
ments, but they are mostly delivered as a monolithic block
of multitude of sometimes vaguely related functionalities. Un-
fortunately, because of the monolithic nature of these services,
creating VMs hosting them costs significant amounts of time.
Also, when the user of the service would need only some of
the offered functionalities, he/she still needs to instantiate a
VM that hosts the complete monolithic service. As the rest of
the functionalities are not needed by users, large portions of
the VM are left unused. To avoid these problems, the concept
of microservices were proposed [12]. This concept ensures
that there is only a single, well defined functionality offered

by a particular VM and its image is optimised just to host this
functionality.

Namiot et al. [11] defined microservices as lightweight
and independent services that perform single functions col-
laborating with other similar services through a well-defined
interface. The opposite approach is the so-called monolithic ar-
chitecture, in which services are deployed as a united solution
called a monolith. Its main drawback is the large code base,
which slows the productivity and erodes modularity. They also
argued that splitting up monoliths to microservices can result
in a more manageable and scalable application.

Creating virtual machine images for such microservices is
a tedious task and it is mostly done manually by skilled
developers. Generally, the creation process is done through the
following distinct approaches: (i) developing a new system
just for the necessary functionality, (ii) manually selecting
parts of the code of a previously created and widely used
monolithic service (that is often integral part of a company’s
business process) until it mostly contains the desired function-
ality. In the first case, the past legacy service functionality is
replaced with a new one, which might not fit well into the
current business processes. In the second case, the manual
code cleanup procedure often overlooks significant parts of
the monolithic service thus the procedure does not necessary
lead to the level of microservices (i.e., the resulting VM image
might retain some unrelated features).

The goal of this research is to propose a methodology
that can be used to split up a monolithic service to small
microservices that later can be used to increase the elasticity of
large scale applications, or to allow more flexible compositions
with other services. To achieve this, we incorporate several
techniques to the microservice creation process: (i) we present
a recipe based generic image creation service that is capable
to create VM/container images crafted for particular cloud
systems, (ii) we reveal how a dynamic, live-evaluation based
VM/container image size optimisation technique could be
utilised to create a family of VM/container images based on
the previous monolithic service, and (iii) we show how this
VM image family can be turned to a set of microservices
within the ENTICE environment.

The remainder of this paper is as follows: Section II presents
related work, then Section III introduces the ENTICE project.
Section IV introduces the proposed methodology, detailing the
recipe-based image synthesis and image size optimizations.



Finally, the contributions are summarised in Section V.

II. RELATED WORK

To foster a more efficient and scalable cloud application
management, the approach of composing microservices can be
used [12]. Microservice creation can be done by orchestration
tools, such as Puppet [6], Chef [7], and Docker [8]. These
tools cover the development and operation aspects of system
administration tasks, such as delivery, testing and maintenance
to improve reliability, security and so on. For example, Tihfon
et al. [13] used Docker to deploy applications based on
microservices. Gabbrielli et al. [14] proposed an automatic
and optimised deployment of microservices written in the Jolie
language. Their tool can automatically generate a fully detailed
Service-Oriented Architecture configuration starting from an
abstract description of the target application. In this paper,
we focus on microservice image synthesis and optimisations
during the creation process instead of optimisations applied
during the deployment of the services.

Existing methods for VM image creation do not provide size
and functional optimisation features other than dependency
management, which is based on predefined dependency trees
produced by third-party software maintainers. If a complex
software is not annotated with dependency information, it
requires manual dependency analysis upon VM image creation
based on worst case assumptions and consequently. The result-
ing VM images are far from optimal size in most cases. On the
other hand, optimising the size of existing images by aiming at
providing only particular functionalities can be addressed with
two approaches. The first one, the pre-optimising approach
requires the VM image developer to provide the application
and its known dependencies prepared as reusable VM image
components. The image developers select from these compo-
nents so that they can form the base of the user application.
These approaches then form the VM image with the selected
reusable components and the service itself. For example, the
company SAS [2] applied this algorithm with an extension
that supports creating custom VM images by building from
the source code. Other pre-optimising approaches determine
dependencies within the VM image by using its source code
using Software clone and dependency detection techniques [3].
Once the dependencies are detected, these approaches leave
only those components that are required for serving the key
functionality of the VM image. Optimising a VM image with
these techniques requires the source code of all the software
encapsulated within the image and to analyse the underlying
systems.

The second, the post-optimising approach uses existing but
unoptimised VM images or, in the extreme case, optimised
VM images with known software. To support this approach,
several OS and application vendors offer the minimalist ver-
sions of their products packaged together with their Just-
enough Operating System [4] using the Virtual Appliance ap-
proach. However, this approach requires the image developer
to manually install its application to a suitable optimised VM
image. The advantage of these approaches is the fast creation

of the images but at the price that the developer has to trust
the optimisation attempt of the used VM image’s vendor. If
the image is not well optimised, or the vendor offers a generic
image for all uses then the descendant VM images cannot be
optimal without further efforts.

Existing research mostly focuses on pre-optimising ap-
proaches, which are not applicable to already available VM
images. In ENTICE we use an VM synthesiser to extend pre-
optimising approaches so that image dependency descriptions
are mostly automatically generated.

III. THE ENTICE PROJECT

The ENTICE project [1] is a multidisciplinary team of
computer scientists, application developers, cloud providers
and operators with the aim to research a ubiquitous repository-
based technology for VM and container image management
called ENTICE environment. This environment proves a uni-
versal backbone for IaaS VM image management operations,
which accommodate the needs for different use cases with
dynamic resource (e.g. requiring resources for minutes or
just for a few seconds) and other QoS requirements. As
the discussed concepts are not dependent on the applied
virtualisation technology, the rest of the paper uses the terms
VM image and container image interchangeably.

The ENTICE technology is completely decoupled from
the applications and their specific runtime environments, but
continuously supports them through optimised VM image cre-
ation, assembly, migration and storage. It is designed to receive
unmodified and functionally complete VM images from users,
and transparently tailor and optimise them for specific Cloud
infrastructures with respect to their size, configuration, and
geographical distribution, such that they are loaded, delivered
(across Cloud boundaries), and executed faster and with im-
proved QoS compared to their current behaviour. ENTICE will
gradually store information about the VMI and fragments in
a knowledge base that will be used for interoperability, inte-
gration, reasoning and optimisation purposes (e.g. repositories
should decide at which other repositories one needs replicas
of a heavily requested image and at which time such an image
is replicated).

ENTICE has the following relevant goals:
1) The distribution of Virtual Machine Images and Con-

tainer Images (VMIs) in the ENTICE repository;
2) The VMI analysis and synthesis;
3) The VMI images portal and its associated knowledge

base, acting as glue for the distributed, highly optimised
repository.

There are various individuals and organisations that may be
considered as stakeholders in the cloud computing domain, and
may be highly interested in in a distributed image repository
built ENTICE. The following stakeholders are participants of
the ENTICE environment:

• End-customers, such as the users of the satellite image
service of Deimos1 will not notice the presence of the

1http://www.deimos-space.com/



ENTICE repository environment, but will experience a
better Quality of Service (QoS) in the runtime of their
applications due to the optimisations applied by ENTICE
in the background.

• Cloud Application Providers and/or Software as a Ser-
vice providers, such as the company Wellness Telecom2,
which offers SaaS applications deployed in the Cloud to
many customers;

• Application Developers, such as the company Deimos,
which is operating a satellite and is in great need to de-
velop and deploy a highly efficient cloud application for
Earth observation for its customers (i.e. end-customers);

• Cloud Operators, such as the well-known company Flexi-
ant3 that pioneered its solutions for the management of
Cloud applications across multiple Clouds;

• Cloud Providers, such as Amazon EC24 will benefit by
integrating ENTICE as their VMI storage and manage-
ment solution, or if their customers are willing to use
ENTICE.

IV. THE PROPOSED METHODOLOGY

The goal of this research is to propose a methodology that
can be used to split up a monolithic application to small
microservices that later can be composed to other services.
This monolithic application can then act as an ancestor of the
family of those small microservices that are derived from it.
To achieve this, we use image synthesis and image analysis
techniques that play a central role in the ENTICE architecture.

The VMI synthesis tool allows the creation of new virtual
machine images with several approaches. First, it allows the
use of generic user provided images or software recipes to
act as the foundation of specialisation. Next, the synthesis
tool collaborates with the ENTICE image portal (the graphical
user interface for the image creation and distribution process)
to identify the functional requirements a newly created im-
age must meet. Then the synthesis technique alters the user
provided images either directly or indirectly (through recipes).
These alterations target partial content removal from the orig-
inal images allowing them offering only their single purpose,
namely the functions identified in the image portal. Once
the initial optimised image is ready, the VMI Synthesis will
offer image maintenance operations (like managing software
updates on the image).

Next to synthesis, ENTICE uses a VMI analysis function-
ality to allow discovery of identical portions in apparently
unrelated VM images coming from even different stakeholders
and communities, regardless of the cloud provider where they
are physically stored. This information is automatically stored
in the ENTICE knowledge base for later use. The environment
also allows splitting of VM images into fragments for storing
the frequently shared image components only once (e.g. a
particular flavour of Linux used by two different images).
This operation allows the VM image distribution component

2http://www.wtelecom.es/
3https://www.flexiant.com/
4http://aws.amazon.com/
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Fig. 1. Detailed use cases of image synthesis

to optimize the overall storage space throughout the distributed
repository.

To enable the use of the fragmented VM images, the
ENTICE environment distributes virtual machine management
templates (so called VMMTs) to the various repositories of
the connected cloud systems. These VMMTs allow VMs to
be assembled at runtime from the previously identified frag-
ments. The templates are stand-alone VM images containing
the necessary components to access the project’s distributed
repository. After a VM is instantiated from a VMMT, it will
customise the contents of the instantiated VM with the VM
fragments required to match the user’s functional requirements
(even allowing new files/directories be placed in particular
VMs to meet the demands of the various stakeholders).

These methods are supported by user-defined functional
and non-functional descriptions about the application in the
ENTICE knowledge base and the implemented reasoning
mechanisms that feed in necessary information for the decision
making process.

Figure 1 presents a use case diagram for image synthesis.
The nodes (use cases) in this diagram were distilled from
overall requirements (both pilot cases and architectural ones)
and overall principles of the project objectives. In other words,
these use cases must cover the requirements and the project
objectives where applicable, with the focus strictly set to image
synthesis and analysis aspects. We envision the Application
Developer as the central actor that interacts with most of the
use cases and can initiate most of the activities. Apart from the
developer, we expect that Service Providers could also utilise
the image synthesis solution of ENTICE by deciding when to
adopt a particular service and image version. We also expect
ENTICE’s image distribution component to interact with the
optimiser functionality when it recognises the chances of more
optimal delivery by automatically continuing not completely



API 
Endpoint Synthesis Service (backend)

QEMU/QCOW2build/bootstrap

build/provision

test/test

Docker

Ubuntu

CentOS

...

Chef-solo

Shell

Berkshelf

Shell ...

create

result

status

...

1.
2.

3.

4.
5.

6.

7.
cancel

AWS (Amazon)

OpenStack

Fig. 2. Process of recipe based image synthesis

optimised images. In the following, we list the descriptions of
the most prominent use cases by paying particular attention
to their requirements (or some of their specific aspects), and
how we plan to achieve them.

A. Recipe based image synthesis

This section mainly focuses on the use cases of “Describe
generic image with recipes” and “Introduce new VM image”
(see Figure 1). In these use cases the application developer
creates a set of VM images specific to the aimed cloud
providers. The images are created through developer provided
recipes which use devops concepts to define the creation of
the monolithic service on a generic way.

Figure 2 depicts the process of recipe based image synthesis
in ENTICE. Images can be traditional VMI’s and containers as
well. These images may contain complex services or microser-
vices. However the benefit of containers (with microservices)
is a smaller footprint and less complex services that are easier
to optimize. The synthesis service consists of an API with
a REST interface and a backend that creates the requested
images.

The API allows the submission of build requests (see 1
in Figure 2); query the status of builds (see 6 in Figure 2);
cancel ongoing builds (see 7 in Figure 2); and retrieve build
results (see 5 in Figure 2). The creation request must contain
the build target (e.g., QEMU/QCOW2) with its parameters
(e.g., disk layout and Linux distribution for QEMU/QCOW2;
or infrastructure dependant VMI identifier for the base image
in case of OpenStack); the service description for the provision
step; and the test cases for the test phase. These are going to
be detailed next.

The image creation process at the backend consists of two
main phases. First there is a build phase, followed by a test
phase. The build phase itself consist of two steps. The first step
is the bootstrap step (see 2 in Figure 2). It is responsible for
providing a base image (in case of VMI’s) or a container for
the provision step. Supported methods are creating one from
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scratch (see QEMU/QCOW2 in Figure 2); using a prepared
existing one from a cloud image repository (e.g., Amazon
WebServices or OpenStack); or targeting a container build
(e.g., Docker). In case of the QEMU/QCOW2 build target
Debian and Red Hat (via kickstart) derived distributions are
supported. The provision phase is responsible for installing the
requested microservice using the provided description. Here
currently two methods are available. First a custom shell script
can be provided (see “Shell” in build/provision in Figure 2).
This should contain sequential steps to be executed. Another
option is to use Chef-solo (serverless Chef). Here a list of
Chef cookbooks must be specified (cookbooks are retrieved
via Berkshelf) or a custom cookbook. In the provision step
Chef-solo and Shell targets can be used together when needed,
e.g., perform basic maintenance via Shell and the deploy the
requested microservice components to the image via Chef.

After the build phase finished successfully, the testing phase
begins. The image is copied and the supplied test script is
executed in the copy. The method of testing can be chosen
freely as the backend only monitors the exit status of the test
script: zero exit status is assumed everything went fine, non-
zero denotes an error. The script can freely deploy packages
from the Linux distribution repository (although for security
reasons no other external access is allowed) and beside the
shell script a custom tarball/zip file can be supplied that may
contain additional testing tools. The testing phase provides
as much freedom as possible since different services require
different methods or tools for testing them. After the tests
finish, the test image is discarded and the original one is
made available for download. (A push option to desired
locations/repositories is planned for the future).

Our initial version for the build/bootstrap step (see Figure 2)
used the ImageFactory [9], but our current implementation
relies on Packer [10].

B. Targeted Size Optimisation

This subsection has the use case of “Optimize Image size”
from Figure 1 as its primary target. It assumes that the



recipe based synthesis technique already created several virtual
machine or container images for the application developer
with the intended monolithic service. We call these images
the original images. Once there is an original image available
that incorporates the functionality of the microservice, the user
(i.e., the microservice developer) can instruct the ENTICE
environment to create customised VM/container images that
only focus on the intended microservice’s functionality. This
process is shown in Figure 3.

To do so, the user first prepares a functionality test for each
microservice to be extracted from the original image (this first
step is represented in the use case of “Add new functional
requirement” in Figure 1). This test is expected to utilise
all features of the intended microservice. The test could be
derived from a previously developed unit or similar test set.
Currently, the ENTICE environment expects this test to be
specified in a self contained shell script (such scripts have
no dependencies) that can be instructed to evaluate a directly
accessible network host for the intended microservice’s feature
set. Note that although the script is a rudimentary technique to
specify the evaluator for the intended microservice, this is al-
ready sufficient for proof of concept scenarios. In future works,
we envision techniques that could be used for describing the
functionality of the intended microservice on a automatically
evaluable way.

Once the functionality test is pushed to the ENTICE Image
portal, the system switches to the pre-evaluation phase. In this
phase, a minimal cloud infrastructure is used to instantiate
the original image (see step 1 in Figure 3, shortened as O.
Img.). This minimal cloud infrastructure is part of the ENTICE
Environment and it is specially prepared: when it instantiates
a new VM/container (virtualised environment - VE) it ensures
that its filesystem(s) are instrumented for read operations
(called Instr. FS in the figure). Once the original image is
instantiated in this minimal cloud, the ENTICE environment
starts to collect the VE’s read access operations to its disks
(shown as step 2 in Figure 3). Alongside the data collection,
the microservice’s functionality test is also started by pointing
its shell script to the VE’s host. After the completion of the
test the VE and the data collection is terminated. If the test
fails, the collected data is discarded and the user is notified
about the incorrect test script and/or original image. If the
test is successful, then the collected data (which are usually
just a list of blocks read throughout the lifetime of the VE)
is transformed to reflect individual files in the original image.
The list of files acquired during this transformation is the so
called restricted list.

After the restricted list is prepared the system switches
to the image optimisation phase. During this phase, it is
assumed that files not referenced by the restricted list are not
relevant for the microservice, so they are dropped immediately
resulting in a new partially optimised image (PO. Img. in the
figure). The rest of this phase will use such partially optimised
images. As seen in step 3 in Figure 3, the partially optimised
image is uploaded to the cloud service to be used for the
optimisation procedure (note that this cloud could be different

from the previously used one and it is selected by and paid
for the user). Next, the ENTICE Environment instantiates an
optimiser virtual machine in the same cloud (expressed in step
4 of Figure 3). This VM is contextualised to know the partially
optimised image and the test script. Upon startup, the optimiser
VM, analyses the remaining contents of the partially optimised
image and selects parts of the image to be removed (see step
5 in Figure 3). These selected parts are expected not to play
a direct role in the microservice’s functionality – instead they
are believed to be used by background activities of the original
image (e.g., startup procedures and periodic activities orthog-
onal to the intended functionality). The selection technique
applied here is out of scope of this paper (as this paper is
intended to be user - methodology oriented). To analyse the
selection the optimiser VM uploads a new image to the cloud
(now without the selected contents) and tests the image by
instantiating it and evaluating its VE via the user provided
shell script (shown in step 6 of Figure 3). If the evaluation
is successful, the newly uploaded image is going to become
the new partially optimised image and the old image will be
discarded. Otherwise, a new image part selection procedure
starts. This phase completes if the user defined cost limits
are achieved for the optimisation operation or when there are
no further selectable parts to be removed from the partially
optimised image.

The final version of the partially optimised image is then
fetched by the ENTICE Environment as the one containing the
intended functionality for the microservice (this is represented
in step 7 in Figure 3). If the user intends to alter the service
interface (e.g., because in the original image there was a much
wider service interface available that needs to be refocused
for the minimised feature set now available in the optimised
image), then the optimisation phase could be re-run with the
altered interfaces more rapidly because the optimisation phase
learns its past selection errors and aims at minimising them in
later optimisation operations issued by the user.

V. CONCLUSION

Virtual machine/container images can be created using
provider specific templates stored in proprietary repositories,
which may lead to provider lock-in and decreased portability.
In this paper we addressed image repository management of
multiple federated clouds in the frame of the ENTICE project.
We provided a methodology for microservice creation by an
image synthesis approach to create optimized images in a
distributed repository.

As the microservices created through the proposed method-
ology are derived from a common ancestor (a previously
available monolithic service), in our future works, we envision
the further optimisation of microservice delivery by building
on the common parts of the various microservices created.
Using these common parts, we expect that the project will
research custom virtual machine management templates that
encapsulate the common parts and allow their rapid extension
towards any of the previously defined microservice images.



Also, we intend to investigate further how the monolithic ser-
vice’s fragmentation into microservices could be generalised.
With this generalisation we plan to support such monolithic
services that would not be possible to decompose without in-
troducing alternative protocols in the communication between
the fragmented microservices.
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