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Abstract— The model reduction problem of high dimensional
Linear Parameter Varying (LPV) systems is addressed in the
paper. Modal representation of local systems is computed first
for fixed values of the scheduling parameter. Modes are then
matched and a smooth quasi-modal form is obtained over the
entire parameter domain. Classification of system modes is
applied to explore dynamic coherence of the model. Structured
parameter-varying Gramians are constructed and used for
balancing the model and eliminating negligible components.
Numerical example illustrates the effectiveness of the method-
ology.

I. INTRODUCTION
The problem of model reduction for Linear Parameter

Varying (LPV) systems has been first discussed in [20], [21].
The goal is to reduce the state dimension (and accordingly
the complexity of the underlying mathematical model) for
parameter-varying systems, with minimal change in the over-
all input-output behaviour. The approach in [20] and [21] was
based on the extension of internally balanced realization for
Linear Time Invariant (LTI) systems [12]. The corresponding
observability and controllability Gramians are equal and have
a diagonal structure, with the singular values of the LPV
system in the diagonal. These singular values characterize
the contribution of each state-space element in the input-
output map of the system, consequently, less significant states
can be removed by truncation on the basis of the balanced
realization.

In the LPV model reduction there are basically two main
challenges to face with. First, the computation of the gener-
alized Gramians for LPV systems leads to an optimization
problem with Linear Matrix Inequality (LMI) constraints.
Consequently, the method suffers from numerical limitations.
An attractive idea to overcome this problem, is to consider
the LPV system as a set of LTI models, obtained at different
frozen values of the parameter [14], [1], [13], [18]. Numer-
ically well established, linear techniques (such as balanced
truncation [1], [18] or Krylov-based projection [14]) can be
then applied individually for these local systems. The main
drawback of such an approach is the lack of guarantee for
state-space consistency of the reduced order models. It may
happen that different modal content is preserved for different
regions of the scheduling parameter. The offered methods
for the connection and interpolation of local reduced-order
models mostly neglect this issue.

The second challenge lies in the similarity transformation
for LPV systems. In general, it is parameter-varying, hence
the resulting transformed system depends not only on the
scheduling parameter but also on its derivative. Two remedies
are known for this problem: using parameter-independent
transformation or neglecting the derivative dependent terms.
Both solutions represent conservativeness in the methodo-
logy, in addition, dropping the rate-dependent terms repre-
sents an unknown uncertainty in the system. Recognizing
these issues, a parameter-varying oblique projection based
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model-reduction is proposed recently in [17]. The algorithm
produces a reduced order model with consistent state-space
such that the model does not depend on the derivative of
the scheduling parameter. Finally, another aspect, namely,
the problem of reducing the dimension of the scheduling
variables for LPV systems has been discussed in [7], [15].

The paper proposes a novel reduction technique for LPV
system, presented as follows. The forthcoming section II
formally states the LPV model-reduction problem. Section
III summarizes the methods and concepts, necessary for
the construction of the model reduction algorithm. The
algorithm combines local techniques with parameter-varying
methodologies, where the emphasis is put on preserving the
modal consistency throughout the steps. The methodology is
discussed in details under Section IV. Numerical results are
reported in Section V, which is followed by conclusions and
future research directions.

An extended version of the method, which solves some of
the raised problems, is readily available and currently under
review [10].

II. PROBLEM FORMULATION

Linear Parameter Varying (LPV) systems are considered
in the paper with state space dynamics

G(ρ) :
ẋ = A(ρ)x+B(ρ)u
y = C(ρ)x+D(ρ)u, (1)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny , are the state, input
and output vectors, respectively. The matrix functions A :
Rnρ → Rn×n, B : Rnρ → Rn×nu , C : Rnρ → Rny×n,
D : Rnρ → Rny×nu are assumed to be continuous functions
of the scheduling parameter vector ρ ∈ Rnρ .

In this paper we assume that the dimension of ρ is 1 and
both ρ(t) and ρ̇(t) are bounded: ρ(t) ∈ [ρmin, ρmax] and
|ρ̇(t)| ≤ δ for all t. Though the concept of the proposed
method can be extended to systems having more than one
scheduling parameters, the numerical details of the algorithm
have to be elaborated.

The LPV system (1) is given by the pair (G,Γ), where
G is a set of LTI models obtained by evaluating (1) at the
scheduling parameter values ρ1 = ρmin < ρ2 < . . . < ρK =
ρmax and Γ = {ρ1, . . . , ρK} (grid-based LPV description).
Formally,

G =
{
Gk | Gk =

[
Ak Bk
Ck Dk

]
, Ak = A(ρk), Bk = B(ρk),
Ck = C(ρk), Dk = D(ρk)

}
.

Between the grid points linear interpolation is assumed. (This
definition of LPV systems is typical if the model is generated
by trimming a nonlinear system at different operating points
[11].)

The aim of the LPV model reduction is to find Gred(ρ, ρ̇)
of order nred < n, such that exact bound can be derived to
the induced L2 norm of the LPV difference system G(ρ)−
Gred(ρ, ρ̇) and Gred(ρ, ρ̇) minimizes this bound.
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III. METHODS USED TO CONSTRUCT THE
PROPOSED ALGORITHM

This section collects all of the methods that are necessary
to construct the proposed model reduction algorithm.

A. LPV balanced model reduction
Balanced model reduction is one possible method to solve

the model reduction problem addressed above. The method
is based on balanced realization, which reflects the control-
lability and observability properties of the given LPV system
[20],[21]. To obtain the parameter varying transformation
T (ρ), which transforms an LPV system into balanced form
the observability and controllability gramians, denoted by
Xo(ρ) and Xc(ρ), have to be determined first. If the LPV
system is given in state-space form, the Gramians can be
obtained as a result of the following optimization problem:

min
Xo(ρ),Xc(ρ)

∫ ρmax

ρmin

trace Xo(ρ)Xc(ρ) dρ

(2)

Ẋo(ρ) +A(ρ)TXo(ρ) +Xo(ρ)A(ρ) + C(ρ)TC(ρ) ≺ 0

−Ẋc(ρ) +A(ρ)Xc(ρ) +Xc(ρ)A(ρ)T +B(ρ)B(ρ)T ≺ 0

Xo(ρ) � 0, Xc(ρ) � 0.

The next step is computing the unique Cholesky factors of
Xo(ρ) and Xc(ρ) ([20]) as

Xo(ρ) = RTo (ρ)Ro(ρ), Ro(ρ) upper triangular
Xc(ρ) = Rc(ρ)RTc (ρ), Rc(ρ) lower triangular

Then, performing a singular value decomposition on the
product Ro(ρ)Rc(ρ) results in

U(ρ)S(ρ)V T (ρ) = Ro(ρ)Rc(ρ)

where U(ρ) and V (ρ) are unique up to the sign of the
corresponding columns and S(ρ) is the diagonal matrix of
the parameter-dependent singular values σi(ρ), which play
the same role as the generalized singular values ([4]) in LTI
case. The transformation T (ρ) is then computed as

T (ρ) = Rc(ρ)V (ρ)S−
1
2 (ρ).

Having applied the balancing transformation on (1), the states
corresponding to small singular values can be removed. Since
T (ρ) is parameter-dependent, the reduced system explicitly
depends on ρ̇ as well [20]. As for the approximation error,
the following bound can be derived:

‖G(ρ)−Gred(ρ, ρ̇)‖∞ ≤ 2

n∑
i=nred+1

σi(ρ)

for all ρ ∈ [ρmin, ρmax] and ρ̇ = 0, i.e. the approximation
error is bounded (at least for frozen scheduling parameter
values) by the sum of the singular values corresponding to
the neglected states. (If ρ̇ 6= 0 the derivation of an upper
bound is a more complex task but it is still possible in the
possession of the singular value functions σi(·) [20].)

Regarding the computational issues the following remarks
can be made:
• the infinite number of matrix inequalities in (2) can

be relaxed if they are evaluated over only the finite
parameter grid Γ and the cost function is replaced by∑K
k=1 trace Xo(ρk)Xc(ρk);

• if the parameter dependence of Xo(ρ) and Xc(ρ) is
a-priori fixed, (e.g. if Xo(ρ) is sought in the form of
Xo,0 +

∑nb
i=1 fi(ρ)Xo,i, where fi : R→ R are a-priori

fixed basis functions), then (2) can be converted to an

iterative convex optimization problem. It is iterative,
because the cost function is linear in the decision
variables only if either Xo or Xc is fixed. If one of
the two is constant, the problem reduces to a linear
optimization problem with Linear Matrix Inequality
(LMI) constraints. By alternately fixing Xo and Xc a
numerically tractable iterative algorithm is obtained;

• the Cholesky factors Ro(ρ) and Rc(ρ) can be computed
by using the algorithm given in the proof of Theorem
7.8.1. of [20];

• since U(ρ) and V (ρ) are unique apart from the sign,
therefore by performing the SVD decomposition point-
wise, on the matrices Ro(ρk)Rc(ρk) then after possible
sign-corrections the pointwise V (ρk) matrices can be
interpolated.

Regarding the algorithm above further technical issues (e.g.
the crossing of σi(ρ) trajectories and the continuity of T (ρ))
may arise. These issues are discussed in detail in [20].

Although the parameter-varying balanced reduction pro-
vides a reliable algorithm to reduce LPV models, it is
computationally extremely expensive. If the dimension of
the system is higher than 30-40, the LMI optimization
problem becomes intractable by the off-the-shelf semidefinite
solvers. Therefore, this approach cannot be applied in such
applications (e.g. aeroelastic aircraft modeling [13], [3]),
where the number of states can be very large (100-200 or
even larger).

B. Modal form of LTI systems
Assume that the A matrix of the LTI dynamics ẋ = Ax+

Bu, y = Cx + Du is diagonalizable. Then there exists a
state transformation T̃ such that the matrix T̃−1AT̃ is block
diagonal, i.e. the transformed system can be written in the
form

ẋ =


A1 0

0 A2
. . .

. . . . . . 0
0 Am

x+


B1
B2
...
Bm

u, (3)

y = [ C1 C2 . . . Cm ]x+Du, (4)

where each block of the structured matrix Ā corresponds to
one mode of the system, characterized by the eigenvalues:

Ai =


[

R {λi} I {λi}
−I {λi} R {λi}

]
ifλi ∈ C

[λi] ifλi ∈ R
(5)

where R(λi) and I(λi) denote the real and imaginay part of
the complex eigenvalue λi. The similarity transformation T̃
can be constructed from the eigenspace of A as follows:

T̃ = [ R {v1} I {v1} . . . R {vm} I {vm} ] , (6)

where vi is the eigenvector associated with the eigenvalue
λi.

C. Perfect matching in complete bipartite graphs
Let G(A,B) be a complete bipartite graph with vertex

sets A = {a1, . . . , an} and B = {b1, . . . , bn}. Assume the
edges are directed and go from A to B, that is, the edge set
is defined as E = {(ai, bj) | ∀(i, j) pairs}. Let cij ∈ R+

be a cost assigned to edge (ai, bj). The perfect match in G
is a subset of E defined such that every ai has exactly one
pair in B and every bj is a pair of exactly one vertex in A.
Formally, if P denotes a permutation of the integer numbers
1, . . . , n, then the perfect match is Ē = {(ai, bP (i)) | ∀i},
where P (i) denotes the i-th element of P . The cost of a
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perfect match is the sum of the costs of the edges in Ē . If G
is given, the perfect match with minimum cost can be found
in polynomial time by using the Hungarian method, that is
also known as Kuhn-Munkres algorithm [9].

D. Hierarchical clustering
Hierarchical clustering is a well-known method to group

data by creating a hierarchy of clusters, also known as cluster
tree [6]. In agglomerative clustering each object starts from
its own cluster and pairs of clusters are merged. In order
to do so, first, an appropriate metric, denoted by d(a, b), is
necessary, which measures the distance between two objects
a and b in the data set. The metric is chosen to measure
the similarity between the objects, in the given nature of
interest. Secondly, the L(A,B, d(·, ·)) linkage function is
introduced, which characterizes the distance between two
sets of objects (A and B) as a function of the pairwise
distances between the objects (i.e. based on d(a, b); a ∈
A, b ∈ B). Finally, partitioning of the data takes place, where
the obtained cluster tree is cut into groups. The number of
clusters generated actually is either automatically determined
by the clustering algorithm or it is specified a-priori by the
user.

E. Hyperbolic distance
The hyperbolic geometry [5], [2] using the Poincaré disk

model is a useful tool for the analysis and identification of
dynamical systems [16], [19]. In this model the plane is the
unit disk and points are Euclidean ones, which connects this
mathematical structure to discrete time systems in control
theory. Imaginary axis of the s-domain is mapped to the unit
circle of the z-domain and left half-plane poles and zeros
transformed to the interior of the circle, preserving stability.
Therefore, stable, discrete-time systems can be naturally
investigated in a hyperbolic setting [16]. Application of the
hyperbolic distance for unstable poles is also possible by
appropriately mapping them inside the unit circle. Details
can be found in [10].

In the Poincaré model the hyperbolic distance between two
points γ1 ∈ C and γ2 ∈ C is defined as:

h(γ1, γ2) = 2 arctanh−1
|γ1 − γ2|
|1− γ2γ1|

. (7)

The above defined distance is in fact a useful metric to
compare two complex points in terms of the dynamical
behaviour they determine as poles [2]. For stable systems,
the transient response is determined by the location, as well
as, the real and imaginary parts of the system poles. This
property is reflected by the hyperbolic distance within the
unit disk; small changes towards the unit circle correspond
to large variation in the hyperbolic distance.

A simple example is given here to illustrate the afore-
mentioned properties of the hyperbolic approach. Consider a
second order, strictly proper SISO discrete transfer function
G0(z) with complex poles of p0 = 0.9e±i

π
8 inside the unit

disk and static gain equal to 1. Perturbing |p0| by ±10%
yields G1(z) and G2(z) with poles p1 = 0.99e±i

π
8 and

p2 = 0.81e±i
π
8 , respectively. The Euclidean distance of the

perturbed poles from the nominal ones are equally 0.09,
hence they cannot be distinguished. However, the impulse
responses of the three systems differ greatly, as depicted in
Fig. 1. At the same time, the hyperbolic distance between p0
and p1 is 2.3489, compared to the value of 0.6904 between
p0 and p2. This indicates more dynamical similarity between
G0 and G2, which is expected by observing the settling times
and overshoots in Figure 1.

The hyperbolic distance of two stable, continuous time
eigenvalues (poles) can be defined by transforming them into
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Fig. 1. Impulse responses of G1(z), G2(z) and GN (z) systems

the unit disk and applying (7). The transformation can be
the mapping exp(λTs), where λ lies on the open left half
plane and Ts is a suitable small value. This transformation
corresponds to computing the discrete time counterpart of λ
at sampling time Ts. For notational convenience we denote
the continuous-time version of (7) as follows:

hc(λ1, λ2, Ts) = h(exp(λ1Ts), exp(λ2Ts)) (8)

IV. ALGORITHM FOR MODEL ORDER
REDUCTION OF LPV SYSTEMS

This section comprises the main contribution of the paper
as an algorithm for model reduction of LPV systems. The
main steps are detailed below.

Input data. The algorithm starts from the pair (G,Γ)
representing the LPV system to be reduced. To simplify
the discussion, we make the following assumptions: each
Ak is stable, diagonalizable and its every eigenvalue has
multiplicity 1. (These restrictions are rather technical and
most of them can be relaxed. The details can be found in
the discussion of the the steps of the algorithm.)

Step 1. The first step is to compute the eigenvalue
decomposition of each Ak. So let V −1k AkVk = Λk, where
Λk = blockdiag(λk,1, . . . , λk,n) collects the eigenvalues
and Vk stores the eigenvectors of Ak. In order that the
Λk matrices be consistent, the ordering of the eigenvalues
have to be modified in each grid point such that for any
1 ≤ i ≤ n, the sequence λi,1, ... λi,K corresponds to
λk(ρ1), . . . , λk(ρK), where λk(ρ) is the k-th parameter
dependent eigenvalue of A(ρ). To find the right ordering
of the eigenvalues we formulate the problem as a perfect
matching problem in complete bipartite graphs. For this,
let for all k < K, the vertex sets A and B be constructed
from the eigenvalues as follows: A := {λk,1, . . . , λk,n} and
B := {λk+1,1, . . . , λk+1,n}. Define now directed edges from
every λk,i to every λk+1,j with cost hc(λk,i, λk+1,j , Ts). By
using this bipartite graph, the eigenvalue matching problem
can be formulated as seeking a perfect matching with
minimal cost. Based on subsection III-C, this problem can
be efficiently solved by the Hungarian method. Of course, if
at some k the entries of Λk are reordered, the eigenvectors
in Vk have to be consistently reordered as well.

Remark 1: The eigenvalue matching problem can be ex-
tended for unstable systems by consistently mapping the
eigenvalues inside the unit circle. The technical details are
omitted here, but can be found in an extended version of the
paper in [10].
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Step 2. Our aim is to use the spectral decomposition
of the Ak matrices to construct a parameter-dependent
transformation that decouples (at least approximately) the
LPV dynamics into modal form. For this, a set of local
modal transformations T̃k will be constructed from the
eigenvectors Vk and they will be interpolated to give a
parameter-dependent state transformation. In order to make
the smooth interpolation possible, the eigenvectors Vk are
corrected in this step. The correction aims to transform
vk+1,j (which is the j-th column of Vk+1) close to vk,j
such that the eigenvector property of vk+1,j is preserved.
If the multiplicity of each eigenvalue is 1 the correction can
be performed easily by multiplying vk+1,j by the (complex)
number

α∗k,j :=
vTk,jvk+1,j

‖vk,j‖‖vk+1,j‖
.

It is easy to check that α∗k,j is the minimizer of the
difference ‖vk,j − αk,jvk+1,j‖. It is important to note, if
there is an eigenvalue with multiplicity m > 1, but the
diagonalisability of the Ak matrices holds true, the correction
leads to a complex-valued Procrustes problem between the
corresponding m-dimensional eigenspaces (This extension is
also discussed in details in [10]).

The consistent eigenvectors can be used to construct in
each grid point k the modal transformations T̃k by using
(6). Due to the corrections above the entries of T̃k can be
smoothly interpolated along the parameter grid. By perform-
ing this interpolation, the parameter dependent transforma-
tion T̃ (ρ) is obtained.

Remark 2: It can be proved if A(ρ) depends continuously
on ρ and all of its eigenvalues have multiplicity 1, then the
eigenvectors of A(ρ) are also continuous in ρ [8]. This result
guarantees that after the correction above the eigenvectors
and thus the local T̃k transformations can be interpolated
smoothly. In case of multiple eigenvalues, the smoothness
requires further technical conditions, that have to be checked
individually in the actual problem [8].
Having constructed T̃ (ρ), a new state vector ξ can be defined
such that T̃ (ρ)ξ = x, the original LPV system (1) transforms
into

ξ̇ =
(
T̃−1(ρ)A(ρ)T̃ (ρ) + E(ρ)ρ̇

)
ξ + T̃−1(ρ)B(ρ)u,

y = C(ρ)T̃ (ρ)ξ +D(ρ)u.
(9)

where E(ρ) = −T̃−1(ρ)∂T̃ (ρ)
∂ρ . By the construction of T̃ (ρ)

the transformed system matrices (apart from the ρ̇-dependent
E(ρ)ρ̇x term) define a decoupled, modal LPV system, that
can be given by the pair (G̃,Γ), where

G̃ =
{
G̃k | G̃k =

[
Ãk B̃k

C̃k Dk

]}
Ãk = T̃−1(ρk)A(ρk)T̃ (ρk) = T̃−1k AkT̃k

B̃k = T̃−1(ρk)B(ρk) = T̃−1k Bk

C̃k = C(ρk)T̃ (ρk) = CkT̃k

Completed with the ρ̇-dependent term, the LPV system can
be formally defined by the triplet (E , G̃,Γ), where E =
{Ek | Ek = E(ρk), ρk ∈ Γ}. Three cases are distinguished
now, depending on how E(ρ)ρ̇ influences the dynamical
behavior of the modal system:

1) If E(ρ)ρ̇ generates significant off-diagonal terms the
modal decomposition does not provide any advantage.

2) If E(ρ)ρ̇ is less significant, but still not negligible the
modal transformation T̃ (ρ) does not decouple the LPV

dynamics, but makes it block-diagonally dominant1.
This property can be exploited later in balanced re-
duction.

3) There are practical cases, when the effect of E(ρ)ρ̇
is so small, that it can be neglected without the
input/output behavior significantly changing. In this
case, only the fully decoupled, modal system (G̃,Γ)
has to be preserved. The decoupled, modal structure
enables us to form subsystems from the modes and
reduce them independently.

In order to proceed we assume that item 2 or 3 holds, i.e.
the modal transformation transforms the LPV system at least
in block-diagonally dominant form.

Remark 3: Note that, similar ρ̇-dependent terms appear at
other model reduction methods as well [18]. The most LPV
model reduction algorithms working on local LTI models
start with local model reduction, i.e. the local LTI models
Gk ∈ G are independently reduced by using some LTI
reduction method, e.g. balanced truncation. The reduction
procedure involves at each grid point a different state (e.g.
balancing) transformation. Note that, on the LPV level this
corresponds to an incorrectly applied parameter varying
transformation, since the ρ̇-dependent term is neglected.

Step 3. The main idea in this step is to group the
dynamical modes (real eigenvalues and complex eigenvalue
pairs) into clusters, based on their dynamical behaviour. If
item 3 of Step 2 holds, then the LPV subsystems defined by
the clusters can be independently reduced by LPV balanced
reduction (subsection III-A). If item 2 holds the clusters still
carry information on the structure of the system, which can
be exploited by seeking structured Gramians when (2) is
solved. To construct the clusters the hierarchical clustering
algorithm described in subsection III-D is performed. The
considered individual objects are the (locally obtained and
matched) eigenvalue sequences oi := (λi,1, . . . , λi,K), (i =
1, . . . , n). The distance metric d(·, ·) between two objects are
defined as follows:

d(oi, oj) = min

(
max
k

hc(λi,k, λj,k, Ts),

max
k

hc(λi,k, λj,k, Ts)

)
. (10)

d(oi, oj) is thus simply the maximum of the point-wise
hyperbolic distances computed between the eigenvalue pairs
corresponding to the same scheduling parameter value. The
additional inclusion of the complex conjugate of oj ensures
the grouping of complex conjugate pairs into the same clus-
ter. A maximum (also known as complete) linkage function
has been selected to measure distance between two sets of
objects, i.e.:

L(A,B, d(·, ·)) = {max(d(oi, oj)), oi ∈ A, oj ∈ B} . (11)

The defined metric and linkage function renders a cluster
tree to the system. Based on this information, M groups are
formed from modes with similar dynamical behaviour.

Remark 4: In this step, we used only the hyperbolic
metric to compare the modes, i.e. the modes were clustered
based only on the location of the eigenvalues. It is also
possible to extend the distance metric (10) with residuum
(direction) information provided by the B̃k and C̃k matrices
[18]. The improvement of the distance metric is part of the

1Here block-diagonal dominance is not a rigorous mathematical notion,
it expresses only the fact that the blocks on the main diagonal are much
more significant compared to the other entries of the matrix.
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future work.

Step 4. The last step of model reduction is performing the
LPV balanced truncation (subsection III-A) on the structured
model. If the LPV system could be decoupled (item 3 in Step
2), then the balanced reduction can be performed on each
cluster independently. If the system is only approximately
decoupled, but it is block-diagonally dominant (item 2 in
Step 2), then the balanced reduction algorithm has to be run
on the full order model, but the block-diagonal dominant
structure makes it possible to choose structured Gramians in
(2). This highly reduces the number of free variables and
thus results in smaller computational times. Formally, let Π
be the permutation matrix that reorders the states of (E , G̃,Γ)
according to the clusters found in the previous step. Then we
can define the clustered LPV model by the triplet (Ê , Ĝ,Γ),
where

Ê = {Êk | Êk = ΠTEkΠ},

Ĝ =
{
Ĝk | Ĝk =

[
Âk B̂k

Ĉk Dk

]}
,

Âk = ΠT ÃkΠ = block-diag(Âk,1, Âk,2, . . . Âk,M ),

B̂k = ΠT B̃k = [B̂Tk,1 . . . , B̂Tk,M ]T ,

Ĉk = C̃kΠ = [Ĉk,1 . . . , Ĉk,M ].

The dimension of each block equals to the size of the
corresponding cluster. It is reasonable to choose Xo(ρ),
Xc(ρ) in the same structure as the model has, i.e.

Xo(ρ) := block-diag(Xo,1(ρ), . . . , Xo,M (ρ)),

Xc(ρ) := block-diag(Xc,1(ρ), . . . , Xc,M (ρ))

and to perform the optimization (2) with these structured
variables. The optimzation problem that is actually solved
can be given as follows:

min
Xo,i,Xc,i

K∑
k=1

trace Xo(ρk)Xc(ρk)

(12)
dXo(ρ)

dρ
s+ (Âk + Êks)

TXo(ρk) + ...

Xo(ρk)(Âk + Êks) + ĈTk Ĉk ≺ 0

−dXc(ρ)

dρ
s+ (Âk + Êks)Xc(ρ) + ...

Xc(ρ)(Âk + Êks)
T + B̂kB̂

T
k ≺ 0

Xo(ρk) � 0, Xc(ρk) � 0,∀ρk ∈ Γ and s ∈ {−δ, δ}
where Xo(ρ) = Xo,0+

∑nbo
i=1 fi(ρ)Xo,i and Xc(ρ) = Xc,0+∑nbc

i=1 gi(ρ)Xc,i with a-priori selected basis functions fi and
gi. Note that the conservativeness of the solution of (12) is
influenced also by the terms ĈTk Ĉk and B̂kB̂Tk , because they
can destroy the block diagonally dominant structure of the
LMIs. But as Âk are block diagonal and the effect of Êk
is relatively small, it makes sense anyway to expect a less
conservative, reasonable result.

V. NUMERICAL EXAMPLE
The proposed algorithm has been tested on a 20 dimen-

sional benchmark example generated in the following way.
First, a random SISO LTI system was created with 7 complex
eigenvalue pairs and 6 real eigenvalues and was transformed
to modal form. Then eigenvalue trajectories were constructed
and assigned to 6 eigenvalues. These trajectories define how

the corresponding eigenvalue depends on the scheduling
variable ρ. Finally a parameter-dependent transformation was
applied on the system matrices. The final LPV model can be
given in state space form as follows:

ẋ = A(ρ)x+B(ρ)u

y = C(ρ)x+Du

where u, y ∈ R, x ∈ R20 and ρ : R → R, ρ(t) ∈ [0, 1],
|ρ̇(t)| ≤ 0.1 for all t. From the LPV model, 50 LTI systems
G1, G2, . . . , G50 were generated by evaluating the state
matrices over the parameter grid Γ = {0, 1

49 ,
2
49 , . . . , 1}. The

eigenvalue trajectories of the systems are plotted in Fig. 2.
The model reduction started from the LPV model represented
by the pair (G,Γ), where G = {Gk, k = 1, . . . 50}.

Having performed the first step of the model reduction
algorithm (eigenvalue decomposition and matching2) Fig. 2
was obtained, which shows that the algorithm managed to
find the correct pair of each eigenvalue in the consecutive
ρ values (see the zoomed part in the upper right corner).
After rearranging the eigenvectors to be aligned with
the matched eigenvalues the local modal transformations
were constructed. From these, a parameter varying T̃ (ρ)
transformation was generated by computing the cubic
spline interpolant of each entry. In the possession of
T̃ (ρ) the ρ̇-dependent term could also be computed as
E(ρ)ρ̇ = −T̃−1(ρ)dT̃ (ρ)

dρ ρ̇. Before proceeding, the I/O
behavior of the original and the modal LPV system was
analyzed. Simulations verified that the effect of the ρ̇-
dependent term is relatively small in this example, hence
can be neglected.

Fig. 2. Matching of eigenvalues in the consecutive scheduling parameter
values

The next step of model reduction is the clustering of the
modes. Performing the hierarchical clustering with prede-
fined cluster number 5 the clusters depicted with different
colors in Fig. 2. This means that the LPV model was divided
into 5 smaller LPV systems of dimensions 4,5,4,6,1. Since
the effect of E(ρ)ρ̇ is small, we could have decided at
this point to neglect this component and reduce the 5 LPV
models independently. Instead of this, the term E(ρ)ρ̇ was
kept, the LPV balanced model reduction was performed on
the whole 20 dimensional model, but the Gramians were
sought in block diagonal form. The dimensions of the blocks
were chosen to be aligned with the dimensions of the 5

2In the computation of the hyperbolic metric (eq. (8)) Ts = 0.001 was
used.
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subsystems. The Gramians were thus constructed as follows:

Xo(ρ) = block-diag(Xo,0,1, . . . , Xo,0,5)+

ρ · block-diag(Xo,1,1, . . . , Xo,1,5)

Xc(ρ) = block-diag(Xc,0,1, . . . , Xc,0,5)+

ρ · block-diag(Xc,1,1, . . . , Xc,1,5)

where Xo,i,j , Xc,i,j ∈ Rd(j)×d(j) with d = [4, 5, 4, 6, 1].
The LPV balanced reduction was also performed with full
(non-structured) Xo,0, Xo,1, Xc,0, Xc,1 variables in order to
compare the results. Fig. 3 shows the singular values in both
cases. It can be seen that running the balanced reduction
without modal transformation proposes to neglect 12-14
states while the modal approach suggests removing 10-12.
This result is quite promising, especially if the computation
times are compared. With full Xo,0, Xo,1, Xc,0, Xc,1 matri-
ces the total number of free parameters were 210 × 4 that
resulted in 80-120 sec computation time per each iteration
in (12). On the other hand, by using structured Gramians we
had only 57× 4 free variables and thus each iteration could
be solved less than 11 sec.
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Fig. 3. Parameter-dependent singular values after balancing. Solid, left:
case with (unstructured) Gramians. Dotted, right: with structured Gramians.

Finally, the model reduction of the LPV system, based
on the obtained singular values (as seen in Figure 3) had
been carried out, following the steps described in Section
III-A). The step-response of the full order (20 dimensional)
system is compared with the reduced one (10 dimensional)
in Figure 4. It can be depicted that the proposed reduction
methodology preserved the IO behaviour of the system.
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Fig. 4. Step response of the full order and the reduced order LPV system.

VI. CONCLUSIONS AND FUTURE WORKS
A novel model order reduction algorithm has been pro-

posed in the paper, for parameter-varying systems. The
developed algorithm is based on the (approximate) modal
decomposition of the LPV dynamics that makes it pos-
sible to perform the parameter-varying balanced reduction
in a structured, more efficient way. Preserving the modal
consistency of the system is an important, key-feature of
the methodology. The efficiency of the algorithm has been
demonstrated on a numerical example, encouraging for fur-
ther development of the method.

The presented framework was restricted in its applica-
tion; only stable LPV systems have been considered, with
diagonalizable system matrices. Extension of the method for
unstable or mixed stability systems, as well as, for systems
with multiple eigenvalues have been already obtained and
available [10]. However, the question of non-diagonalizable
system matrices still remains an open issue for our future
research.
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