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Abstract 

In the paper, a novel method is introduced for selecting tuning parameters improving accuracy and robustness for multi-model based prediction 
of manufacturing lead times. Prediction is made by setting up models using statistical learning methods (multivariate regression); trained, 
validated and tested on log data gathered by manufacturing execution systems (MES). Relevant features, i.e., the predictors most contributing 
to the response, are selected from a wider range of system parameters.  
The proposed method is tested on data provided by a discrete event simulation model (as a part of a simulation-based prediction framework) of 
a small-sized flow-shop system. Accordingly, log data are generated by simulation experiments, substituting the function of a MES system, 
while considering several different system settings (e.g., job arrival rate, test rejection rate). 
By inserting the prediction models into a simulation-based decision support system, prospective simulations anticipating near-future deviations 
and/or disturbances, could be supported. Consequently, simulation could be applied for reactive, disturbance-handling purposes, and, moreover, 
for training the prediction models. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

Make to order production requires a proper estimation of 
manufacturing job lead times (LT) when dealing with 
production orders. Moreover, a reliable forecast on systems’ 
load and output is also mandatory both for due-date quotation 
as well as for production control decisions. Since LT 
estimation is a difficult task, resulting in often unreliable 
output (e.g., when applying well-known shop-floor related 
characteristics and calculation methods as for instance 
combining total work content of the jobs and actual WIP), 
novel methods, considering a bigger set of system parameters 
influencing the LT are required. Though, discrete event 
simulation is well known and widely applied for predicting 
future systems’ conditions, analytical interpretation of 
simulation outputs as prediction models would foster decision 
making on tactical level of production planning and control. 

Simulation technologies are often used in supporting 
production control decisions and this is also particular for 
large-scale manufacturing systems. Several different 
applications of discrete-event simulation models in control of 
manufacturing systems were presented in [1] and [2].  

A discrete-event simulator developed for the daily 
prediction of work in process (WIP) position in an operational 
wafer fabrication factory to support tactical decision-making 
is described in [3]. The model parameters are automatically 
updated by using statistical analyses performed on the 
historical event logs generated by the factory. A simulation 
study is presented in [4] which is applied to compare 
alternative WIP management policies, while [5] introduces a 
model, quantifying the effects of lot size changes, lot release 
controls and machine dispatching rules, on selected Key 
Performance Indicators (KPI-s) (throughput, process time and 
process time spread) for manufacturing steps. A simulation-
based scheduling framework is presented in [6] for handling 
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disturbances and creating updated schedules in reaction to the 
unpredicted situations, by combining both single criterion 
dispatching rules, and adjustable multiple-criteria decision 
making techniques. LT estimation methods are given in [7], 
estimating parameters of a regression model applied on shop 
simulation models. 

Consequently, the main challenge is the constant 
availability of the prediction models, which, this way requires 
a periodic review and training, obviously, provided by 
simulation systems. 

Accordingly, the structure of the paper is the following. In 
Chapter 2 the combination of discrete-event simulation and 
statistical learning methods is presented, focusing on the 
proposed simulation-based prediction framework and the 
statistical learning methods required by the framework. 
Chapter 3 introduces a set of comprehensive computational 
experiments by introducing a test production system and the 
implemented statistical learning models in order to provide 
explorative analysis of the system, as well as prediction on 
manufacturing lead time of jobs. Finally, conclusions are 
drawn and future work is described in Chapter 4. 

2. Combination of simulation and statistical learning 

2.1. Proposed simulation-based prediction framework 

The main goal of the framework introduced here is to 
provide a self-building production simulation, capable of both 
prospective (e.g. locate anticipated disturbances, identify 
trends of designated performance measures), and retrospective 
(e.g. gathering statistics on resources) simulation 
functionalities. Self-building simulation means that the 
simulation model is built up by means of the combination of 
the MES data as well as the knowledge extracted from the 
MES data (e.g. resource and execution model). In addition to 
the automatic model building feature, main requirement of the 
solution is to minimize the response time of the experiments 
and to enable the quasi “real-time” applicability of the 
simulation [8],[9]. 

Regarding the main operation modes of the simulator in 
the proposed architecture (Fig 1) are as follows: 

 Off-line validation, sensitivity analysis and statistical 
modelling of the system. Evaluation of the robustness of 
the system against uncertainties (e.g., different control 
settings, thresholds and system load levels). Consequently, 
this scenario analysis might point out the resources or 
settings which can endanger the normal operation 
conditions. In Fig 1 Off-line simulation represents the 
comprehensive model of the plant. 

 On-line, anticipatory recognition of deviations from the 
planned operation conditions by running the simulation 
parallel to the plant activities; and by using a look ahead 
function, support of situation recognition (proactive 
operation mode, Fig 1). 

 On-line analysis of the possible actions and minimization 
of the losses after a disturbance already occurred (reactive 
operation mode, Fig 1), e.g., what-if scenario analysis. 

 

Fig 1. Plant-level active disturbance handling realized by using statistical 
learning methods and reactive/proactive operation modes for simulation. 

In Fig 1, Plant represents the underlying production 
system, which is generally controlled through the 
manufacturing execution system (MES). Thus, green arrows 
represent production related data provided by the plant (e.g., 
resource status, job completion, or, the performance measure 
KPI of interest in the current case), either gathered by the 
MES and stored as log data, or, monitored on-line by, i.e., the 
simulation framework. Contrary, grey arrows represent an 
interaction or information exchange, e.g., the Decision-maker 
might control the process of the production (highlighted as 
Reaction) of the plant by the MES system. 

In a real-world application, the three main distinct 
operation modes follow each other during operation. 

In contrast to the on-line proactive mode of the simulation, 
in the off-line scenario, simulation is applied in combination 
with the MES log data for setting up and parameterizing 
statistical learning prediction models (Statistical learning, 
Prediction and classification models in Fig 1). Once the 
prediction models have been set up as result of the off-line 
analysis, permanent, on-line simulation analysis of the 
manufacturing system is performed (highlighted by Time in 
the bottom right corner of Fig 1). This means a rolling horizon 
monitoring of the productions systems’ behaviour (e.g. by 
monitoring preselected performance measure of interest, e.g. 
LT of jobs) in advance by using prospective simulations. In 
case of a relevant deviation occurs, i.e., a situation is 
recognized which might endanger the production, a 
prospective analysis and classification of the deviations are 
performed. At this point the models obtained in the previous, 
off-line mode are combined with the actual simulation results 
in order to analyse the possible effect of the deviation, and 
moreover, to filter out unnecessary interventions. For 
instance, in Fig 1 LT is expected to be out of the range 
defined by lower (LB) and upper (UB) bounds. Consequently, 
reactive simulation mode is initiated, where a predefined set 
of possible solutions (Decision alternative 1 – Decision 
alternative n, denoted as, e.g., Alt 1) for normalizing the 
production is preformed, highlighted as disturbance handling 
mode in Fig 1. 

The simulation model structure in the simulator is the same 
for the three operation modes, however, the granulation (level 
of modelling detail), time horizon, applied failure models and 
considered outputs depend on the purpose of the experiments 
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[8]. In the on-line modes the simulation models represent the 
virtual mirror of the plant and run parallel to the real 
manufacturing environment, instantly simulating the future 
processes for a predefined short period. 

In the paper, the off-line operation mode of the simulation 
and the prediction models are focused on. Interested readers 
might refer to [10], where on-line application of the 
simulation framework is introduced more in the details. 

2.2. Prediction models for production control decisions 

In order to extend the capabilities of the simulation 
towards prediction and estimation of future scenarios’ results, 
the use of statistical learning models are proposed. 

Basically, statistical learning refers to a set of methods for 
understanding and learning from data and providing solutions 
to understand the correlations among parameters and 
processes [11]. There are two main classes of these tools: the 
supervised and unsupervised learning techniques. Supervised 
learning aims at predicting some output parameters based on 
the input parameters and the priori known training set. The 
most fundamental supervised learning methods are the linear 
regression models capable of predicting a value of a 
quantitative output variable, assuming that there is 
approximately a linear relationship among the input/output 
variables. Other effective but simple techniques for practical 
applications are the tree-based methods that can be used both 
for regression and classification as well. The general idea 
behind these methods is the partition of the feature space into 
a set of disjoint rectangular regions, and fit a simple model in 
each one [11]. Building a regression tree over a given dataset 
is composed of two general steps. First, the feature space is 
divided into a set of disjoint regions, then for every 
observation which falls into a certain region the same 
prediction is made that is the mean of the region.  

By building regression models over simulation data, one 
can estimate the production parameters even besides a 
dynamic environment. Tree-based models (e.g., random 
forests) are applied for estimating the capacity requirements 
of modular reconfigurable system by utilizing the results of 
several simulation runs in [12], while in [7], a tree 
construction approach is introduced for lead time estimation. 

Regarding the simulation-related applications, regression 
and prediction models can be built over simulation-related 
data to support simulation-based optimization methods, in 
which some of the objective function or constraint(s) are 
represented by functions that are approximated by using the 
results of simulations [13]. The reason for applying simulation 
in these cases are usually the computational complexity or the 
lack of analytical expression of the objective function and/or 
constraints. These challenges are often faced when stochastic 
functions have to be represented in the optimization models 
[14]. A more general description of the input and output 
parameters of simulation models’ is given by meta-models 
that are aimed at approximating the behaviour of system with 
mathematical functions [15]. In [16] regression models are 
introduced on simulation data to analyse the functional 
relationship among dispatching rules, due-date assignments 
and shop-load ration in job shops. Similar approach is applied 

for a dynamic job-shop, however, simulation in this case was 
applied for evaluation only [17]. In [18], a multiple regression 
analysis platform was introduced, that enables prediction of 
different future scenarios considering the actual conditions of 
the production system. 

It is assumed that by inserting the prediction models into 
the proposed simulation-based decision support system, 
prospective simulations anticipating near-future deviations 
and/or disturbances, could be more effectively supported. 
Consequently, simulation could be applied both for proactive 
and reactive, disturbance-handling purposes, and, moreover, 
for (off-line) training the prediction models. 

3. Computational experiments 

3.1. Description of the production system to be examined 

The proposed method was tested on data provided by a 
discrete event simulation model of a small-sized parallel flow-
shop system (Fig 2). Accordingly, log data are generated by 
simulation experiments, substituting the function of a MES 
system, while considering several different system settings 
(e.g., job arrival rate, test rejection rate). In each case a job is 
finished on a machine the actual status of the entire system is 
logged (timestamp, product type, location, WIP, buffer levels, 
etc.), considering information available in a real system. 

The test production environment consists of five 
processing units (machines, grouped as stage 1 and stage 2) 
each with a buffer in front and a testing machine (stage 3) on 
which each product has to be tested (Fig 2). If this test is 
failed and the product is rejected, it is sent back to stage 2. 
Each job has a certain product type (A, B or C) assigned upon 
entering the system with equal probability and has to 
complete a process at each stage. There are two different 
levels of system load to be investigated, thus mean inter-
arrival time (ta) of the jobs is 260 for a high and 295 seconds 
for a low system load, while no job collection or delay is 
applied. Routings are set dynamically, i.e., after entering the 
system or finishing processing on a machine the next machine 
is selected with the shortest input queue. Processing times are 
collected in Table 1. It is obvious that the processing times are 
product-type dependent at a selected stage, meanwhile the 
testing procedure may vary within a predefined time range 
(lower and upper bound), independently from the type of the 
job. Jobs are pulled to the machines from the input buffers by 
using the FCFS rule.  

No setup times are considered in this model and the 
machines have a 90% availability during the production, but 
different mean times to repair (MTTR, Table 1). 

 

 

Fig 2. The layout and material flow of the test system. 
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Table 1. The main characteristics and parameters of the test production system. 

 Stage 1 machines Stage 2 machines Stage 3 testing 

SP0 SP1 SP2 SP3 SP4 SPT LB SPT UB 

Processing time [min] (systematic fail ratio or reject rate) 

Type A 12 (0.0) 12 (0.0) 12 (0.1) 6 (0.0) 6 (0.0) 2:50 (0.1) 3:30 (0.1) 

Type B 16 (0.1) 16 (0.0) 16 (0.1) 8 (0.0) 8 (0.0) 2:50 (0.1) 3:30 (0.1) 

Type C 10 (0.1) 10 (0.0) 10 (0.0) 3 (0.0) 3 (0.0) 2:50 (0.1) 3:30 (0.1) 

Availability [%] 90 90 90 90 90 90 

MTTR [min] 10 10 10 20 20 10 

 
An important part of the experiments is to include some, so 

called, systematic failures during the processing of the jobs. It 
means that at a certain constellation (e.g. Type A on machine 
SP2) a certain probability is assigned for failing the process 
(e.g., the product type is difficult to assemble and the machine 
or operator usually makes errors). This does not influence the 
processing time, but the outcome of the testing process at 
stage 3. Consequently, in parallel to the normal reject rate 
(last two columns in Table 1), there are some jobs having a 
“systematic fail” built in, which will be recognized during the 
testing. After rework, jobs must be processed (reassembled) 
on stage 2 and tested again. 

Thus, an expected total work content (TWK), indicating a 
minimal lead time, of each product types are the sum of the 
mean processing times along the manufacturing process 
(mean set-up time is zero while batch size equals 1): 1270, 
1630 and 970 seconds, for type A, B and C, respectively. 

The above detailed settings of the production systems 
resulted in a relatively high average machine utilization level 
on stage1 machines, 90 and for the testing machine at stage 3, 
85. Stage 2 machine utilization was around 75 percent. 

Moreover, by using the workload formula given in [19], 
the expected overall utilization level of the test system is 83% 
(without reject and rework). These levels could be considered 
as a proper level for lead time estimations [7], since, 
representing a real-world problem, there will be several jobs 
waiting in the system, making lead time estimation 
challenging, but, parallel keeping the expected WIP level 
manageable (e.g., by using Little’s law formula [19], the 
expected WIP is approx. 32 jobs). Note that as the utilization 
level (and system load) increases the estimation of the job 
lead times getting more difficult and unstable [7]. In Fig 3 the 
main characteristics of the job execution on the simulated test 
system are highlighted. 

 

 

Fig 3. Main characteristics of a simulated execution of 2000 jobs in the test 
system for a lower system load level. a) Logged WIP level; b) Histogram of 
the job lead times on a logarithmic scale. 

As the result of 2000 jobs going through the system the 
fluctuating WIP level (Fig 3a) and the histogram of the job 
lead times (Fig 3b, on a logarithmic scale) are given. It is 
obvious that the bimodal distribution of log-lead times are a 
consequence of the two distinct levels of WIP (before and 
after index 10000). 

3.2. Selection of prediction parameters 

The proposed statistical learning methods, introduced in 
Section 2.2 were applied on the historical log data provided 
by the simulation experiments, outlined previously. This 
section introduces first the feature selection applied in order to 
have the relevant parameters left in the models only. Then, 
two particular analysis are explained in details: 1) giving an 
explorative analysis, focusing on structure exploration 
(finding hidden failures); 2) applying prediction models for 
lead time estimation for different system conditions. 

Once the test systems parameters are tuned in order to have 
a mostly stable and steady behaviour thorough the time 
horizon of the experiments in the simulation, the next step is 
to prepare the data for model formulation and estimation.  

As it was stated before, collecting logs means that in each 
case a job is finished on a machine (or tested or event sent for 
rework) in the simulation system the actual status of the main 
parameter of the system is logged in a record of a log file 
(Table 2).  

Here the main goal is to have particular entries in one line 
of the table containing all the relevant features (input 
variables) might describe the resulted outcome (output, or 
response variable) of the experiment (also referred to as 
observation). Therefore, log data must be preprocessed to be 
able to formulate the feature table (Table 3), necessary for 
model training and validation. 

 

Table 2. Initial parameter set available from the log files 

parameter description 

ID Job ID 

time_OUT time stamp of when the process was finished 

Location machine ID, where process of the job was finished 

rework if the process was a rework 

type type of the job (product) 

FailRate 1- the actual fail rate of the testing process (quality) 

WIP number of jobs in the system 

Buffer levels jobs waiting to be processed in the different queues 
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Table 3. Excerpt of a resulted feature table, aggregated to include relevant 
features describing jobs’ behavior passing through the system. 

ID SP0 SP1 SP2 LT type FRate WIP B … 

1 1 0 0 1262 A 0.00 1 1 … 

2 1 0 0 3335 C 1.00 7 1 … 

3 1 0 0 4892 B 0.89 22 4 … 

4 1 0 0 6769 A 0.92 20 6 … 

5 0 1 0 4017 A 0.92 20 5 … 

 
Routing of the jobs, as one of the major influencing 

factors, are assigned dynamically, but, however, can be 
tracked by the log entries (using Location, ID and Type). That 
means in the current representation, assigning a level one 
value to the certain machine (SP0, SP1 or SP2) on which the 
job was processed at Stage 1. Other sections of the routing are 
irrelevant, thus are not mapped. 

Similarly, job lead times are calculated from the logs (LT 
in Table 3) and assigned to the jobs by using the time_OUT 
time stamps (Table 2). It was assumed that WIP level strongly 
influences LT in the system examined, thus, WIP and certain 
buffer levels (number of jobs waiting to be processed) in front 
of the machines are added to the feature table (B, B2, … , B12 
in Table 3) as well.  

Preliminary analysis of the features are given in Fig 4 in 
form of a correlation matrix of the selected variables. Note 
that the variable type is removed from this analysis, as it is a 
categorical variable [11]. As it was expected, the response 
variable LT (lead in Fig 4) is highly correlated with the 
features describing the system load (WIP and buffer levels). 

3.3. Explorative analysis 

After retrieving the feature table and all the log data from 
the simulation experiments, it is obvious to provide an 
explorative analysis, focusing on structure exploration, i.e., 
finding hidden relations resulting diverse response of certain 
inputs. In our case it means that (as introduced in Section 3.1) 
for some particular routing and job type combinations the 
probability to fail the test at Stage 3 will be above the 
“normal” rejection rate. It is presumed that the LT-s must 
reflect these constellations.  

 

 

Fig 4. Graphical representation of the correlation matrix of the parameters in 
the feature table. White is a high positive, while dark grey is a negative 
correlation. 

 
 
Fig 5. Prediction tree on the training set (excerpt). 

 
However, in the current experiments introduced here these 

issues are known in advance, but in a real-world situation a 
structure exploration might be unique for identifying these 
underlying relationships. 

In order to test the outcome of the predictions, first 
available data of the experiments were split into training and 
testing sets (one half each). A regression tree ( 

Fig 5, the left part is shown) was built by using the training 
set data only, but all the features available (general setting for 
the smallest allowed node size = 100). It can be seen that for 
low system load situations the shortest lead time (1845) is 
assigned to job type C (in accordance with the expected 
TWK). In contrast, e.g., if the WIP is above 12, the LT for a 
job type B is either 4234 or 4911 if in the routing SP0 station 
was affected or not, respectively. Tree pruning was applied, 
and a new tree had been created in order to avoid over-fitting 
the model [11]. This is a systematic K-fold cross validation 
process to find the deviance or number of misclassifications 
as a function of the cost-complexity parameter [20]. In this 
new tree input variables used in the tree construction had been 
reduced, i.e., B, B2 WIP and SP2 were predictors with 
relevance. 

3.4. Prediction on the test set 

As the number of leaves (distinct and non-overlapping 
regions) in the tree are strongly limited, the prediction power 
of this model is expected to be low. The mean squared error 
(MSE) provided by the model when predicting from the test 
set was 952. Since it is apparent that the resulted tree based 
prediction model is useful for structure exploration as it was 
shown before, however, applying it for predicting LT, as the 
original goal, requires the application of other prediction 
models making comparison possible. Therefore, two other 
models, introduced in Section 2.2, were constructed on the 
training set. A multiple linear regression was formulated 
based on the strong correlation of system load related 
variables and the response variable LT. The general linear 
model resulted in the coefficients, where the higher intercept 
coefficient (3582) is compensated by the FRate (-3079). 
Regarding model quality, the R2 value, showing the variance 
described by the model, is 0.975, while the MSE, calculated 
on the test set by the model, is 816.90, significantly lower 
compared to the previous tree based model. 

Finally, an extension of the tree based method, a random 
forest model was constructed on the training data. This means 
that a number of decision trees are created on bootstrapped 
training samples [11] in order to try to reduce high  
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Fig 6. The function of model predictions (Y_) and test set values (fT.test) for the (a) prediction tree, (b) linear and (c) random forest models. 

 
model variance. Building these decision trees, each time a 
split in a tree is considered, a random sample of m predictor 
variables is chosen as split candidates from the full set of p 
predictors. The split is allowed to use only one of those m 
predictors. This method is mostly helpful when dealing with a 
high number of correlated predictors. As expected, the quality 
of the prediction by applying this model on the test set, using 
500 trees, is the best, compared to the other two solutions. 
MSE is 652.8 and R2 value is 0.98. 

In Fig 6 the comparison of the prediction performance of 
the three models are highlighted. It can be seen that the 
prediction and test set values are the closest for the random 
forest model (values are close to the solid line representing a 
perfect prediction match) within the whole range of predicted 
LT values (Y_). Contrary, the simple decision tree model 
provides a limited number of predicted values, thus in several 
cases the real output is away from the predicted one. 

4. Conclusions and future work 

In the paper, a novel method was introduced for multi-
model based prediction of manufacturing lead times. By 
inserting the prediction models into the proposed simulation-
based decision support system, prospective simulations 
anticipating near-future deviations can be supported. 

Future work covers testing the prediction models 
capabilities against changing, volatile system parameters. The 
degradation of the prediction power is expected, thus, 
however, a simulation supported re-training will be examined. 
This is important for the random forest model, which is highly 
sensitive for predictors taking values out of the expected 
boundaries (e.g., unexpected WIP level). However, the 
predictor variables are selected from a wider range of system 
parameters, applying systematic model selection methods 
would be a desirable way for improving model accuracy. 
Current results are to be compared to state-of-the-art 
analytical prediction solutions available in the literature. 
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