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Abstract: This work applies the LQ control framework to the class of quasi-polynomial and
Lotka-Volterra systems through the linearized version of their nonlinear system model. The
primary aim is to globally stabilize the original system with a suboptimal LQ state feedback by
means of a well-known entropy-like Lyapunov function that is related to the diagonal stability of
linear systems. This aim can only be reached in the case when the quasi-monomial composition
matrix is invertible. In the rank-deficient case only the local stabilization of the system is possible
with an LQ controller that is designed using the locally linearized model of the closed-loop system
model.
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1. INTRODUCTION

A wide range of nonlinear systems can only be tackled
using nonlinear techniques (Isidori (1995)). The majority
of such techniques are applicable only for a narrow class
of nonlinear systems, while the more generally applicable
methods suffer from computational complexity problems.
One possible way of balancing between general applicabil-
ity and computational feasibility is to find nonlinear sys-
tem classes with good descriptive power but well character-
ized structure, and utilize this structure when developing
control design methods. This is possible, for example, in
the case of quasi-polynomial systems, that is the subject
of this paper.

Previous work in the field of quasi-polynomial systems
include the paper of Figueiredo et al. (2000), which gives
a sufficient condition for the global stability of quasi-
polynomial systems in terms of the feasibility of a linear
matrix inequality (LMI). Based on this result, it has been
shown in Magyar et al. (2008), that the globally stabi-
lizing state feedback design for quasi-polynomial systems
is equivalent to a bilinear matrix inequality. It is also
shown there, that although the solution of a bilinear ma-
trix inequality is an NP hard problem, an iterative LMI
algorithm could be used. A summary of linear and bilinear
matrix inequalities and the available software tools for
solving them can be found in VanAntwerp and Braatz
(2000).
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Another control synthesis algorithm for polynomial sys-
tems is presented in Tong et al. (2007). A different ap-
proach has been presented in Magyar and Hangos (2015)
where Lotka-Volterra models has been globally stabilized
based on their underlying linear model.

The aim of this paper is to apply a LQ based state feed-
back controller for quasi-polynomial and Lotka-Volterra
systems through a locally linearized model corresponding
to a (unique) positive equilibrium point of the closed-
loop system. The primary aim is the formulation of a LQ
problem that yields a diagonally stable LTI system and
the corresponding globally asymptotically stable Lotka-
Volterra or quasi-polynomial system. Of course, the case
when the quasi-monomial composition matrix is rank-
deficient, it is far from being trivial and one can expect
only local asymptotic stability in this case.

2. BASIC NOTIONS

The most important results on quasi-polynomial (QP) and
Lotka-Volterra (LV) systems and on their stability analysis
are briefly presented here.

2.1 Quasi-Polynomial and Lotka-Volterra Systems

The system dynamics of an autonomous quasi-polynomial
(QP) system can be described by a set of differential-
algebraic equations (DAEs), where the ordinary differen-
tial equations

dzi
dt

= zi

λi +

m∑
j=1

αijqj

 , i = 1, ..., n, (1)
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are equipped by the so called quasi-monomial relationships

qj =

n∏
i=1

z
βji

i , (2)

that are apparently nonlinear (monomial-type) algebraic
equations. Two sets of variables are defined, that are (i)
the differential variables zi, i = 1, ..., n, and (ii) the quasi-
monomials qj , j = 1, ...,m. The parameters of the above
model are collected in the coefficient matrix [A]ij = αij ,
quasi-monomial composition matrix [B]ji = βji and a
vector [λ]i = λi. Then equation (1) can be written in the
compact form

ż = D(z) (λ+Aq) , (3)

where D(·) stands for diag(·).
It is easy to see that Lotka-Volterra systems form a special
subset of the quasi-polynomial systems with the choice
B = I, and thus q = z with n = m

ż = D(z) (λ+Az) . (4)

This constitutes a special square invertible case for the
quasi-monomial composition matrix B.

Lotka-Volterra form It can be shown (see Hernández-
Bermejo and Fairén (1995)) that the class of QP systems
is closed under the so called quasi-monomial transforma-
tion (QM transformation), where the product M = BA
remains constant when transforming a QP model. This
way the QM transformation splits the set of QM models
into equivalence classes that are represented by a Lotka-
Volterra model where the differential variables are the
quasi-monomials

q̇ = D(q)(B λ+BAq) = D(q)(B λ+Mq), (5)

where q satisfy the algebraic equations (2).

We can consider the logarithm of these algebraic equations
because of the positivity of the two sides

ln q = B · ln z, (6)

where [ln x]i = ln xi. Then (6) is equivalent to

ln q ∈ range(B). (7)

This manifold (7) is an invariant subspace of the dynamics
(5) because

dln q

dt
= B (λ+Aq) ∈ range(B). (8)

It is easy to see that when the matrix B is invertible then

z = exp(B−1 ln q) (9)

for all q ∈ Rn>0. It means that the algebraic equation (2)
has a positive solution for all q ∈ Rn>0.

In the usual case of m > n, the right side of the
transformed ODE (5) would be simpler, but we have to
consider the algebraic conditions (2).

Steady-state points The non-zero steady-state point(s) of
the dynamic equations (1) are obtained by setting the left-
hand sides equal to zero, and solve the equations

0 = λ+A · q∗, (10)

for q∗ (the vector q∗ has a quasi-monomial relationship
with the equilibrium point z∗). Generally, this equation

has a unique solution if A is quadratic and invertible, but
the solution is not necessarily positive.

Otherwise, if m > n, then the set of equations (10)
may have infinitely many solutions. However, the set of
algebraic equations (6) puts a set of nonlinear constraints
to the elements of the vector q∗ (i.e. the vector q should
be taken from a lower dimensional manifold of the quasi-
monomial space) that may result in a unique equilibrium
point even in this case. The existence of strictly positive
solutions without algebraic constraints can be tested by
various algorithms or simple linear programming.

Quasi-Polynomial models with input Let us consider a
linear input structure for the original QP model (1), that
can be formally derived by regarding λ as a function of the
input vector u

λ = φu, u ∈ Rp, φ ∈ Rn×p, p ≤ n (11)

such that the state equation is in the form

ż = D(z) (φu+Aq) (12)

with the algebraic equations (6).

2.2 Stability Condition of QP systems

Assume that there exists a positive steady-state point z∗ of
the QP system (1). Then this steady state point is globally
asymptotically stable if there exists a positive diagonal
matrix P for the product matrix M = BA such that

MP + PMT < 0, (13)

or
QM +MTQ < 0, (14)

where Q = P−1 is positive definite diagonal matrix (Gléria
et al. (2001); Figueiredo et al. (2000)). In this case, the
matrix M is called diagonally stable (Kaszkurewicz and
Bhaya (2012)).

It is important to note that the feasibility of the above LMI
is a sufficient (but not always necessary) condition for the
stability, as it is derived from the dissipativity property of
the entropy-like Lyapunov function

V (q) =

m∑
i=1

γi

(
qi − q∗i − q∗i ln

qi
q∗i

)
where γi > 0 and Q = D(γ).

2.3 Locally Linearized QP Model

The linearized version of the QP model (1) around its
positive equilibrium point z∗ is in the form

∆z

dt
=
[
D(z∗)AD(q∗)BD(z∗)−1

]
∆z (15)

where ∆z = z− z∗. When the matrix B is invertible, then
we can transform (15) with the linear transformation

x =
[
D(q∗)BD(z∗)−1

]
∆z = T∆z (16)

with the transformation matrix

T = D(q∗)BD(z∗)−1 , (17)

and the transformed system is in the form

ẋ = D(q∗)BAx = M∗x. (18)
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2.4 Diagonal Stability of the QP and Linearized-QP
Models

The following lemma states the equivalence of the diagonal
stability of the original QP and the transformed linearized
system (18).

Lemma 1 The matrix M∗ is diagonally stable if and
only if the matrix M is diagonally stable.
Proof: =>: If the matrix M∗ is diagonally stable then
there exists a positive diagonal Q such that QD(q∗)M +
MT D(q∗)Q < 0. Then, the matrix M is diagonally stable
with the matrix D(q∗)Q.
<=: If the matrixM is diagonally stable then there exists a
positive diagonal Q such that QM+MT Q < 0. Then, the
matrix M∗ is diagonally stable with the diagonal matrix
QD(q∗)−1.

3. LQ DESIGN PROBLEM FOR QP-SYSTEMS

In this section, two feedback design methods for quasi-
polynomial and Lotka-Volterra systems are presented. The
first method achieves diagonal stability and improves the
local LQ performance. This method assumes an invert-
ible quasi-monomial composition matrix B. The second
method will only locally stabilize the system with local
LQ performance, but it assumes only a full rank quasi-
monomial composition matrix B with linearly independent
column vectors.

3.1 Feedback Structure

Let us consider the nonlinear state feedback in the form

u = K q + u∗ (19)

where u∗ is a constant that moves the closed loop equilib-
rium to the desired steady-state point z∗.

3.2 The Steady-state Point of the Closed Loop System

Let us consider the steady state equations (10) in the
closed loop case

φ (K q∗ + u∗) +Aq∗ = 0. (20)

Let
u∗ = −K q∗ + u∗∗ (21)

then we can set the positive vector q∗ to a steady state of
the closed loop system if there exists u∗∗ such that

φu∗∗ +Aq∗ = 0. (22)

3.3 Linearized Closed Loop System and Input

When the positive vector z∗ is a suitable steady state of
the closed loop system, then the linearization of the closed
loop QP system is

d∆z

dt
=
(
D(z∗) [A+ φK]D(q∗)BD(z∗)−1

)
∆z. (23)

In that case the linearized input is

u′ = KD(q∗)BD(z∗)−1∆z. (24)

3.4 Suboptimal LQ with Diagonal Stability

In this subsection, LQ control with diagonal stability for
QP system is considered. For this, we assume that B is
invertible, i.e. it is a full rank square matrix with m = n.

When the matrix B is invertible, the linearized closed-loop
system (23) can be transformed into the following form

ẋ = (M∗ +N∗K)x (25)

using the transformation matrix T in equation (17), where
M∗ = D(q∗)BA and N∗ = D(q∗)B φ.

As stated in the Lemma 1, when the state matrix of the
linearized and transformed closed-loop system

M∗ +N∗K (26)

is diagonally stable, then the corresponding QP system is
diagonally stable, too.

If the pair (M∗, N∗) is diagonally stabilizable, then a sub-
optimal LQ of the linearized closed loop system with di-
agonal stability can be computed by following the method
of Haddad et al. (2009).

Let the LQ objective function of the closed-loop linearized
QP system be

J(K) =

∫ ∞
0

‖Q 1
2 ∆z‖22 + ‖R 1

2KD(q∗)BD(z∗)−1∆z‖22 dt

(27)
where Q and R are positive definite matrices with the
appropriate dimensions, that can be chosen arbitrarily
to satisfy our control performance aims. To guarantee
diagonal stability, we have to design the feedback to the
transformed and linearized system. Then, the transformed
LQ objective is in the form

J(K) =

∫ ∞
0

‖Q 1
2T−1x‖22 + ‖R 1

2Kx‖22 dt (28)

using the transformation matrix T in equation (17). The
suboptimal feedback gain K can be computed by solving
the following LMI problem

min
P,X,Y

Tr(T−TQT−1P ) + Tr(X) (29)

subject to

M∗ P + P (M∗)T +N∗ Y + Y T (N∗)T + I < 0 (30)[
X R1/2Y

Y TR1/2 P

]
> 0 (31)

where P is a positive diagonal matrix, X is a positive
definite matrix and Y = KP .

The resulted closed-loop system (25) is diagonally stable
and has suboptimal LQ performance such that

J(Kopt) ≤ J(K) ≤ Tr(T−TQT−1P ) + Tr(X) (32)

where K and Kopt are the solution of the problem (29)
- (31) with and without the diagonal restriction, respec-
tively.

3.5 Local LQ in the general non-invertible case

When the matrix B is not invertible, then the open-
loop QP system can not be diagonally stabilized, because
then M∗ is also rank deficient. Then we can still use the
nonlinear feedback (19) to design an LQ feedback to the
linearized system that will only locally stabilize the system.
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Let us consider the linearized closed-loop system (23) with
the new notations

∆z

dt
= (A′ +B′K ′)∆z, (33)

where

A′ = D(z∗)AD(q∗)BD(z∗)−1, B′ = D(z∗)φ,

C ′ = D(q∗)BD(z∗)−1, K ′ = KC ′.

Observe, that the matrix C ′ is the same as the transfor-
mation matrix T in equation (17), and can be regarded as
a transformed version of the quasi-monomial composition
matrix B of the same size, i.e. C ′ ∈ Rm×n.

When the rank of matrix C ′ is n – i.e. the matrix B is of
full rank with linearly independent columns – then for all
K ′ there exits a matrix K such that

K ′ = KC ′. (34)

Therefore, we can solve the LQ problem for the linear
system (A′, B′), and use the resulted feedback gain K ′

to compute the real feedback gain in equation (19) from
(34).

4. CASE STUDIES

Two simple examples are presented here to demonstrate
the LQ controller, one for the square invertible case when
globally stabilizing design is possible, and another one for
the rank-deficient locally stabilizing design.

4.1 Suboptimal Diagonally Stabilizing LQ Design

Let the open-loop QP system be

ż1 = z1(2z2 + 5z21 + u)

ż2 = z2(−3z2 − 2z21 − u).
(35)

The system matrices are

A =

[
2 5
−3 −2

]
, B =

[
0 1
2 0

]
, φ =

[
1
−1

]
.

First, we have to choose a desired equilibrium point z∗ =

[1 3]
T

. It fulfils the condition (22) with u∗∗ = −11. Then,
the linear transformation matrix in equation (17) is

T =

[
0 1
2 0

]
,

and the matrices of the transformed system is

M∗ =

[
−9 −6

4 10

]
, N∗ =

[
−3

2

]
.

This system is diagonally stabilizable. Therefore, we can
apply the suboptimal and optimal LQ design, too. Let
Q = I and R = 0.1. Then, the computed gain matrices
are

KSLQ = [−2.7427 − 15.6096]

KLQ = [−3.3351 − 15.6064] .

The transformed controllers of the QP system are

uSLQ = −2.7427z2 − 15.6096z21 + 12.8376 (36)

and

uLQ = −3.3351z2 − 15.6064z21 + 14.6116. (37)

The suboptimal control transforms the open-loop system
to be diagonally stable, so the QP system will be globally
asymptotically stable with the equilibrium point z∗. The

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Fig. 1. The phase portrait of the controlled QP system (35)
starting from different initial conditions. The blue
curves correspond to the diagonally stabilized system,
the red ones correspond to the locally stabilized
system.

optimal control stabilizes the QP system only locally, but
the local performance is found to be better than in the
suboptimal case. Fig. 1 shows the phase portrait of the
two controlled cases with different initial conditions.

4.2 Local LQ Design

Let us consider the open-loop QP system

ż1 = z1(2z1z2 + z21 − z22 + 2u)

ż2 = z2(z1z2 + z21 − z22 + u).
(38)

The system matrices are

A =

[
2 1 −1
1 1 −1

]
, B =

[
1 1
2 0
0 2

]
, φ =

[
2
1

]
,

and q =
[
z1z2 z21 z22

]T
.

First, we have to choose a desired equilibrium point z∗ =

[1 1]
T

. It fulfils the condition (22) with u∗∗ = −1. In that
case, the parameters of the linearized system (33) are

A′ =

[
4 0
3 −1

]
, B′ =

[
2
1

]
, C ′ =

[
1 1
2 0
0 2

]
.

In the following, we are going to design a LQ controller
for the system (A′, B′) with the parameters Q = I and
R = 0.1. The resulted state feedback gain is

K ′ = [−5.4067 − 1.4923]

that corresponds to the real control gain

K = [0 − 2.7034 − 0.7461] .

This results in the control input

u = −2.7034z21 − 0.7461z22 + 2.4495.

Fig. 2 shows the phase portrait of the controlled system
with different initial conditions.

5. CONCLUSION

LQ based stabilizing feedback design approaches have been
presented in this work for quasi-polynomial and Lotka-
Volterra type nonlinear systems. One of the approaches
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Fig. 2. The phase portrait of the controlled QP system
(38) with different initial conditions.

proposes a diagonally stabilizing state feedback design
technique based on the linearized version of the quasi-
polynomial model, formulated as a set of LMIs. This
method yields a suboptimal controller in the LQ sense and
can globally stabilize the system in the square invertible
m = n case.

In the case of rank deficiency which may be caused by the
fact that the Lotka-Volterra model originates from a lower
dimensional quasi-polynomial model, only a locally stabi-
lizing LQ controller can be designed using the linearized
form of the closed-loop system model.
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Gléria, I., Figueiredo, A., and Rocha Filho, T. (2001). On
the stability of a class of general non-linear systems.
Physics Letters A, 291(1), 11–16.

Haddad, W.M., Chellaboina, V., and Gholami, B. (2009).
H2 suboptimal estimation and control for nonnegative
dynamical systems. Optimal Control Applications and
Methods, 30(1), 27–45.

Hernández-Bermejo, B. and Fairén, V. (1995). Nonpolyno-
mial vector fields under the lotka-volterra normal form.
Physics Letters A, 206(1), 31–37.

Isidori, A. (1995). Nonlinear Control Systems. Springer-
Verlag.

Kaszkurewicz, E. and Bhaya, A. (2012). Matrix diagonal
stability in systems and computation. Springer Science
& Business Media.
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